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The structure of magnetic field lines in a tokamak with reversed magnetic shear is investigated by means of
analytically derived area-preserving non-twist Poincaré maps. The basic configuration is the magnetic field
produced by an ergodic limiter, superimposed to the tokamak equilibrium field in suitable coordinates. We
consider the cases of one and two resonant modes, focusing on magnetic island dimerization and the formation
of a transport barrier in the chaotic layer of field lines.

1 Introduction

The Poincaré map obtained through considering the inter-
sections of the magnetic field line flow - in the equilibrium
configuration of a tokamak - with a surface of section, is a
nice example of twist map. Since, in the equilibrium MHD
approach, magnetic field lines are constrained to lie on flux
surfaces, if we use as an action variable any surface label,
such as the magnetic flux or even a radial-like coordinate,
it turns out that the action variable is constant for succes-
sive piercings of the field line with the surface of section.
On the other hand, the canonically conjugated angle (which
can be a poloidal angle, for example) varies according to
the rotational transform of the field lines on that surface.
This makes for a twist map, which is the starting point of
discrete-time Hamiltonian treatments of magnetic field line
structure [1, 2]. In this way, plasma physicists have the sin-
gular opportunity of facing a bona-fidearea-preserving ca-
nonical map, which comes directly from the physical setting
of a problem.

One result which comes from the Hamiltonian treatment
of field line flow is the creation of a chaotic magnetic field
line layer in the plasma due to the interaction between reso-
nant perturbing fields and the tokamak equilibrium magnetic
field. Here the word chaosmust be intended in its Lagran-
gian sense: two field lines, very close to each other, depart
exponentially as we follow their revolutions along the toroi-
dal chamber. In terms of the field line map, chaos means an
area-filling orbit in the surface of section, through which a
field line can wander erratically. This affects in a non-trivial
way the transport properties of the tokamak plasma, in a way
that is only partially understood at present. Field line chaos
can be one of the reasons to explain anomalous transport in
tokamaks [3].

The presence of chaotic magnetic field lines in a cer-

tain plasma region within the tokamak implies in the loss
of the plasma confinement, due to the absence of flux surfa-
ces. Thus we could be mislead to conclude that chaos would
be necessarily bad to the fusion program. This is not so,
however, because the chaotization of a limited plasma re-
gion, if properly handled, can be beneficial to the plasma
confinement, as exemplified by the ergodic magnetic limi-
ter [4]. Another situation in which the presence of magnetic
field chaos can help plasma confinement is the creation of
a transport barrier to reduce particle escape in tokamaks. It
has been recently observed that this may occur if there is
a negative magnetic shear region within the plasma column
[5, 6]. Such a region is created by means of a non-peaked
plasma current density, corresponding to a non-monotonic
radial profile for the safety factor [7].

Unlike most area preserving maps used to investigate fi-
eld line behavior, negative shear configurations are best des-
cribed by non-twist area-preserving maps[8, 9]. Such maps
violate the non-degeneracy condition for the Kolmogorov-
Arnold-Moser (KAM) theorem to be valid, so that many
well-known results of canonical mappings no longer apply
to them [10, 11]. For example, it may happen that two neigh-
bor island chains approach each other without being des-
troyed through the breakup of KAM curves [12]. The trans-
port barrier arises from a combination of typical features of
non-twist maps: reconnection and bifurcation, occurring in
the reversed shear region [13]. This barrier is embedded in
a chaotic field line region located in the tokamak periphe-
ral region, and which is generated by an ergodic magnetic
limiter [14].

In this paper we will derive non-twist maps by conside-
ring the superposition of an ergodic magnetic limiter field on
the tokamak equilibrium field with a negative shear region
due to a non-peaked plasma current. This map can be used
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to numerically evidence the formation of a transport barrier
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Figure 1. (a) Basic geometry of the tokamak; (b) Scheme of an ergodic magnetic limiter.

barrier due to a reconnection-bifurcation mechanism, and its
effect on the plasma transport can be inferred from the study
of field line diffusion by using the obtained map. Since the
chaotic region generated by a limiter reaches the tokamak
wall, the transport barrier we obtain is effective for a limited
time-span, such that field lines are eventually lost due to ra-
dial diffusion and eventual collision with the wall. However,
as a consequence of island reconnection and bifurcation, fi-
eld lines are effectively trapped due to the stickiness effect
of the magnetic islands, provided the duration of a discharge
is less than the average escape time.

The rest of this paper is organized as follows: in section
II we present the equilibrium and perturbing equilibrium fi-
elds. Section III shows the area-preserving non-twist map
obtained for one and two resonant perturbations, and the
field line behavior involving reconnection and bifurcation
processes. Our conclusions are left to the last section.

2 Equilibrium and perturbing mag-
netic fields

We will use a suitable coordinate systems to describe mag-
netic field line geometry in a tokamak: (rt, θt, ϕt), given by
[15]

rt =
R′

0

cosh ξ − cosω
, (1)

θt = π − ω, ϕt = Φ, (2)

in terms of the more familiar toroidal coordinates (ξ, ω,Φ).
The meaning of these variables is the following: rt is rela-
ted to the radial coordinate of a field line with respect to the
magnetic axis, which is a circle with radius R ′

0 (Fig. 1(a)).

θt and ϕt are the poloidal and toroidal angles of this field
line, respectively,

The tokamak equilibrium magnetic field B0 =
(B0

rt
, B0

θt
, B0

ϕt
) is obtained from an approximated analy-

tical solution of the equilibrium magneto-hydro-dynamical
equation in these coordinates [16]. In order to generate the
reversed shear region we have considered a toroidal current
density profile with a central hole [17]. There results that
the safety factor of the magnetic surfaces, defined as [18]

q(rt) =
1
2π

∫ 2π

0

B0
ϕt

(rt, θt)
B0

θt
(rt)

dθt, (3)

has a non-monotonic profile. For some values of the safety
factor there are two magnetic surfaces with different radii
within the plasma column with radius a [17] [see Fig. 2].
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Figure 2. Radial profile of the safety factor for a reversed shear
configuration of a tokamak.
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The ergodic magnetic limiter consists of Nr current
rings of length � located symmetrically along the toroidal di-
rection of the tokamak [Fig. 1(b)]. These current rings may
be regarded as slices of a pair of external helical windings
located at rt = b, conducting a current Ih in opposite senses
for adjacent conductors. The role of these windings is to in-
duce a resonant perturbation in the tokamak, and to achieve
this effect we must choose a helical winding with the same
pitch as the field lines in the rational surface we want to per-
turb. This has been carried out by choosing the following
winding law [16] ut = m0θt − n0ϕt = constant. In this pa-
per we will consider an ergodic limiter consisting ofNr = 4
rings with mode numbers (m0, n0) = (3, 1) each, carrying
a current Ih.

The magnetic field B1 produced by the resonant helical
winding, from which we build the EML rings, is obtained by
neglecting the plasma response and the penetration time th-
rough the tokamak wall. We were able to obtain an approxi-
mated analytical solution in lowest order for the limiter field,
through solving the corresponding boundary value problem.
The model field to be used in this paper will be the superpo-
sition of the equilibrium and limiter fields: B = B0 + B1.

Since the equilibrium field is axisymmetric, we may set the
azimuthal angle, ϕt = t, as a time-like variable, and put the
magnetic field line equations in a Hamiltonian form

[19]

dJ
dt

= −∂H
∂ϑ
, (4)

dϑ

dt
=

∂H

∂J , (5)

where (J , ϑ) are the action-angle variables of a Hamiltonian
H , its explicit form being given in Ref. [20]. In that paper
we analyzed exact but numerically obtained maps, whereas
in this work we derive analytical, albeit approximate, forms
of these maps.

The addition of the magnetic field produced by a reso-
nant helical winding may be regarded as a Hamiltonian per-
turbation. In order to include the effect of the finite length �
of each EML ring, which is typically a small fraction of the
total toroidal circumference 2πR ′

0, we model its effect as a
sequence of delta-functions centered at each ring position.
The Hamiltonian for the system is thus

�

H(J , ϑ, t) = H0(J ) +
�

R′
0

H1(J , ϑ, t)
+∞∑

k=−∞
δ

(
t− k 2π

Nr

)
, (6)

We consider the perturbing Hamiltonian as a periodic function in both ϑ and t variables, such that it can be written as a
Fourier series in these variables. There results a model Hamiltonian

H(J , ϑ, t) = H0(J ) + ε
2m0∑
m=0

H∗
m(J ) cos(mϑ− n0t)

+∞∑
k=−∞

δ

(
t− k 2π

Nr

)
, (7)

�
where H∗

m are Fourier coefficients, whose detailed forms
can be found in Ref. [20], and the perturbation strength is
expressed by the parameter

ε = −2
(

�

2πR′
0

) (
Ih
Ie

)
, (8)

which is usually small, since in experiments we have
� � 2πR′

0 and Ih � Ie, where Ie is the coil current
producing the toroidal equilibrium field.

3 Non-twist maps for one and two re-
sonant modes

The non-monotonicity of the radial safety factor profile ma-
kes possible to have two resonant surfaces with the same
value of the safety factor. From the Hamiltonian theory of

quasi-integrable systems we know that there appear two is-
land chains centered at these radii. A periodic island results
from the resonance between the equilibrium tokamak field
and one mode of the perturbation field. Let us suppose that
we are dealing with a resonant perturbation with (positive
integer) mode numbers (m0, n0), such that the safety factor
m0/n0 is a rational number. In terms of the action-angle
variables of the unperturbed Hamiltonian, corresponding to
the tokamak equilibrium field, this is a frequency, which is
the same for the two island chains centered at J ∗

1 and J ∗
2

ω0(J ∗
1 ) = ω0(J ∗

2 ) =
∂H0

∂J =
n0

m0
. (9)

The dynamical behavior in the vicinity of the resonant
surfaces located at J ∗

1 and J ∗
2 can be investigated by pic-

king up from the model Hamiltonian, Eq. (7), the resonant
term corresponding to the frequency n0/m0:

�

H(J , ϑ, t) = H0(J ) + εH∗
m0

(J ) cos(m0ϑ− n0t)
+∞∑

k=−∞
δ

(
t− k 2π

Nr

)
, (10)
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and expanding the Hamiltonian in the neighborhood of the
rational surface beyond the cubic approximation. This is
actually necessary for taking into account the fact that the
unperturbed HamiltonianH0 fails to satisfy KAM theorem,
due to the non-monotonicity of the frequency. As a conse-

quence, the island chains are not pendular (i.e., their widths
do not increase as the square root of ε), and we need a higher
order approximation in order to capture the essentials of the
twins islands’ behavior.

After dropping the constant terms, we obtain
�

H(∆J , ϑ, t) ≈ ω0(J ∗)∆J +
1
2
dω0

dJ
∣∣∣∣
J=J ∗

(∆J )2 +
1
6
d2ω0

dJ 2

∣∣∣∣
J=J ∗

(∆J )3 + · · ·

+ εH∗
m0

(J ∗) cos(m0ϑ− n0t)
+∞∑

k=−∞
δ

(
t− k 2π

Nr

)
, (11)

�
where ∆J = J − J ∗.

We can simplify this expression by performing a cano-
nical transformation to new action-angle variables (J ′, ϑ′)
which eliminates the explicit time-dependence, what can be
done through the generating function

S(J ′, ϑ, t) =
(
ϑ− n0

m0
t

)
J ′, (12)

leading to the local Hamiltonian

H ′(J ′, ϑ′) =
M

2
J ′2 − W

3
J ′3

+K cos(m0ϑ
′)

+∞∑
k=−∞

δ

(
t− k 2π

Nr

)
, (13)

in which we have defined

M(J ∗) ≡ dω0

dJ
∣∣∣∣
J=J ∗

, (14)

W (J ∗) ≡ 1
2
d2ω0

dJ 2

∣∣∣∣
J=J ∗

, (15)

K(J ∗) ≡ εH∗
m0

(J ∗
1,2) . (16)

After dividing both sides of Eq. (13) by M , what
amounts to re-scale the field line Hamiltonian, we have

H(J ′, ϑ′) =
1
2
J ′2 − α

3
J ′3

+κ cos(m0ϑ
′)

+∞∑
k=−∞

δ

(
t− k 2π

Nr

)
, (17)

where α =W/M and κ = K/M .
In the α = 0 limit, the Hamiltonian above reduces to

that of a nonlinear pendulum, which is the standard proce-
dure used in perturbation theory to describe the phase-space
structure near a given resonance [2]. Hence, α measures, so
as to speak, the non-pendular character of the island chains.
The corresponding Hamilton equations are

dJ ′

dt
= m0κ sin(m0ϑ

′)
+∞∑

k=−∞
δ

(
t− k 2π

Nr

)
, (18)

dϑ′

dt
= J ′(1 − αJ ′). (19)

Writing down the summation in t as a Fourier series and
isolating the resonant term, we can use these equations to
predict the widths of each non-pendular island as well as to
make an estimation of the critical value of the limiter current
necessary to their reconnection [20].

The fact that the “time”-dependence of the Hamilton
equations is in the form of a periodic sequence of delta func-
tion kicks enables us to define discretized variables [21]

ϑ′k = lim
ε→0

ϑ′(t = tk + ε) (20)

J ′
k = lim

ε→0
J ′(t = tk + ε) (21)

as the angle and action, respectively, just after the k-th kick,
which occurs at time tk = k(2π/Nr) (note that one Poin-
caré section of the field line flow is done after Nrm0 turns
around the torus, rather than simply sampling out the field
line position after each turn, as usually done). The resulting
field line map is thus

J ′
k+1 = J ′

k +m0κ sin(m0ϑ
′
k+1), (22)

tk+1 = tk +
2π
Nr
, (23)

ϑ′k+1 = ϑ′k +
2π
Nr

J ′
k(1 − αJ ′

k) (mod2π) .(24)

If we switch off the perturbation (κ = 0), the map above
reduces to a simple non-twist map, for which all trajecto-
ries are bound to invariant tori with constant J ′. The non-
monotonic character of the equilibrium field is expressed in
the α term which appears in the winding number term in Eq.
24. From now on we choose an ergodic limiter withN r = 4
rings, uniformly spaced from each other along the tokamak
torus (i.e. with angular separation π/2), each of them with
m0 = 3 pairs of wires. The plasma current density profile is
supposed to yield a non-monotonic profile for the winding
number ω = ∂H0(J ′)/∂J ′, such that there are two values
of the action variable for ω = 1/3.

If we pick up two resonant modes from the model
Hamiltonian (7), there will appear terms in cos[m0ϑ

′ −
(n0/m0)t] and cos[(m0 +1)ϑ′−(n0/m0)t]. The derivation
of the field line map is similar to that described in the previ-
ous section, and results in the following system of equations
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J ′
k+1 = J ′

k +m0κ sin(m0ϑ
′
k+1) + (m0 + 1)κ̃ sin

[
(m0 + 1)ϑ′k+1

]
, (25)

ϑ′k+1 = ϑ′k +
2π
Nr

J ′
k(1 − αJ ′

k) (mod2π) (26)

tk+1 = tk +
2π
Nr
, (27)

�

where κ̃ = κ1Ih, κ1 being the amplitude of the second re-
sonant mode. The map is obtained for eachm0 turns around
the tokamak torus.

For small limiter currents [Fig. 3(a)] we have: (i) two
chains of non-pendular islands centered at the points J ∗

1

and J ∗
2 , due to the non-monotonic character of the safety

factor profile [see Fig. 2]; (ii) a third chain of pendular
islands centered at the position of the second resonance
(m0 + 1)/n0 = 4/1, since for this value of q we have just
one resonant surface, according to Fig. 2.

In the region of reversed magnetic shear, due to the lo-
cally non-KAM nature of the Hamiltonian, the map is non-
twist. Hence, the two non-pendular islands of the 3/1-chain
can approach each other without destruction of tori. For a
perturbation strong enough [Fig. 3(b)] the island chains di-
merize, forming a unique sequence of islands which share
a common separatrix. This is called reconnection, but it is
rather a topological effect, involving no dissipative breakup
and re-wiring of the field lines, as it occurs in astrophysical
and fusion situations. After the reconnection takes place we
find curves (meanders) which encircle both sets of islands,
forming a unique path which will be the foundation of the
transport barrier to be described.

The action of an ergodic limiter actually produces an in-
finite number of resonant modes due to the localized nature
of the generated fields in the toroidal direction (note the infi-
nite terms in the summation in Eq.(17), for example). Since
the magnetic field generated by a magnetic limiter falls off
rapidly as we move apart from the tokamak wall [16], the
amplitudes of the corresponding resonant modes also decre-
ase as we go into the tokamak center. Hence, the main reso-
nance is just that produced near the tokamak wall, the others
having exponentially smaller widths.

In fact, as the limiter current Ih increases, all mode am-
plitudes are augmented, yet not in the same proportion. For
many purposes these higher modes are not important and
hence it suffices to pick up just one resonant mode from
the field line Hamiltonian (17). However, in order to study
the formation of a large chaotic region inside the tokamak
plasma, it is necessary to take into account a second resonant
mode from the infinite number of possible modes. Since this
second chain is now pendular, they will not dimerize with
the first resonant mode. As the perturbation strength increa-
ses both islands become wider and they interact as predicted
by the global stochasticity mechanisms widely studied in the
literature [Fig. 3(c)] [2].

As the limiter current increases further [Fig. 3(c)] we can
see that: (a) the twin chains of the first mode have already
dimerized and suffered reconnection, with open surfaces ex-
ploring the former twin chains (this is actually necessary for
the transport barrier be present); and (b) there are visible
chaotic layers surrounding both sets of islands. However, as
the limiter current is still not high enough, there are many
surviving invariant curves between the sets of islands. This
is, in fact, a result from KAM theorem which applies here
because this region has a monotonic frequency profile and,
at least locally, the conditions for the KAM theorem to be
valid are fulfilled.

Even higher limiter currents will destroy entirely the in-
variant curves between both chains and a wide chaotic layer
appears surrounding both modes. At least in principle, Chi-
rikov’s criterion for global stochasticity applies in this case
and predicts the formation of such layer [1]. The transport
barrier appears embedded in this large chaotic layer and
is structured around the path of open curves which encir-
cled the formerly dimerized islands after reconnection. This
layer acts as an effective transport barrier since it hampers
the radial diffusion of field lines, and arises from the “stic-
kiness” effect that the region near the former separatrices of
islands exert on the chaotic trajectories. This effect has been
related to manifold reconnection in Ref. [13] occurring in-
side the chaotic region. This barrier is effective provided the
duration of a typical tokamak plasma discharge is less than
the average escape time.

4 Conclusions

We used analytically obtained non-twist field line maps to
study the effects of an ergodic magnetic limiter on the mag-
netic field line structure which results from a plasma current
profile exhibiting reversed magnetic shear. The non-twist
nature of the map allows island chains to approach and di-
merize, as the limiter current builds up, in a reconnective
process. In the case of one resonant mode, although there
is already a symmetry-breaking cause of non-integrability,
the chaotic field line region is too narrow. The creation of a
reasonably wide chaotic layer is only feasible when consi-
dering two resonant modes. The second mode interacts with
the dimerized island chains created by the first mode in a
conventional way, predicted by global stochasticity mecha-
nisms, eventually forming a chaotic region.
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Figure 3. Poincaré maps (in scaled toroidal coordinates) for two resonant modes with (a) κ0 = −6.33101 × 10−6, κ1 = 2.91385 × 10−6;
(b) κ0 = −1.477235 × 10−5, κ1 = 6.798983 × 10−6; (c) κ0 = −8.441344 × 10−5, κ1 = 3.885133 × 10−5.

This layer works like an effective transport barrier, with
respect to the typical plasma duration. The trapping is more
intense around the shearless plasma, and results from the
properties of field line trajectories in the vicinity of separa-
trices of islands bordering the chaotic region. This transport
barrier can help plasma confinement preventing energetic
charged particles from escaping out radially to an eventual
collision with the tokamak inner wall.
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