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A brief review of inflation is presented. After having demonstrated the generality of the inflationary mechanism,
the emphasis is put on its simplest realization, namely the single field slow-roll inflationary scenario. Then, it is
shown how, concretely, one can calculate the predictions of a given model of inflation. Finally, a short overview
of the most popular models is given and the implications of the recently released WMAP data are briefly (and
partially) discussed.

1 Introduction

The inflationary scenario [1] has been invented in order to
solve and explain some observational facts (isotropy of the
Cosmic Microwave Background Radiation–CMBR–, flat-
ness of the space-like sections, etc . . . ) that could not be
properly understood in the context of the standard hot Big
Bang theory. Therefore, at the beginning of its history, the
inflationary scenario was only able to make postdictions but,
given the problems of the standard model at that time, this
was already a success. However, soon after its advent, it was
realized [2, 3] that inflation, when combined with quantum
mechanics, can also give a very convincing mechanism for
structure formation. In particular, for the first time, it was
understood how to generate a scale-invariant power spec-
trum. Therefore, the inflationary mechanism was able to
establish a beautiful connection between facts which, be-
fore, were considered as independent. However, since the
Harisson-Zeldovich was already known to be in agreement
with the observations, it could be argued that, somehow, this
was again a postdiction. In fact, the inflationary scenario
does not predict a scale invariant spectrum but a nearly scale
invariant spectrum, the deviations from the scale invariance
being linked to the microphysics description of the theory.
This constitutes a definite prediction of inflation that can be
tested [4].

Slightly more than twenty years after the invention of
inflation, the situation has recently changed because, thanks
to the high accuracy CMBR data obtained, among others,
by the WMAP satellite [5], we can now start to probe the
details of the inflationary scenario and check its predictions.
The goal of this short review is, after having tried to jus-
tify why the inflationary mechanism is generic (section I),
to show how, in its most popular and simplest realization,
one can calculate concrete predictions (section II) and com-
pare them with the recent observations (section III). These
proceedings, due to the lack of space, do not cover many
important topics. Among them and since this is particularly
relevant for the present article, we just would like to signal
the discussion of why the presence of the CMBR Doppler

peaks strongly suggests that a phase of inflation took place
in the early universe, see Ref. [6].

2 The inflationary mechanism

2.1 Basic equations

The cosmological principle implies that the universe is, on
large scales, homogeneous and isotropic. This simple as-
sumption drastically constrains the possible shapes of the
Universe which can solely be described by the Friedman-
Lemaı̂tre-Robertson-Walker (FLRW) metric: ds2 = −dt2+
a2(t)γ(3)

ij dxidxj , where γ
(3)
ij is the metric of the three-

dimensional space-like sections of constant curvature. The
time-dependent function a(t) is the scale factor. If the spa-
tial curvature vanishes then γ

(3)
ij = δij , where δij is the

Krönecker symbol. The previous expression is written in
terms of the cosmic time t but it is also interesting to work
in terms of the conformal time η defined by dt = a(η)dη.
Then, the metric can be re-expressed as

ds2 = a2(η)
[
−dη2 + γ

(3)
ij dxidxj

]
. (1)

In terms of conformal time, the Hubble parameter H = ȧ/a
can be written as H = H/a where H ≡ a′/a, a dot deno-
ting a derivative with respect to cosmic time while a prime
stands for a derivative with respect to conformal time.

Matter is assumed to be a collection of N perfect fluids
and, as a consequence, its stress-energy tensor is given by
the following expression

Tµν =
N∑

i=1

T (i)
µν = (ρ + p)uµuν + pgµν , (2)

where ρ is the (total) energy density and p the (total) pres-
sure. These two quantities are linked by the equation of
state, p = ω(ρ) [in general, there is an equation of state
per fluid considered, i.e. pi = ωi(ρi)]. The vector uµ

is the four velocity common to all fluids and satisfies the
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relation uµuµ = −1. In terms of cosmic time this me-
ans that uµ = (1, 0) whereas in terms of conformal time
one has uµ = (1/a, 0) and uµ = (−a, 0). The fact that
the stress-energy tensor is conserved, ∇αTαµ = 0, implies
ρ′ + 3H(ρ + p) = 0. This expression is obtained from
the time-time component of the conservation equation. The
time-space and space-space components do not lead to any
interesting equations for the background.

We are now in a position to write down the Einstein
equations which are just differential equations determining
the scale factor. In terms of cosmic time, they read

ȧ2

a2
+

k

a2
=

κ

3
ρ , −

(
2
ä

a
+

ȧ2

a2
+

k

a2

)
= κp , (3)

where κ ≡ 8πG = 8π/m2
Pl

, mPl being the Planck mass and
where k = 0,±1 is the normalized three-dimensional cur-
vature. Combining the two expressions above, one obtains
an equation which permits to express the acceleration of the
scale factor ä/a = κ(ρ + 3p)/6. From the above equation,
one sees that any form of matter such that ρ + 3p < 0 will
cause an acceleration of the scale factor (this is only true, of
course, if the matter component satisfying ρ + 3p < 0 is the
dominant one). The energy density is always positive but, in
some situation, the pressure can be negative and the inequa-
lity ρ + 3p < 0 may be realized. This simple remark is at
the heart of the inflationary scenario. Let us notice that the
above property is deeply rooted into the fundamental prin-
ciples of general relativity. It is because all forms of energy
weighs in general relativity that the pressure participates to
the equation giving the expression of ä. This has to be con-
trasted with Newtonian physics where the same expression
reads ä/a = −κρ/6, i.e. only the energy density affects
the expansion. As a consequence, the expansion can only be
decelerated.

A class of solutions of particular interest is that for which
the equation of state ω ≡ p/ρ is a constant. In this case, the
conservation equation can be immediately integrated and le-
ads to ρ ∝ a−3(1+ω). Then, the scale factor is given by
a power law either of the conformal or of the cosmic time,
namely

a(η) = �0 |η|1+β , a(t) = a0

∣∣∣∣ t

t0

∣∣∣∣
p

, (4)

where the sign of the conformal and cosmic times, to be
discussed below, can be negative or positive. The parame-
ters p and β are related by β = (2p − 1)/(1 − p) and
p = (1 + β)/(2 + β). The link between ω and the para-
meters β and p can be expressed as

ω =
1 − β

3(1 + β)
= −1 +

2
3p

. (5)

The cases β = −1 and/or p = 0 are obviously meaningless
since they do not correspond to a dynamical scale factor.

Let us now come back to the question of the sign of the
conformal and cosmic times. For the class of models under
consideration, the Hubble parameter can be easily calcula-
ted and is given by H = p/t. Let us first consider the case
where we have an expansion, i.e. H > 0. In this case, one

has t > 0 for p > 0 and t < 0 for p < 0. On the other
hand, in the case of a contraction, H < 0, we have t > 0 for
p < 0 and t < 0 for p > 0. The link between the two times,
dt = adη, takes the form

η =
1

a0(1 − p)
|t|1−p, if t > 0 , (6)

η =
−1

a0(1 − p)
|t|1−p, if t < 0 , (7)

from which we deduce that, if t > 0, then η < 0 for p > 1
and η > 0 for p < 1 and that, if t < 0, then η > 0 for p > 1
and η < 0 for p < 1.

Finally, let us also examine some cases of particular in-
terest. The case p = 2/3 corresponds to an expanding mat-
ter dominated universe and ω = 0. Therefore, we have
η > 0 and t > 0. The same conclusion applies for the case
p = 1/2, i.e. the case of an expanding radiation dominated
universe with ω = 1/3. The case β = −2 corresponds to
p = ∞, that is to say to an exponential scale factor: this is
just the de Sitter solution with ω = −1. For β < −2, one
has p > 1 and η < 0, t > 0 if we are interested in the case
of expansion.

The evolution of the background space-time can be very
roughly understood by means of the previous set of sim-
ple equations. The hot Big Bang model before the advent
of inflation just consisted into a radiation dominated epoch
(ω = 1/3) taking place at high redshifts, until zeq � 104,
followed by a phase dominated by cold matter (ω = 0).
However, already at this level, this very simple framework
leads to unacceptable conclusions. We now describe what
are (some of) the problems of the pre-inflationary hot Big
Bang scenario and how postulating a new phase of accele-
rated expansion in the very early universe can avoid these
problems.

2.2 The horizon problem

The horizon problem consists in the following. The furthest
event that we can directly “see” in the universe is the
(re)combination, i.e. the time at which the electrons and
the protons combined to form hydrogen atoms. Since the
photon–atom cross-section (Rayleigh cross-section) is much
smaller than the photon–electron cross-section (Thomson
cross-section), the universe became transparent at that time.
The COBE [7] and WMAP [5] maps of the sky are pho-
tographs of the universe at this epoch. The recombination
took place at a redshift of zlss � 1100, i.e. within the epoch
dominated by the cold matter. Before, the universe was opa-
que and therefore it is not possible to observe it directly at
earlier times from the Earth. Since no physical process can
act on scales larger than the horizon (see below for a precise
definition of the horizon), we typically expect the universe
to be strongly inhomogeneous on those scales. Seen from
the Earth, this means that the COBE map should look ex-
tremely different on angular scales larger than the angular
scale of the horizon at recombination.

In order to investigate the consequences of the above sta-
tement, let us calculate the angular diameter of the horizon
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at recombination, seen by an observer today. Roughly spea-
king, this is just the size of the horizon at the last scattering
surface divided by the present (angular) distance to the last
scattering surface. In other words, it can be expressed as
∆Ω = dH(tlss)/dA(tlss), where we now discuss precisely
the meaning of the terms in the above formula.

For this purpose, it is convenient to choose the coordi-
nates system such that the origin is located on Earth, i.e.
such that “our” co-moving coordinate is r = 0. Suppose
that a photon is emitted at spatial co-moving coordinates
(rem, θem, ϕem) and at cosmic time tem. The path followed
by the photon can be chosen such that θ = cst. and ϕ = cst
since this is a solution of the geodesic equation. In this
case, the path is completely characterized by the function
r = r(t). This quantity is given by

r(t) = rem−
∫ t

tem

dτ

a(τ)
⇒ dP(t) = a(t)

[
rem−

∫ t

tem

dτ

a(τ)

]
,

(8)
where dP(t) is the physical (proper) distance from the “po-
sition” of the photon at time t to the origin.

This equation can be used to define the horizon. Indeed,
the question that one may ask is the following. At a given
(reception) time, t = trec, what is the proper distance to the
furthest point where a photon, sent to us from there, could
have reached the Earth (the point of co-moving coordinate
r = 0) before or at the time trec? This proper distance is
called the size of the horizon at time t = trec. Clearly the
distance is maximized if the time of emission is the Big-
Bang and if the photon has just reached the Earth at the time
trec. Hence the co-moving coordinate of emission is obtai-
ned by writing that dP(trec) = 0 and by taking a vanishing
lower bound in the previous integral. This implies that

rem =
∫ trec

0

dτ

a(τ)
. (9)

This means that the distance to the horizon, at the time
t = trec, is given by dH(trec) = a(trec)rem. In this equa-
tion, trec can be for instance the time of recombination, tlss
or the present time t0 depending on whether one wants the
evaluate the size of horizon at the last scattering surface or
now.

Another question is to calculate the distance to a point
where a photon emitted at t = tem has just arrived on Earth
now, at time t = t0. Writing again that the photon is re-
ceived now, one obtains the corresponding co-moving coor-
dinate of emission rem =

∫ t0
tem

dτ/a(τ). From the previous
equation, one can deduce that the corresponding angular dis-
tance to the point of emission is given by dA ≡ a(tem)rem.
Indeed, the FLRW metric can be written as (for flat space-
like section) ds2 = −c2dt2 + a2(t)(dr2 + r2dΩ2

2) and the-
refore the proper distance D across a source is D � ar∆Ω
at time tem (obtained from dt = dr = 0 since it is supposed
that the source is located on a sphere of radius r = cte). As
a consequence, one has ∆Ω = D/(ar) from which we de-
duce dA ≡ a(tem)r(tem). Notice that the proper distance to
the point of emission is a(t0)rem. For very high redshifts,
as for instance zlss, these two distances are of course very
different.

We can now deduce the general expression of the angu-
lar diameter. It is given by

∆Ω =
[∫ tlss

0

dτ

a(τ)

]
×

[∫ t0

tlss

dτ

a(τ)

]−1

. (10)

In the previous expression, the factors a(tlss) have canceled
out.

Let us now try to evaluate the above solid angle in a re-
alistic case where matter and radiation are present [8]. For
simplicity, we assume that the universe is radiation domi-
nated before recombination and matter dominated after. In
reality, as already mentioned, equivalence between radia-
tion and matter takes place before the recombination but
this does not introduce important corrections. Since we are
going to study the influence of a phase of inflation, we also
assume that the epoch dominated by radiation can be inter-
rupted during the period ti < t < tend. During this interval,
we assume that the universe is dominated by an unknown
fluid the equation of state of which is constant and given
by ωX . To recover the standard hot Big Bang case, where
this epoch does not occur, it is sufficient to consider that
ti = tend, i.e. to switch off the phase dominated by the unk-
nown fluid. The scale factor is not known exactly but its
piecewise expression reads:

�

a(t) = ai(2Hit)1/2 , 0 ≤ t < ti , a(t) = ai

[
3
2
(1 + ωX)Hi(t − ti) + 1

]2/[3(1+ωX )]

, ti ≤ t < tend , (11)

a(t) = aend[2Hend(t − tend) + 1]1/2 , tend ≤ t < teq , a(t) = aeq

[
3Heq

2
(t − teq) + 1

]2/3

, teq ≤ t < t0 .(12)

At each transitions, the scale factor and its first time derivative are continuous. A straightforward calculation leads to the
expressions of the horizon at decoupling and of the angular distance to the last scattering surface. One finds

dA(tlss) = alss

∫ t0

tlss

dτ

a(τ)
= alss × 2

a0H0

[
1 −

(
alss

a0

)1/2
]

, (13)

dH(tlss) = alss

∫ tlss

0

dτ

a(τ)
= alss × 1

a0H0

(
alss

a0

)1/2
{

1 +
1 − 3ωX

1 + 3ωX

aend

alss

[
1 −

(
ai

aend

)(1+3ωX )/2
]}

. (14)
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From the aboves equations, we deduce the expression of the solid angle

∆Ω =
1
2

[
1 − (1 + zlss)−1/2

]−1

(1 + zlss)−1/2

{
1 +

1 − 3ωX

1 + 3ωX

1 + zlss

1 + zend

[
1 − e−N(1+3ωX )/2

]}
, (15)

	

where N ≡ ln(aend/ai) is the number of e-foldings du-
ring inflation and zend is the redshift at which inflation stops
(corresponding to t = tend).

Let us first suppose that there is no phase of inflation,
i.e. N = 0. Then, ∆Ω � 0.5 × (1 + zlss)−1/2 � 0.85◦. As
a consequence, one expects the last scattering surface to be
made of � 1◦ patches whose physical properties are com-
pletely different (let us remind that the angular diameter of
the moon seen from the Earth is � 0.5◦). This is obviously
not the case: up to tiny fluctuations of order δT/T � 10−5,
the CMB radiation is extremely homogeneous and isotro-
pic. This paradox is called the horizon problem. A solution
to this problem is to assume that the initial conditions were
identical in all the causally disconnected patches but this se-
ems very difficult to justify. Another solution is to switch
on the inflationary phase. To significantly modify the solid
angle in Eq. (15), the unknown fluid responsible for infla-
tion must have an equation of state such that ωX < −1/3.
Indeed, if 1 + 3ωX > 0, then the argument of the exponen-
tial in Eq. (15) is negative and the correction coming from
the phase driven by the unknown fluid becomes negligible.
On the other hand, if 1 + 3ωX < 0, then the correction can
be very important, depending of course on the value of the

number of e-folds N . Writing that the last scattering surface
looks very isotropic, that is to say ∆Ω > 4π, allows us to put
a constraint on this quantity. One obtains N � −4+ln zend.

Notice that it is necessary to assume that ωX is not too
close to −1/3 otherwise terms like 1 + 3ωX , that we have
neglected, could also have an effect on the constraint derived
above.

Let us now try to better understand and to physically in-
terpret what has been done. This is summarized in Fig. 1
that we now describe in more details. The proper distance
to the last scattering surface is given by

dlss = a0

∫ t0

tlss

dτ

a(τ)
=

2
H0

[
1 −

(
alss

a0

)1/2
]

. (16)

This is approximatively the Hubble distance today, defi-
ned by �H ≡ H−1

0 , since we have dlss � 2H−1
0 �

6000h−1Mpc � O(1)�H where we have used H0 ≡
100hkm s−1Mpc−1. Obviously, this number does not de-
pend on the fact that there is a phase of inflation or not. On
the other hand, the size of the horizon today is given by the
following expression

�

dH(t0) = a0

∫ t0

0

dτ

a(τ)
= a0 × 1

a0H0

(
alss

a0

)1/2
{

1 +
1 − 3ωX

1 + 3ωX

aend

alss

[
1 −

(
ai

aend

)(1+3ωX )/2
]}

+a0 × 2
a0H0

[
1 −

(
alss

a0

)1/2
]

. (17)

	

If there is no phase of inflation (or if 1 + 3ωX > 0) then one
has dH(t0) � 2H−1

0 � dlss � �H . This is why, in the left pa-
nel in Fig. 1, the (black) horizon and the (blue) last scattering
surface have about the same size. The horizon at recombi-
nation has been calculated in Eq. (14). If there is no phase of
inflation then one has dH(tlss) � H−1

0 (1+zlss)−3/2 
 dlss.
This is why in the left panel in Fig. 1, the red and the green

circles are small in comparison with the blue circle repre-
senting the last scattering surface. This is also the heart of
the horizon problem: without a phase of inflation, the ho-
rizon at recombination is too small in comparison with the
last scattering surface and, as a consequence, its angular size
is only � 1◦ as we have calculated previously.
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Figure 1. Left panel: Sketch of the evolution of the horizon. The origin of the coordinates is chosen to be Earth. The red circles represent the
size of the horizon at the time of equality, zeq � 104. The green circles represent the horizon at the time of recombination zrec � 1100. The
black circle represents the horizon today. The dotted blue circle represents the surface of last scattering viewed from Earth. The angle ∆Ω
is the angular size of the horizon at recombination viewed from Earth. Right panel: Sketch of the evolution of the horizon in an inflationary
universe. The conventions are the same as in the left panel. The horizon at recombination now includes the last scattering surface and there
is no horizon problem anymore.

Let us now turn to the inflationary solution and the right
panel in Fig. 1. The proper distance to the last scattering
surface is not modified. But, and this is the crucial point,
the size of the horizon is now completely different. Using
Eq. (14), with now 1 + 3ωX < 0, we obtain

dH(tlss) � 1
H0

(1 + zlss)−3/2

[
1 +

zlss

zend

(
aend

ai

)]
� dlss .

(18)
This is why in the right panel in Fig. 1 the (green) ho-
rizon now encompasses the (blue) last scattering surface.
Another consequence is that the (black) horizon today is
now much bigger than the Hubble scale which, as already
mentioned, is still approximatively equal to the size of the
blue last scattering surface. For the purpose of illustration
let us take the example of chaotic inflation. In this case we
have zend � 1028 and aend/ai � exp(1028) from which we
deduce that (!) dH(t0) � 3 × 1043429421h−1Mpc. Clearly
this scale is totally different from the Hubble scale and, in
the context of an inflationary universe, one should carefully
make the difference between those two scales.

2.3 The flatness problem

This problem becomes more apparent if the Friedman equa-
tion is cast into a different form. Let us define the parameter
Ωi, which gives the relative contribution of the fluid “i” to
the total amount of energy density present in the Universe,
by Ωi(t) ≡ ρi(t)/ρcri(t), where the critical energy density
is ρcri ≡ 3H2/κ. This last quantity is nothing but the to-
tal energy density of a universe with flat space-like sections.
This is a time-dependent quantity. The Friedman equation
takes the form k/(a2H2) =

∑N
i=1 Ωi(t) − 1 ≡ ΩT(t) − 1.

The parameter ΩT(t) directly gives the sign of the curva-
ture of the space-like sections. Since k is not a function of
time, the sign of ΩT − 1 cannot change during the cosmic
evolution. In general, it is difficult to solve the differential
equation giving the time evolution of ΩT (t) and to obtain the
explicit time dependence of ΩT . However, it is possible to
express ΩT in terms of the scale factor a(t), at least in the
case where all the fluids have a constant equation of state
parameter. One obtains

�

ΩT(a) =
N∑

i=1

Ωi(t0)
(

a

a0

)−3(1+ωi)



N∑
j=1

Ωj(t0)
(

a

a0

)−3(1+ωj)

− [ΩT(t0) − 1]
(

a

a0

)−2



−1

. (19)
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If one assumes that only radiation and matter are present
then, as a/a0 goes to zero, it is clear that radiation becomes
dominant. In this case, a good approximation of the previous
equation is

ΩT(t)−1 � ΩT(t0) − 1
Ωrad(t0)

(
a

a0

)2

=
ΩT(t0) − 1
Ωrad(t0)

(
1

z + 1

)2

.

(20)
Today it is known that |ΩT(t0) − 1| < 0.1. This clearly
means that, at high redshifts, the quantity |ΩT(z) − 1| was
extremely close to zero. For instance, at the redshift of nu-
cleosynthesis, znuc � 3 × 108, one has |ΩT(znuc) − 1| �
O(10−14) where we have taken Ωrad(t0) � 10−4. It is
difficult to understand why this quantity was so fine-tuned
in the early Universe. At Grand Unified Theory (GUT)
scale (zGUT � 1028), the constraint becomes even worse
|ΩT(zGUT) − 1| � O(10−52). To explain this fact, we have
two possible solutions: (i) we simply assume that the ini-
tial conditions were fine-tuned in the early Universe or (ii)
we find a mechanism which automatically produces such a
small value at high redshifts. Since, as already mentioned
for the horizon problem, the first explanation seems artifi-
cial, let us concentrate on the second one. Thus, we assume
that, for redshifts z > zend, the Universe was dominated by
another type of matter, different from matter or radiation. As
before, we simply characterize this unknown fluid X by its
equation of state ωX . The equation of state should be chosen
such that, from any reasonable (i.e. not fine-tuned) initial
conditions in the very early Universe z � zend, it automa-
tically produces a ΩT − 1 close to zero, with the required
accuracy at z = zend. ΩT can be written as

ΩT(a) =
ΩX(ai)

ΩX(ai) + [1 − ΩT(ai)]
(

a

ai

)1+3ωX
, (21)

where ai is the value of the scale factor at some initial
redshift zi. Since aend/ai � 1, the condition ΩT(aend) � 1
is clearly equivalent to 1 + 3ωX < 0. Then, from any initial
conditions at z = zi, the value of ΩT(aend) will be pushed
toward one as long as X dominates. Therefore, one recovers
the fact that a fluid with a negative equation of state parame-
ter can solve a problem of the hot Big Bang model. One
can even derive the constraint that the parameters describing
the epoch dominated by the fluid X must satisfy. If one re-
quires that ΩT has been pushed so close to one during the
phase dominated by X that the remaining difference ΩT −1
will not sufficiently increased during the radiation and do-
minated epochs to compensate the first effect and to be dis-
tinguishable from zero today, one arrives at [from Eqs. (20)
and (21) written at z = zend](

aend

ai

)1+3ωX

= eN(1+3ωX) � 104 × z−2
end , (22)

which can also be expressed as N � −4 + ln zend, where
we have assumed for simplicity that |1 + 3ωX | = O(1). It
is quite remarkable that this constraint be the same as the
one derived from the requirement that the horizon problem
is solved. To conclude, let us give some numerical exam-
ples: for zend � 1010, i.e. two orders of magnitude above

nucleosynthesis, one has aend/ai � 108 that is to say � 19
e-foldings. For zend � zGUT , one obtains aend/ai � 1026,
namely � 60 e-foldings.

The main lesson of the previous calculations is that, as-
suming an epoch in the early Universe dominated by a fluid
the equation of state parameter of which is negative, provi-
des an elegant way to solve the problems of the standard hot
Big Bang model. Here, the important point is that the detai-
led properties of the unknown fluid and/or its physical nature
are unimportant, at least at the background level, provided
the equation of state parameter is negative. This makes the
inflationary solution quite generic.

2.4 Single scalar field inflation

We have seen in the previous sections that inflation can be
caused by any fluid such that ρ + 3p < 0. We now discuss
a concrete realization of the inflationary mechanism. Infla-
tion is supposed to take place in the very early universe, at
very high energies. At those scales, the fluid description of
matter is not expected to hold anymore and (quantum) field
theory seems to be the most appropriate way to describe the
behavior of matter. The simplest example, compatible with
the symmetries of the FLRW metric, is a scalar field φ0(η).
This field will be called the inflaton in what follows. The
corresponding Lagrangian reads

S = −
∫

d4x
√−g

[
1
2
gµν∂µφ0∂νφ0 + V (φ0)

]
, (23)

where V (φ0) is the potential, a priori a free function but we
will see that, in order to have a successful inflationary phase,
its shape must satisfy some constraints. The stress-energy
tensor can be written as

Tµν = ∂µφ0∂νφ0 −gµν

[
1
2
gαβ∂αφ0∂βφ0 +V (φ0)

]
. (24)

From this expression, one sees that the scalar field can also
be viewed as a perfect fluid. The energy density and the
pressure are defined according to T 0

0 = −ρ and T i
j = pδi

j

and read

ρ =
1
2

(φ′
0
)2

a2
+ V (φ0), p =

1
2

(φ′
0
)2

a2
− V (φ0) . (25)

The conservation equation can be obtained by inserting the
previous expressions of the energy density and pressure into
the equation ρ′ + 3H(ρ + p) = 0. Assuming φ′

0

= 0, this

reproduces the Klein-Gordon equation written in a FLRW
background, namely

φ′′
0

+ 2
a′

a
φ′

0
+ a2 dV (φ0)

dφ0

= 0 . (26)

As already mentioned before, the other equation of conser-
vation expresses the fact that the scalar field is homogeneous
and therefore does not bring any new information. Finally,
a comment is in order about the equation of state. In gene-
ral, there is no simple link between ρ and p except when the
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kinetic energy dominates the potential energy where ω � 1,
i.e. the case of stiff matter or, on the contrary, when the po-
tential energy dominates the kinetic energy for which one
obtains ω � −1. This last case is of course the most interes-
ting for our purpose. This shows that inflation corresponds
to a regime where the potential energy dominates the kinetic
energy: V (φ0) � (φ′

0
)2, see Eqs. (25). We also note in pas-

sing that an equation of state p � −ρ implies that the energy
density of the field will be almost constant during inflation.
The fact that the kinetic energy is small during inflation me-
ans that the potential should be very flat which is the main
requirement for a successful model of inflation if this one is

caused by a scalar field.
In general, the equations of motion can be integrated

exactly only for a very restricted class of potentials. On
the contrary, one would like to able to characterize this mo-
tion for any given, sufficiently flat, potentials. To reach this
goal, we clearly need a scheme of approximation. Since the
kinetic energy to potential energy ratio and the scalar field
acceleration to the scalar field velocity ratio are small, this
suggests to view these two ratios as parameters in which a
systematic expansion is performed. The slow-roll motion of
the scalar field is controlled by the three “slow-roll parame-
ters” (at leading order, see e.g. Ref. [9]) defined by:

�

ε ≡ 3
φ̇0

2

2

(
φ̇0

2

2
+ V

)−1

= − Ḣ

H2
= 1 − H′

H2
, δ ≡ − φ̈0

Hφ̇0

= − ε̇

2Hε
+ ε , ξ ≡ ε̇ − δ̇

H
. (27)

	

Some remarks are in order at this point. First of all, we have
introduced a third slow-roll parameters, ξ. This is necessary
if one wants to establish the exact equations of motion of ε
and δ. Secondly, the slow-roll conditions are satisfied if ε
and δ are much smaller than one and if ξ = O(ε2, δ2, εδ).
Since the equations of motion for ε and δ can be written as:

ε̇

H
= 2ε(ε − δ) ,

δ̇

H
= 2ε(ε − δ) − ξ , (28)

it is clear that this amounts to consider ε and δ as cons-
tants. This property turns out to be crucial for the calcu-
lation of the perturbations. Thirdly, inflation stops when
ε = −Ḣ/H2 = 1. Finally, it is also convenient to re-express
the slow-roll parameters in terms of the inflaton potential.
One can show that

ε � m2
Pl

16π

(
V ′

V

)2

, δ � −m2
Pl

16π

(
V ′

V

)2

+
m2

Pl

8π

V ′′

V
, (29)

where, here, a prime means a derivative with respect to the
scalar field (as expected, the third slow roll parameter invol-
ves the third derivative of the potential). This suggests a new
interpretation of the slow-roll approximation: the slow-roll
parameters controls the deviation of the inflaton potential
from perfect flatness (the case of a cosmological constant)
and hence are given by the successive field derivatives of
the potential.

Yet another way to see the slow-roll approximation is
the following. The perfect slow-low regime is when the in-
flaton potential is a constant, i.e. is exactly flat. In this case,
one has ε = δ = 0 and the corresponding solution of the
Einstein equations is the de Sitter space-time with the scale
factor a(η) ∝ |η|−1. Somehow, the slow-roll approximation
is an expansion around this solution. To illustrate this point,
let us consider the exact equation:

η = −
∫

1
1 − ε

d
(

1
H

)
, (30)

which comes directly from the definition of ε ≡ 1−H′/H2

written in terms of the conformal time. An integration by
parts and the use of the equation of motion of the slow-roll
parameter ε allows us to reduce the previous equation to

η = − 1
(1 − ε)H −

∫
2ε(ε − δ)
(1 − ε)3

d
(

1
H

)
. (31)

So far, no approximation has been made. At leading or-
der, ε is a constant and the previous equation reduces to
aH ≈ −(1+ε)/η. This is equivalent to a scale factor which
behaves as a(η) ≈ �0 |η|−1−ε. Therefore, the slow-roll ap-
proximation consists in slightly modifying the de Sitter ex-
pansion by changing the power index in the expression of the
scale factor. Interestingly enough, the effective power index
(at leading order) only depends on ε. We will see that the
second slow-roll parameters will show up in the calculation
when we consider inflationary cosmological perturbations.

Finally, it is also useful to make use of the set of hori-
zon flow functions, first introduced in Ref. [10]. The big
advantage of these parameters is that there are defined in
terms of the scale factor only and thus do not rely on the
fact that inflation is caused by one scalar field. In particular,
these parameters could still be used in a multi-fields model
of inflation whereas the set introduced previously should be
modified. The zeroth horizon flow function is defined by
ε0 ≡ H(Ni)/H(N), where N is the number of e-folds af-
ter an arbitrary initial time. The hierarchy of horizon flow
functions is then defined according to

εn+1 ≡ d ln |εn|
dN

, n ≥ 0 . (32)

The link between the horizon flow functions and the set
{ε, δ, ξ} can be expressed as

ε = ε1 , δ = ε1 − 1
2
ε2 , ξ =

1
2
ε2ε3 . (33)
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The fact that ξ is of higher order than the two first slow-roll
parameters is now obvious which is another advantage of the
horizon flow parameters.

3 Inflationary cosmological pertur-
bations

3.1 Gauge-invariant formalism

The perturbed line element can be written as [11]:

ds2 = a2(η){−(1 − 2φ)dη2 + 2(∂iB)dxidη

+[(1 − 2ψ)δij + 2∂i∂jE + hij ]dxidxj} .(34)

In the above metric, the functions φ, B, ψ and E repre-
sent the scalar sector whereas the tensor hij , satisfying
hi

i = hij
,j = 0, represents the gravitational waves. There

are no vector perturbations because a single scalar field can-
not seed rotational perturbations. At the linear level, the two
types of perturbations decouple and thus can be treated se-
parately.

The scalar sector suffers from the gauge problem. This
means that an infinitesimal transformation of coordinates
(i.e. a “gauge transformation”) could mimic a physical de-
formation of the underlying background space-time and thus
could be confused with a physical mode of perturbations. In
order to deal with this problem and to retain only the physi-
cal modes, one can either fix the gauge or work with gauge
invariant quantities. Here, we choose the latter solution.
Scalar perturbations of the geometry can be characterized
by the gauge-invariant Bardeen potentials Φ [12] and fluc-
tuations in the scalar field are characterized by the gauge-
invariant quantity δφ(gi)

Φ = φ +
1
a

[a (B − E′)]′ , (35)

δφ(gi) = δφ + φ′
0
(B − E′) . (36)

We have two gauge invariant quantities but only one de-
gree of freedom since Φ and δφ(gi) are linked by the per-
turbed Einstein equations. As a consequence, if φ′

0

= 0,

then the whole problem can be reduced to the study of a
single gauge-invariant variable (the so-called Mukhanov-
Sasaki variable) defined by [2]

v ≡ a

[
δφ(gi) + φ′

0

Φ
H

]
. (37)

In fact, it turns out to be more convenient to work with the
rescaled variable µS defined by µS ≡ −√

2κv. Density per-
turbations are also often characterized by the so-called con-
served quantity ζ [13, 14] defined by

ζ ≡ 2
3
H−1Φ′ + Φ

1 + ω
+ Φ . (38)

The quantity µS is related to ζ by µS = −2a
√

γζ, where
γ = 1 − H′/H2. The background function γ reduces to
a constant, (2 + β)/(1 + β), for power-law scale factors

a(η) ∝ (−η)1+β . In particular, it is zero for the de Sitter
space-time since, in this case, β = −2. The equation of
motion of the quantity µS reads [11]

µ′′
S

+
[
k2 − (a

√
γ)′′

(a
√

γ)

]
µS = 0 , (39)

where k is the co-moving wavenumber of the corresponding
Fourier mode. This equation is similar to a Schrödinger
time-independent equation where the usual role of the ra-
dial coordinate is now played by the conformal time (this
is why the name “time-independent Schrödinger equation”
is particularly unfortunate in the present context!). The ef-
fective potential US ≡ (a

√
γ)′′/(a

√
γ) involves the scale

factor a(η) and its derivative (up to the fourth order) only.
In the tensor sector (which is gauge invariant by defini-

tion) we define the quantity µT for each mode k according to
hij = (µT/a)Qij , where Qij are the (transverse and trace-
less) eigentensors of the Laplace operator on the space-like
sections. The equation of motion of µT is given by [15]:

µ′′
T

+
(

k2 − a′′

a

)
µT = 0 . (40)

This formula is similar to the equation of motion of den-
sity perturbations. The only difference is that the effective
potential, UT = a′′/a, now involves the derivatives of the
scale factor only up to the second order.

Therefore, we have shown that both types of perturbati-
ons obey the same type of equation of motion. The “time-
independent Schrödinger” equation can also be viewed as
the equation of motion of an harmonic oscillator whose fre-
quency explicitly depends on time, namely the equation of a
parametric oscillator [14]

µ′′
S,T

+ ω2
S,T

(k, η)µS,T = 0, (41)

with ω2
S

= k2 − (a
√

γ)′′/(a
√

γ), ω2
T

= k2 − a′′/a.
Finally, the mode functions µS,T are quantities of inte-

rest because the power spectra of density perturbations and
gravitational waves, which are observables, directly involve
them. Explicitly, one has

k3Pζ(k) =
k3

8π2

∣∣∣∣ µS

a
√

γ

∣∣∣∣
2

, k3Ph(k) =
2k3

π2

∣∣∣∣µT

a

∣∣∣∣
2

. (42)

The spectral indices and their running are defined by the co-
efficients of Taylor expansions of the power spectra with res-
pect to ln k, evaluated at an arbitrary pivot scale k∗.

nS − 1 ≡ d lnPζ

d ln k

∣∣∣∣
k=k∗

, nT ≡ d lnPh

d ln k

∣∣∣∣
k=k∗

, (43)

are the spectral indices. The fact that scale invariance cor-
responds to nS = 1 for density perturbations and to nT = 0
for gravitational waves has no deep meaning and is just an
historical accident. The two following expressions

αS ≡ d2 lnPζ

d(ln k)2

∣∣∣∣
k=k∗

, αT ≡ d2 lnPh

d(ln k)2

∣∣∣∣
k=k∗

, (44)
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define the “running” of these indices. In principle, we could
also define the running of the running and so on.

In order to compute k3Pζ(k) and k3Ph(k), one must
integrate the equation of motion (41) and specify what the
initial conditions are. We now turn to these questions.

3.2 Qualitative behavior of the solutions

The advantage of the previous formulation is that it allows
to guess the form of the solutions very easily. It is essenti-
ally determined by three scales. Firstly, one has the physical
wavelength of a given Fourier mode λ(η) = (2π/k)a(η).
A second length scale important for the problem is given
by the effective potential. To be specific, one has �U(η) =
a(η)/

√
US,T(η). Finally, a third scale is the Hubble scale

whose definition reads �H ≡ a2/a′. A priori, the Hubble
scale and the potential scale �U are different.

Let us now investigate how these scales behave in a typi-
cal model of slow-roll inflation. For the purpose of illustra-
tion, we only consider the scale factor a(η) ∝ |η|−1 during
inflation since we have seen before that any model of slow-
roll inflation can be seen as a small deformation of the de
Sitter space-time. One immediately obtains that the Hubble
radius is constant during inflation while it varies as ∝ a2 du-
ring the radiation era and as ∝ a3/2 during the matter domi-
nated era. Initially, the physical wavelengths are therefore
smaller than the Hubble radius (in principle even smaller
than the Planck length, see below) but because of the infla-
tionary expansion of the background they become, at some
point, larger than the Hubble radius. The time at which a
Fourier mode exits the Hubble radius depends on the co-
moving wavenumber of the corresponding mode. They will
re-enter the Hubble radius later on, either during the radi-
ation or matter dominated epochs because the Hubble ra-
dius behave differently during those eras. It is worth no-
ticing that, without a phase of inflation, the modes would
have always been outside the Hubble radius. The fact that
there is a regime where the modes are sub-Hubble is the-
refore a specific feature of the inflationary background and
plays a crucial role in our ability to fix well-defined initial
conditions. The evolution of a Fourier mode is represented
in Fig. 2.

It is also interesting to remark than the physical wave-
lengths are always inside the horizon which they never exit.
It is therefore mandatory to distinguish the horizon from the
Hubble scale. In fact it is possible to prove that, as soon as
a scale is inside the horizon, it will remain so for ever. This
is simply due to the fact that the ratio of the horizon to the
physical scale at time t is given by

dH

λ
=

k

2π

∫ t0

ti

dτ

a(τ)
+

k

2π

∫ t

t0

dτ

a(τ)
, (45)

where k is the co-moving wavenumber of the scale un-
der consideration. The first term is by assumption greater
than one and the second one is positive, hence the above-
mentioned statement

Figure 2. Evolution of the Hubble radius and of three physical
wavelengths with different comoving wavenumbers during the
inflationary phase and the subsequent radiation and matter domi-
nated epochs. Without inflation, the wavelengths of the mode are
super-Hubble initially whereas in the case where inflation takes
place, they are sub-Hubble which permits to set up sensible initial
conditions.

Looking at the equation of motion, one sees that, a pri-
ori, the behavior of the solution is not controlled by the Hub-
ble scale as often said in the literature (sometimes, it is also
claimed that the horizon determines the qualitative behavior
of the solutions!) but by the scale �U , i.e. by the shape of the
effective potential. However, it turns out that, for slow-roll
inflation (in fact for power-law inflation), the behaviors of
�U and �H are similar and, therefore, the concepts of Hubble
and potential scales can be used almost interchangeably in
this situation. This is not the case in general. For instance,
this is incorrect in a bouncing universe, see Ref. [16].

Let us now study in more details the shape of the effec-
tive potential. The function γ is a constant for power law
scale factors and, as a consequence, the two types of per-
turbations acquire the same potential during inflation, na-
mely US,T(η) � η−2 � H2. During the radiation domi-
nated epoch, the scale factor behaves as a(η) ∝ η and the-
refore the effective potential vanishes. As a consequence,
the typical form of the potential is given by the solid line
in Fig. 3. The exact form of the potential during the transi-
tion (i.e. during the reheating) is very complicated and has
not been taken into account here. A smooth interpolation
has been assumed between the two eras. The two regimes
described before re-appear in a different way. Initially, a gi-
ven mode is above the barrier. This corresponds to the case
where the mode is sub-Hubble. Then, due to the inflatio-
nary evolution, it crosses the potential at some (scale depen-
dent) time and becomes “sub-potential”. This corresponds
to a super-Hubble mode. The times of Hubble and poten-
tial crossings are not the same but, as already mentioned,
in the case of slow-roll inflation they are of the same order
of magnitude. Therefore, in this case, we have the appro-
ximate correspondence “inside the Hubble scale/above the
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potential” and “outside the Hubble scale/below the poten-
tial”. Let us notice that this is valid as long as the details
of the reheating process only modify the shape of the poten-
tial such that the modes of interest always remain below the
potential during the transition from inflation to radiation.

The two previous regimes correspond to two types of
solution. In the first regime, k2 � U(η), and the mode
function oscillates,

µS,T � A1(k)e−ikη + A2(k)eikη . (46)

On the contrary, when the potential dominates, k2 
 U(η),
the solutions are of the form

µS � C1(k)a
√

γ + C2(k)a
√

γ

∫ η dτ

(a2γ)(τ)
, (47)

and possess a growing and a decaying modes. For gravi-
tational waves, the solutions are the same except that one
should take γ = 1 in the previous equation. It is interesting
to notice that the previous solutions are general and do not
depend on the specific form of the scale factor.

The only thing which remains to be discussed are the
initial conditions, i.e. the choice of the coefficients A1(k)
and A2(k).

3.3 WKB approximation and the initial con-
ditions

It has been established before that the mode functions µS

and µT obey the equation of a parametric oscillator. This
strongly suggests to use the WKB approximation to study
the solutions of this equation [17]. For this purpose, let us
define the WKB mode function, µWKB , by the following ex-
pression

µWKB(k, η) ≡ 1√
2ω(k, η)

e
±i

∫ η

ω(k, τ)dτ
. (48)

The mode function µWKB represents the leading order term
of a semi-classical expansion, i.e. it is only an approxima-
tion to the actual solution of Eq. (41). This can also be vi-
ewed from the fact that µWKB satisfies the following diffe-
rential equation

µ′′
WKB

(k, η)+
[
ω2(k, η) − Q(k, η)

]
µWKB(k, η) = 0 , (49)

which is not similar to Eq. (41). In the above formula, the
quantity Q(k, η) is given by

Q(k, η) ≡ 3
4

(ω′)2

ω2
− ω′′

2ω
, (50)

and only depends on the time dependent frequency ω(k, η).
From Eqs. (41) and (49), it is clear that the mode func-
tion µWKB(k, η) is a good approximation of the actual
mode function µ(k, η) if the following condition is satisfied:
|Q/ω2| 
 1. If, for simplicity, we only keep the first term in
the expression giving Q(k, η), see Eq. (50), the above equa-
tion can also be re-written under the more traditional form

(dU/dη)/(k2 − U)3/2 
 1, which expresses the fact that
the WKB approximation breaks down at the turning point
and is valid when the potential does not vary too rapidly.

Let us now test this criterion for the two regimes des-
cribed before. In the case of slow-roll inflation, we will see
that the effective potential, either for density perturbations or
gravitational waves, is of the form O(1)/η2. Therefore, on
sub-Hubble scales, in the limit |η| → +∞, one has ω � k,
which implies Q � 0 and therefore the |Q/ω2| 
 1 is sa-
tisfied. On the contrary, on super-Hubble scales, i.e., in the
limit |η| → 0, one has |Q/ω2|S � |Q/ω2|T = O(1). Thus,
the WKB approximation is not a good approximation in this
regime.

The fact that the WKB approximation works in the limit
|η| → +∞ allows us to fix well-motivated initial conditi-
ons and is the reason why the inflationary mechanism for
structure formation is so attractive. Indeed, within the fra-
mework described before, the natural choice is to take the
adiabatic vacuum as the initial state. Since, on sub-Hubble
scales, ω(k) → k, Eq. (48) implies that this corresponds to
coefficients A1(k) and A2(k) in Eq. (46) such that

A1(k) ∝ 1√
2k

, A2(k) = 0 . (51)

This completely fixes the initial conditions and allows us to
calculate the power spectrum unambiguously.

Before turning to this calculation, let us quickly come
back to the fact that the WKB approximation breaks down
on super-Hubble scales. In fact, this problem bears a close
resemblance with a situation discussed by atomic physicists
at the time quantum mechanics was born. The subject deba-
ted was the application of the WKB approximation to the
motion in a central field of force and, more specifically,
how the Balmer formula, for the energy levels of hydroge-
nic atoms, can be recovered within the WKB approximation.
The effective frequency for hydrogenic atoms is given by
(obviously, in the atomic physics context, the wave equation
is not a differential equation with respect to time but to the
radial coordinate r)

ω2(E, r) =
2m

�2

(
E +

Ze2

r

)
− �(� + 1)

r2
, (52)

where Ze is the (attractive) central charge and � the quantum
number of angular momentum. The symbol E denotes the
energy of the particle and is negative in the case of a bound
state. Apart from the term Ze2/r and up to the identification
r ↔ η, the effective frequency has exactly the same form as
ωS,T(k, η) during inflation. Therefore, calculating the evo-
lution of cosmological perturbations on super-Hubble scales
(i.e. |η| → 0) is similar to determining the behavior of the
hydrogen atom wave function in the vicinity of the nucleus
(i.e. r → 0). The calculation of the energy levels by means
of the WKB approximation was first addressed by Kramers
[18] and by Young and Uhlenbeck [19]. They noticed that
the Balmer formula was not properly recovered but did not
realize that this was due to a misuse of the WKB approxi-
mation. In 1937 the problem was considered again by Lan-
ger [20]. In a remarkable article, he showed that the WKB
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approximation breaks down at small r, for an effective fre-
quency given by Eq. (52) and, in addition, he suggested a
method to circumvent this difficulty. Recently, this method
has been applied to the calculation of the cosmological per-
turbations in Ref. [17]. This gives rise to a new method of
approximation, different from the more traditional slow-roll
approximation.

3.4 Simple calculation of the inflationary
power spectrum

Let us now evaluate k3Pζ in a very simple way in order to
understand why inflation leads to a scale invariant power
spectrum. On super-Hubble scale, i.e. in region III in
Fig. 3, the growing mode is given by µS � C1(k)a

√
γ, see

Eq. (47). Inserting this expression into Eq. (42), one obtains

k3Pζ ∝ k3|C1(k)|2 . (53)

The next step is to relate the constant C1(k) to the initial
conditions, i.e. to A1(k). This can be done by writing the
continuity of the mode function µS at the time of potential
crossing, i.e. at the time where k2 = U [ηj(k)]. In this case,
one does not consider the details of region II in Fig. 3. One
just matches by brute force the solutions of regions I and III.
This gives

A1(k)e−ikηj = C1(k)(a
√

γ)(ηj) . (54)

In order to calculate the function ηj(k), one needs to as-
sume something about the scale factor. Here, we consider
power-law inflation with the scale factor: a(η) ∝ |η|1+β .
In this case the effective potential is given by U(η) ∝ η−2

(and in fact the equation of motion can be integrated exac-
tly in terms of Bessel function) which amounts to take
ηj(k) ∝ k−1. Using also the fact that γ is a constant for
power-law inflation, the constant C1(k) can be easily de-
termined from the above equation. Inserting the result into
Eq. (53), one arrives at

k3Pζ ∝ k5+2β |A1(k)|2 . (55)

For the de Sitter case, β = −2, one obtains k3Pζ ∝
k|A1(k)|2 ∝ k0 because A1(k) ∝ k−1/2, i.e. a scale inva-
riant spectrum. The role of the adiabatic initial conditions,
namely the fact that A1(k) ∝ k−1/2, is clearly crucial in
order to obtain this result.

3.5 The slow-roll power spectra

We now evaluate the power spectra of density perturbations
and gravitational waves at leading order in the slow-roll ap-
proximation which gives a more accurate description than
the previous back-to-the-envelop calculation. For this pur-
pose, the details of region II, see Fig. 3, are now taken into
account [21]. Instead of matching the mode function of re-
gion I directly to the mode function of region III, we now
carefully calculate the mode function in region II and per-
form two matchings. The first one is between the modes
function of regions I and II and the second one is between

the mode functions of regions II and III. In order to evaluate
the mode function of region II only the calculation of the

Figure 3. Sketch of the effective potential of Eqs. (39) and (40).
During the inflationary phase the effective potential behaves as
U � η−2 while during the radiation dominated era it goes to zero.
A smooth transition between these two epochs has been assumed
which does not take into account the details of the reheating (and
preheating) process.

effective potentials is necessary. Using the definitions of the
slow-roll parameters, one can show that US(η) can be re-
written as

US(η) ≡ (a
√

γ)′′

a
√

γ
= a2H2 [2 − ε + (ε − δ)(3 − δ) + ξ] .

(56)
It has already been established that, at leading order, aH =
−(1 + ε)η−1. Therefore, one obtains that

US(η) � 2 + 6ε − 3δ

η2
, (57)

where one recalls that ε and δ should be considered as
constant. As announced before, the potential has the form
US ∝ O(1)η−2. For gravitational waves, similar considera-
tions lead to UT = (2 + 3ε)/η2. Then, the crucial point is
that the mode function can be found exactly. It is given in
terms of Bessel functions

µII(η) =
√

kη [B1(k)Jν (kη) + B2J−ν (kη)] , (58)

where the orders are now functions of the slow-roll parame-
ters, νS = −3/2 − 2ε + δ and νT = −3/2 − ε. Performing
the two matchings and expanding everything at the leading
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order in the slow-roll parameters, one obtains

k3Pζ =
H2

πεm2
Pl

[
1 − 2 (C + 1) ε − 2C (ε − δ)

−2 (2ε − δ) ln
k

k∗

]
, (59)

k3Ph =
16H2

πm2
Pl

[
1 − 2 (C + 1) ε − 2ε ln

k

k∗

]
, (60)

where C is a numerical constant, C � −0.73. Several
remarks are in order at this point. Firstly, the amplitude
of the scalar power spectrum depends on the Hubble para-
meters during inflation and on the first slow parameter, i.e.
H2/(πεm2

Pl
), while the amplitude of the tensor power spec-

trum only depends on the scale of inflation, 16H2/(πm2
Pl

).
The ratio of tensor over scalar is just given by 16ε. This me-
ans that the gravitational are always sub-dominant and that,
when we measure the CMBR anisotropies, we essentially
see the scalar modes. This is rather unfortunate because this
implies that one cannot measure the energy scale of infla-
tion since the amplitude of the scalar power spectrum also
depends on the slow-roll parameter ε. Only an independent
measure of the gravitational waves contribution could allow
us to break this degeneracy. Secondly, the spectral indices
are given by

nS = 1 − 2ε1 − ε2 , nT = −2ε1 . (61)

As expected, the power spectra are always close to scale in-
variance and the deviation from it is controlled by the mag-
nitude of the two slow-roll parameters. Thirdly, at the next-
to-leading order there is no running of the spectral indices
since αS and αT are in fact second order in the slow-roll
parameters.

4 Inflationary predictions

We now calculate the slow-roll parameters for typical mo-
dels of inflation [22].

4.1 Large field models

These models typically appear in the chaotic inflationary
scenario. The potential is simply given by a monomial of
the inflaton field

V (φ0) = M4

(
φ0

mPl

)p

. (62)

The calculation of the slow-roll parameters is then straight-
forward if one uses Eqs. (29). One obtains

ε =
p2

16π

(
φ0

mPl

)−2

, δ =
p(p − 2)

16π

(
φ0

mPl

)−2

. (63)

To go further, it is convenient to express the slow-roll pa-
rameters at Hubble crossing (remember that, at leading or-
der, they must be considered as constant) or, equivalently,
in terms of the number of e-folds N∗ between the Hubble

radius exit and the end of inflation (not to be confused with
the total number of e-folds). The number of e-folds N∗ is
given by the formula

N∗ = ln
(

aend

a∗

)
� − 8π

m2
Pl

∫ φend

φ∗
dφ0V (φ0)

(
dV

dφ0

)−1

,

(64)
where φend is the value of the field at the end of inflation and
φ∗ the value of the field at Hubble radius crossing. Inflation
stops when ε = 1 which, for chaotic inflation, is equivalent
to ϕend = mPlp/(4

√
π). The above integral can easily be

performed and, using the explicit expression of φend, one
arrives at

N∗ = − 8π

m2
Pl

1
p

∫ φend

φ∗
dφ0φ0 ⇒ φ2

∗
m2

Pl

=
p

4π

(
N∗ +

p

4

)
.

(65)
Inserting this formula into the equations giving the two
slow-roll parameters, one obtains

ε1 =
p

4(N∗ + p/4)
, ε2 =

1
(N∗ + p/4)

. (66)

Therefore, in the space (ε1, ε2), a given model is represen-
ted by the straight line ε1 = (p/4)ε2. However, in order
to know precisely where a given model lies on the straight
line requires the knowledge of N∗ which, in turns, depends
on the parameters describing inflation like, for instance, the
energy scale of inflation or the reheating temperature. We
will come back to this point below.

4.2 Small field models

These models are characterized by potentials the shape of
which, for small values of the inflaton field, can be approxi-
mated by the following equation

V (φ0) = M4

[
1 −

(
φ0

µ

)p]
. (67)

We assume that inflation takes place for values of the field
smaller than the characteristic scale µ, i.e. φ0 
 µ. The two
slow-roll parameters are given by

ε =
p2

16π

(
mPl

µ

)2 (φ0/µ)2(p−1)

[1 − (φ0/µ)p]2
, (68)

δ = −ε − p(p − 1)
8π

(
mPl

µ

)2 (φ0/µ)p−2

[1 − (φ0/µ)p]
. (69)

The value at which inflation stops is given by φend/µ �(
16π/p2

)1/(2p−2) (µ/mPl)
1/(p−1). The next step is to ex-

press everything in terms of N∗. Here, the model p = 2
requires a special treatment and we start with this case. The
integral giving the number of e-folds can be performed ex-
plicitly

N∗ = 4π

(
µ

mPl

)2 ∫ φend/µ

φ∗/µ

dx

(
1
x
− x

)
, (70)
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from which one obtains

φ∗
µ

� 2
√

π
µ

mPl

exp

[
−N∗

4π

(
mPl

µ

)2
]

. (71)

From the above equation, we immediately deduce that

ε1 � exp

[
−N∗

2π

(
mPl

µ

)2
]

 1 , ε2 � 1

2π

(
mPl

µ

)2

.

(72)
We already see an important difference from the chaotic in-
flation case. Since ε1 is tiny, the observational properties of
the model will only be determined by the quantity ε2 which
is a N∗ independent quantity. Therefore, we do not need to
calculate N∗ in order to know where the model lies in the
plane (ε1, ε2).

Let us now turn to the cases p > 2. The method is exac-
tly the same, the only change being that the integral giving
N∗ is now different but can still be performed analytically.
After straightforward calculations, one arrives at

ε1 � p2

16π

(
mPl

µ

)
2

[
N∗

p(p − 2)
8π

m2
Pl

µ2

]− 2(p−1)
(p−2)


1, (73)

ε2 � 2
N∗

p − 1
p − 2

. (74)

As for the case p = 2, the first slow-roll parameter is ne-
gligible. However, the second slow-roll parameter is now a
function of N∗ as for chaotic models.

4.3 The linear potential

The linear potential is simply given by the expression

V (φ0) = M4

[
1 −

(
φ0

µ

)]
, (75)

and we still assume φ0 
 µ. Since we have V ′′ = 0, we
deduce that δ = −ε or ε1 = ε2/4 which is consistent with
the result already obtained for chaotic inflation. The first
slow-roll parameter is independent of N∗ and is given by
ε1 = 1/(16π)(mPl/µ)2.

4.4 The exponential potential

This is an important potential since, in this case, everything
can be done exactly. The potential is given by

V (φ0) = M4 exp
[
4
√

π

mPl

√
γ (φ0 − φi)

]
, (76)

The expression of the slow-roll parameters is ε = δ = γ
which means ε2 = 0. The parameter γ can be written
γ = (2 + β)/(1 + β) where β is the power index of the
exact scale factor a(η) ∝ |η|1+β . The case β = −2 corres-
ponds to the exact de Sitter case for which ε = 0. In this
case the amplitude of the slow-roll density power spectrum
is not valid.

4.5 Hybrid inflation potentials

Hybrid inflation typically proceeds with two fields, the role
of the second field being just to stop inflation. During the
slow-roll phase, the potential has the following shape

V (φ0) = M4

[
1 +

(
φ0

µ

)p]
, (77)

with φ0 
 µ. Since another mechanism must be used in
order to stop inflation, one cannot calculate φend in the sim-
ple context considered here. However, if one assumes that
φ∗ 
 µ, which is the case in concrete models of hybrid
inflation, then one can deduce some general features of the
model. In particular, one can calculate the ratio of the two
slow-roll parameters

ε2
ε1

= 2 − 4(p − 1)
p

(
µ

φ∗

)p

. (78)

This means that this type of models are such that ε2 < 0 and
nS > 1.

The results are summarized in Fig. 4 where the plan
(ε1, ε2) is represented.

Figure 4. The various models discussed in this article represen-
ted in the plan (ε1, ε2). The dotted lines are the lines of constant
spectral index. The full lines represent the location of the large
field models. The small field models are concentrated along the
ε1 = 0, ε2 > 0 axis whereas the exponential models are along the
ε2 = 0 line. Hybrid models have nS > 1 and ε2 < 0.

4.6 Comparison with the WMAP data

The aim of this section is to illustrate the fact that the high-
accuracy data that are now at our disposal are now starting
to discriminate among the various models of inflation pre-
sented in the last sections. The constraints coming from the
most recently released CMB data, i.e. the WMAP data [5],
are represented in Fig. 5 following the analysis performed
in Ref. [23]. Very roughly speaking, we have the constraints
ε1 ≤ 0.05 and |ε2| ≤ 0.1.
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As is clear from the previous analysis, except for a few
models (like, for instance, the quadratic small field model or
the exponential potential), the determination of the slow-roll
parameters requires the calculation of N∗ which in turns de-
mands the knowledge of the whole history of the universe.

Unfortunately all the details of this history are not known
and hence there exits important uncertainties with regards to
the precise value of N∗ in a particular model. This question
has been recently re-analyzed in Ref. [24].

ε
2

ε 1

−0.1 −0.05 0 0.05 0.1
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ε 1

0 0.02 0.04 0.06 0.08 0.1
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0.015
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m2φ2

λ φ4

Figure 5. Left panel: allowed region in the plan (ε1, ε2) coming from the recently released WMAP data as analyzed in Ref. [23]. Right
panel: zoom of the left panel. The model V (φ0) ∝ φ4

0 is now under big observational pressure. These two figures are from Ref. [23].

Here, we just consider some examples to illustrate that,
nevertheless, there exists now stringent constraints on the
models. For instance, for the quadratic small field model,
|ε2| � 0.1 implies that µ/mPl � 1 which is problematic
for this model. For the exponential model, ε1 � 0.05 me-
ans that β � −2.053. In terms of the equation of state
parameter, this means (since one must have β ≤ −2),
−1 � p/ρ � −0.966 during inflation. More importan-
tly, the chaotic models are now severely constrained. In
Refs. [23, 24], it has been shown that there is a limit on N∗
which implies that ε2 � 0.02 (for chaotic models). This me-
ans that the models V ∝ φn

0
, with n ≥ 4 are now under big

pressure, as summarized in the right panel in Fig. 5. Other
important conclusions can be obtained (in particular on the
energy scale of inflation) and we refer the reader to Ref. [23]
for more details.

5 Open issues for inflation and con-
clusions

Despite its impressive successes, inflation has problems. For
instance, it would be clearly desirable to embed slow-roll in-
flation into a realistic model of particle physics at high ener-
gies (SUSY, SUGRA, string theory etc . . . ). Unfortunately,
no obvious candidate has yet emerged (for a complete dis-
cussion of the model building problem, see Ref. [25]).

Yet another open issue is the so-called trans-Planckian
problem of inflation [26]. This is the fact that, at the be-
ginning of inflation, the scales of astrophysical relevance to-
day were smaller than the Planck length, i.e. where in a re-

gime where quantum field theory is expected to break down.
Since the standard calculation of the power spectrum is ba-
sed on quantum field theory, this questions the validity of
its derivation. It is not easy to predict to which modificati-
ons this could give rise since quantum gravity is not known.
Fortunately, one can show that “reasonable” modifications
of high-energy physics can leave an imprint on the obser-
vables [27] like the CMBR multipole moments. Therefore,
there is a hope to constrain the new physics with (future)
high accuracy cosmological observations. This would be a
concrete realization of the idea that cosmology can help us
to understand high energy physics.
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