
Brazilian Journal of Physics, vol. 34, no. 3A, September, 2004 865

Path Dependence of the Quark Nonlocal Condensate within the
Instanton Model

L. A. Trevisan1,3, A. E. Dorokhov2, and Lauro Tomio3
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Within the instanton liquid model, we study the dependence of the gauge invariant two–point quark correlator
on the path used to perform the color parallel transport between two points in the Euclidean space.

1 Introduction

The nonlocal vacuum condensates or vacuum correlators
describe the distribution of quarks and gluons in the non-
perturbative QCD vacuum [1]. Physically, it means that vac-
uum quarks and gluons can flow through the vacuum with
nonzero momentum. Nonlocal condensates play an impor-
tant role in hadron physics. The nonlocal properties of the
vacuum condensates are of principle importance in the study
of the distribution functions of quarks and gluons in QCD
vacuum and in hadrons [1, 2].

In general, the gauge–invariant (and path independent)
nonlocal quark-quark correlator is defined by

M(x, y) =
∑

C
e−L[C]MC(x, y), (1)

where

MC(x, y) = (1/Nc)× (2)

〈0| : Tr

{
Pexp

(
ig

∫ x

y, C
dzµAa

µ(z)T a

)
q(x)q(y)

}
: |0〉

is the quark correlator with the Schwinger phase factor path-
ordered along any pathC from 0 to x. The P-exponential
ensures the parallel transport of color from one point to
another. T a are the matrices of the algebra of the color
group SU(Nc) in the fundamental representation. The trace
is taken on the color indices andexp {−L[C]} is the dynam-
ical weight of each path configuration.

To evaluate Eq. (1), one has to calculate the nonpertur-
bative expectation value of the Wilson line operator for an
arbitrary pathC and perform resummation over all possible
path configurations, pictorically represented in Fig. 1. Both
tasks are extremely difficult and cannot be performed in full
manner at the current stage. In the field theory there is a
special class of observables for which the straight-line paths
are dominated and the path integrations can be performed
exactly. We can mention two examples: propagation of an

energetic quark through a cloud of soft gluons, and the be-
haviour of light quark in the field of infinitely heavy quark.
Such an approximation is called the straight-line path ap-
proximation [3].

0 X

Figure 1. Schematic representation of the quark correlator with ar-
bitrary paths between the quarks, which are in the positions 0 and
x.

Next, we describe the so called straight-line path approx-
imation. In section III, we discuss the path dependence and
present the formalism we are considering. In section IV we
present our results and conclusions.

2 Straight-line path approximation

The gauge-invariant correlatorsMC(x, y) in (1) in princi-
ple depend on the choice of the pathC. Usually, the path
C appearing in Eq. (2) is assumed to be a straight line con-
necting the points0 andx. With the path, that is a straight
line connecting the points0 andx, the Schwinger string (2)
reads:

S(0, x) = P exp
(

ig

∫ 1

0

dt xµAµ(xt)
)

. (3)
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Then, in the Euclidean region, the translational, O(4) and
parity symmetries require the correlator (2) to be of the fol-
lowing form:

M(C)(x, 0) = 〈0| : q(0)q(0) : |0〉Q(C)(x2) , (4)

whereQ is an invariant function ofx2. In principle, every
choice of a pathC[0,x] connecting the two points0 andx
in the expression (2) for the Schwinger string operator will
generate a different quark correlator, that we have denoted
in Eq. (1 ) asQ(C)(x) [Q(C)(0) = 1].

Recently, the quark nonlocal condensate, with the
straight–line parallel transport, has been evaluated on the
lattice [4] and semi–classically in the instanton dilute–liquid
model [5]. The instanton model of the QCD vacuum is a re-
alistic one in prediction of the behaviour of the quark and
gluon correlation functions [5, 2]. For the straight line path
the averaging over the instanton vacuum gives in the single–
instanton approximation the result [5, 2]

QI(x2) =
8ρ2

π

∫ ∞

0

drr2

∫ ∞

−∞
dt×

×
cos

[
r
R [arctan( t+|x|

R )− arctan( t
R )]

]

[R2 + t2]3/2[R2 + (t + |x|)2]3/2
, (5)

whereρ is the average instanton size andR =
√

ρ2 + r2.

In the next, we discuss the path dependence of the cor-
relators and present the formalism that we are considering.

3 Path dependence of the nonlocal
quark condensate

The nonlocal quark condensate with straight–line path has
a direct physical interpretation in the heavy quark theory of
heavy–light mesons as it describes the propagation of a light
quark in the color field of an infinitely heavy quark. In the
light quark sector one needs to know the path dependence
of the correlator and average over all possibilities, as shown
in Fig. 1. Moreover, knowledge of the path dependence is
also important in modeling of the higher dimensional non-
local condensates used in QCD sum rules for hadron wave
functions.

No analysis exists of what happens for a different choice
of the pathC other than the straight line, except recent
very intersting results on the path dependence of the gauge-
invariant gluon field strength correlator studied in numerical
simulations on a lattice in Ref. [7]. Here, we report our re-
sults on the path dependence of the gauge–invariant quark
two-point correlator within the instanton vacuum model for
arbitrary paths made of two joined straight lines with cusp
(polygon path). The broken-line quark condensate has the
general structure (see,e.i. [8, 9])

MC(x, y) = 〈qq〉
[
Q(C)

S (x, y) +
λ2

q

24
Q(C)

T (x, y)[x̂, ŷ]

− i

4

(
Q(C)

V (x, y)x̂−Q(C)
V (y, x)ŷ

)]
, (6)

whereλ2
q is an average quark virtuality in the QCD vacuum.

In order to calculate the matrix element (2) we use the in-
stanton liquid model. In the single instanton approximation
the vacuum expectation value is found by taking the classi-
cal instanton solution and quark zero modes developed in its
field and averaging over instanton collective variables: its
size, its color orientation and its position in space. Then one
gets

Q
(C)
I,i (x) =

∫
dD (ρ)

∫
dU

∫
dz4

0

1
Nc

Tr{q0(x− z0)Γi

× P exp
[
−ig

∫ y

x

dzµAa
Iµ (z − z0)

τa

2

]
q0 (y − z0)},

(7)

where the instanton field in the regular gauge is given by

Aa
Iµ (z) =

1
g
ηa

µνzνΦ(z) , Φ(z) =
2

ρ2 + z2
, (8)

and corresponding quark zero mode

q0 (z) =
ρ

π

1

(ρ2 + z2)3/2
χ, χχ = 2. (9)

In Eq. (8),ηa
µν is the antisymmetric ’t Hooft symbol. The

broken–line path is parameterized in the form

C[y,0,x] =
{

yµλ, −1 ≤ λ ≤ 0,
xµλ′, 0 ≤ λ′ ≤ 1,

(10)

with the cusp angleα defined as

cos(α) =
y · x
|x||y| .

Note, that in the zero mode approximation,Q(C)
V (x, y) is

absent due to its odd chirality structure. Let us consider
the scalar structure,Q(C)

S (x, y), in Eq. (6). The final result,
which is gauge and translation invariant, is given by

Q
(C)
S,I(y, x) = nc

∫
dz4

0q0(y − z0)q0 (x− z0)×
× {cos [αy] cos [αx] + (ny, nx) sin [αy] sin [αx]} , (11)

where the corresponding phase factorsαx,y and unit (in
color space) vectorsna

x,y

(
n2

x,y = 1
)

are given by

αu =
1
2

√
u2z2

0 − (uz0)
2
∫ 1

0

dλΦ(uλ− z0) , (12)

na
u =

uµηa
µνz0ν√

u2z2
0 − (uz0)

2
, (13)
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with u = x or y. The scalar product in color space is

(ny, nx) =
(y, x) z2

0 − (z0, y) (x, z0)√
y2z2

0 − (yz0)
2
√

x2z2
0 − (xz0)

2
. (14)

In the next section, we present and discuss the results of our
calculations.

4 Results and conclusions

We have explored the dependence on the path by calculating
the correlator, considering various different paths, as shown
in Figs. 2 and 4. The corresponding results are presented in
Figs. 3 and 5. All distances are given in units of the instanton
sizeρ, i.e., forρ = 1.
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Figure 2. Different paths between quarks that are at fixed deflection
from the straight line. The position of the cusp is at equal distance
from each quark.

In Fig. 2, we show a set of paths with fixedtransverse
size h parameterizing the deviation from the straight–line
path. A similar set of paths has been considered in lattice
calculations [7] for the gluon field-strength correlator. We
have chosen the position of thecuspin the broken-line path
in Fig. 2 in the middle of the line(0, x). All quark correla-
tors are normalized at zero distance,x = 0, independently
on the form of closed path. All curves in Fig. 3 have the
same largex asymptotics. This is because at large distances
the relative deflectionh becomes very small (h << x) and
the path becomes almost indistinguished from the straight–
line path.

The same considerations also apply to thesetsof paths
shown in Fig. 4, for a fixed distance between quarks and
equal distance of each cusp from the quarks. This set
of paths, with fixed equal distances from the cusps to the
quarks, shows the maximal effects related to the deflection
of the broken-line path from the straight-line one. The re-
sults for the correlatorQ(x, h) are shown in Fig. 3, versus
the distancex; and, in Fig. 5, versus the distancesh, related
to the angleα.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Quark correlator for different paths shown in Fig. 2. The
solid line is for the straight-line path (h = 0); dashed line is for the
broken-line path, withh = 3; and dot-dashed line is forh = 6.
All the distances (x, h) are in units of the instanton sizeρ.
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Figure 4. Different paths between quarks that are at fixed distance
x = 2, considering the same distance of the cusp from each quark.
Indicated inside the figure we have three representative cases, with
the corresponding values of the correlator.
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Figure 5. Quark correlator for different paths shown in Fig. 4, as
a function of the cusp distance. The quarks are at fixed distance
x = 2 between them, and at the same distances from each cusp.

Finally, we observe that our main result is the strong de-
pendence of the correlators on the shape of the path (Fig. 5),
which can particularly be more relevant for the light quark
propagation. The correlator corresponding to the straight–
line path, given in Eq. (3), has the largest signal (for every
distanceh), compared with other choices of the path (Fig. 3).
Every deformation from the straight–line path produces a
smaller value for the correlator.
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