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Decoherence and Loschmidt echoes: Quantum against Classical
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Some recent theoretical results on the stability of quantum dynamics against perturbations of the Hamiltonian
- the so-called Loschmidt echoes and their relation to various decoherence measures are reviewed. We show that
the representation of Loschmidt echoes in terms of the Wigner function can explain some seemingly paradoxical
behavior of the quantum-classical correspondence.

I. INTRODUCTION

Studies of stability of quantum time evolution with respect
to small variation in the Hamiltonian have attracted consider-
able interest in recent years [1–5]. Quite remarkable is the fact
that the problem has been practically intact until 2001, with
exception of experimental studies of the group of Pastawski
[6] in the mid 1990’s. However, one has to mention the pio-
neering paper of Peres in 1984 [7], where he poses the ques-
tion and suggests the overlap between quantum states of two
nearby time-evolutions as a signature of chaos in quantum
mechanics. However, as one understands today, his conjec-
ture, that this overlap - now called the fidelity - decays faster
for classically chaotic than for classically regular dynamics,
generally fails. The fidelity is also known as the Loschmidt
echo since it can be equivalently interpreted, due to unitarity
of quantum time evolution, in terms of an overlap between the
initial state, and the state obtained after composing forward
time evolution with the slightly perturbed backward evolution.

The behavior of fidelity is also intimately connected to the
scale of time t, perturbation strength δ, and effective Planck
constant �. There are many different regimes and one has
to be careful when discussing general results. For example,
in classically chaotic systems there are basically two main
regimes, depending on the non-dimensional ratio σ = δ/�. If
σ > 1, then the drop of fidelity is very fast (within the so-called
Ehrenfest time-scale), so one can use strict quantum-classical
correspondence and direct semi-classical theories in order to
explain fidelity decay. For classically chaotic systems, it has
been found that fidelity exhibits perturbation independent ex-
ponential decay ∝ e−λt where λ is simply the classical Lya-
punov exponent [1]. In the opposite regime σ < 1, one can
use quantum time-dependent perturbation theory in order to
derive the fidelity decay. Again, for chaotic systems, one usu-
ally finds exponential decay [2–4] ∝ e−Γt with the rate Γ ∝ δ2,
which is usually referred to as a Fermi golden rule regime.

It is however interesting to note that the rate Γ is typically
smaller the stronger the corresponding classical chaos (or rate
of dynamical mixing). This is apparently in contrast to any
classical intuition. Therefore there is no direct correspon-
dence between quantum fidelity and the corresponding clas-
sical object, i.e. the classical fidelity, beyond the Ehrenfest
time.

In this paper we make a detailed illustration of the breakup
of quantum-classical correspondence for fidelities (section
III), after making a short review of the linear response the-

ory of quantum fidelity in section II. In section IV we quote a
quantitative relation between quantum fidelity and a measure
of decoherence and conclude.

II. LINEAR RESPONSE THEORY OF QUANTUM
FIDELITY

We consider a general quantum Hamilton operator Hδ(t)
which may depend explicitly on time t, as well as on some
external parameter δ, like magnetic field, shape of potential
well etc. Without essential loss of generality we shall assume
that the parameter dependence is linear, namely

Hδ(t) = H0(t)+δV (t). (1)

Let Uδ(t) be the propagator

Uδ(t) = T̂ exp
(
− i

�

Z t

0
dt ′Hδ(t

′)
)

(2)

where T̂ designates the time ordering.
If |ψ〉 is some arbitrary initial state, then we may define the

time evolution, depending on the time variable t as well as on
the perturbation parameter δ of the Hamiltonian

|ψδ(t)〉 = Uδ(t)|ψ〉. (3)

Having the tools defined above, fidelity amplitude, with re-
spect to the unperturbed evolution U0(t), is defined as the
overlap of the perturbed and unperturbed time-evolving states

fδ(t) = 〈ψ0(t)|ψδ(t)〉 = 〈ψ|U0(−t)Uδ(t)|ψ〉. (4)

In the following we shall write the expectation value in a given
initial state simply as 〈A〉 = 〈ψ|A|ψ〉. Fidelity amplitude may
now be compactly written in terms of expectation value of the
so-called echo-operator

Mδ(t) = U0(−t)Uδ(t), (5)

namely

fδ(t) = 〈Mδ(t)〉. (6)

Usually one studies fidelity Fδ(t), which is simply the absolute
value square of the fidelity amplitude,

Fδ(t) = | fδ(t)|2. (7)
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We note that one may also use a non-pure initial state, namely
a statistical mixture described by a density matrix ρ, with
〈A〉 = trρA. Writing the perturbation operator in the inter-
action picture

Ṽ (t) = U0(−t)V (t)U0(t) (8)

one can straightforwardly check, by differentiating Eq. (5),
that the echo-operator solves the Heisenberg equation

d
dt

Mδ(t) = − i
�
[δṼ (t),Mδ(t)] (9)

with the (effective) Hamiltonian δṼ (t). Of course, the echo-
operator is nothing else but a propagator in the interaction pic-
ture, which can be written in terms of a formal solution of Eq.
(9)

Mδ(t) = T̂ exp
(
− i

�
δ
Z t

0
dt ′Ṽ (t ′)

)
(10)

where T̂ denotes a time-ordering. The computation of fidelity
becomes rather straightforward if one plugs the expression
for the echo-operator (10) into the definition (6). In particu-
lar, this approach is ideally suited for a perturbative treatment
when the perturbation strength δ can be considered as a small
parameter. One can write explicit Born series for the echo op-
erator, which has an infinite radius of convergence provided
only that the perturbation operator V (t) is a bounded, uni-
formly for all t:

Mδ(t) = 1+
∞

∑
m=1

(−iδ)m

�mm!

Z t

0
dt1dt2 · · ·dtm ×

× T̂Ṽ (t1)Ṽ (t2) · · ·Ṽ (tm). (11)

If we truncate the above series at second order, m = 2, and
plug into (7), we obtain

Fδ(t) = 1− δ2

�2

Z t

0
dt ′

Z t

0
dt ′′C(t ′, t ′′)+O(δ4) (12)

where

C(t ′, t ′′) = 〈Ṽ (t ′)Ṽ (t ′′)〉−〈Ṽ (t ′)〉〈Ṽ (t ′′)〉, (13)

is just a 2-point time-correlation function of the perturbation.
High-fidelity approximation (12) is usually called linear re-
sponse expression of fidelity.

We stress that the validity of the linear response formula
(12) is by no means restricted to short times. The only con-
dition is the high-fidelity namely, η := 1 − Fδ(t) has to be
small, and the error of linear approximation is typically of
order O(η2) = O(δ4).

Note that linear-response formula (12) already establishes
a very important physical properties of the quantum echo-
dynamics. One should observe an intimate connection be-
tween fidelity decay and temporal-correlation decay, namely
faster decay of correlation function C(t ′, t ′′), as |t ′ −t ′′| grows,
implies slower decay of fidelity and vice versa. For exam-
ple, for chaotic quantum systems in a semi-classical regime,

whose classical limit is chaotic and fast mixing, such that
C(t ′, t ′′) decays faster than const/|t ′ − t ′′|, the fidelity is ex-
pected to decay as a linear function of time Fδ(t) = 1 −
constδ2t, whereas for regular systems, with integrable classi-
cal limit, C(t ′, t ′′) is expected to have oscillating behavior with
non-vanishing time average, hence fidelity is expected to de-
cay as quadratic function of time Fδ(t) = 1− constδ2t2. This
implies one of the seemingly paradoxical conclusions of our
analysis, namely that the fidelity of regular dynamics decays
faster than of the chaotic one.

III. WIGNER REPRESENTATION OF FIDELITY,
CLASSICAL FIDELITY AND QUANTUM CLASSICAL

CORRESPONDENCE

Now we wish to use a concept of quantum mechanics in
phase space in terms of Wigner functions in oder to give a
clear illustration of the behaviour of quantum fidelity, as well
as its classical corresponence.

Let us assume that our system has d-degrees of freedom,
which in the classical phase space can be represented by a
point �x = (�q,�p) in 2d-dimensional Euclidean space. Using
the Wigner function of the pure state ψ(�q) = 〈�q|ψ〉

Wψ(�q,�p) = (2π�)−d
Z

dd�rψ∗(�q−�r/2)ψ(�q+�r/2)ei�r·�p/�,

(14)
which for two states |ψ〉, |η〉 satisfies the principal property

|〈η|ψ〉|2 = (2π�)d
Z

d2d�x Wη(�x)Wψ(�x), (15)

one can write the fidelity simply in terms of an overlap of
time-evolving Wigner functions

Fδ(t) = (2π�)d
Z

d2d�x WU(t)ψ(�x)WUδ(t)ψ(�x) (16)

= (2π�)d
Z

d2d�x Wψ(�x)WMδ(t)ψ(�x) (17)

The second identity trivially follows from the unitarity of
quantum time evolutions. Since, due to (15), for pure states
the Wigner function is L2 normalized to

R
d2d�xW 2

ψ(�x) =
(2π�)−d , one can write the deviation of fidelity from 1 as

1−Fδ(t) = (18)

(2π�)d
Z

d2d�x WU(t)ψ(�x)[WU(t)ψ(�x)−WUδ(t)ψ(�x)]

If hδ(�x, t) is the Weyl-symbol corresponding to the Hamil-
tonian operator Hδ(t), then the evolution of the Wigner func-
tion is governed in terms of the Moyal equation

d
dt

WUδ(t)ψ(�x) = {hδ(�x, t),WUδ(t)ψ(�x)}MB (19)

where

{a(�x),b(�x)}MB = (20)

−2
�

sin

[
�

2

(
∂(a)

∂�p
· ∂(b)

∂�q
− ∂(a)

∂�q
· ∂(b)

∂�p

)]
a(�x)b(�x)
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is the Moyal bracket. The Moyal equation is a good start-
ing point for understanding details of quantum classical
correspondence, as expansion of Moyal bracket in powers
of � gives {a(�x),b(�x)}MB = {a(�x),b(�x)}PB + O(�2) where
{•,•}PB is just a classical Poisson bracket. Starting with a
state having positive Wigner function, Wψ(�x) ≥ 0 for all �x,
one can thus approximate WUδ(t)ψ(�x) with a classical density
ρδ(�x, t) solving the Liouville equation

d
dt

ρδ(�x, t) = {hδ(�x, t),ρ(�x, t)}PB (21)

and satisfying the initial condition ρδ(�x,0) := Wψ(�x). For
chaotic systems, classical densities approximate the Wigner
function for times up to t∗ ∝ log(1/�)/λ where λ is the clas-
sical Lyapunov exponent. Such a time-scale t∗ is sometimes
known as the Ehrenfest time.

Actually, one can write (or define!) the classical corre-
sponding quantity to fidelity in terms of the classical densities
ρδ(�x, t), simply by substituting Wigner functions by classical
densities, and using the appropriate L2 normalizations,

Fcl
δ (t) =

R
d�xρ0(�x, t)ρδ(�x, t)R

d�xρ2
0(�x,0)

(22)

=
R

d�xρ0(�x,0)ρ0(�xE(�x, t),0)
R

d�xρ2
0(�x,0)

(23)

We note that ρ0(�xE(�x, t),0) is the classical density gov-
erned by the classical echo-dynamics, composing perturbed
Liuovillian dynamics with an unperturbed backward Li-
ouvillian dynamics, and �xE(�x, t) are its characteristics -
echo-trajectories. Note an interesting fact [8], namely that the
echo-flow �xE(�x, t) satisfies canonical Hamilton’s equations
with explicitly time-dependent classical “Hamiltonian”
hE(�x0, t) = δv(�x(�x0, t), t) where v(�x, t) is the Weyl-symbol
of the perturbation part of the Hamiltonian in the classical
interaction picture. For strictly hyperbolic, i.e. Anosov,
classical systems, classical fidelity Fcl

δ (t) has been shown to
exhibit a cascade of exponential decays with exponents given
by the sums of the leading classical Lyapunov exponents.
For systems of one-degrees of freedom (or two degrees of
freedom if the system is explicitly time-independent), this is
always the one (non-negative) Lyapunov exponent.

Based on the quantum-classical correspondence we ex-
pect Fδ(t) = Fcl

δ (t) for t � t∗ due to point-wise agreement
between Wigner functions and classical densities. After
the Ehrenfest time, the quantum Wigner function starts to
develop negative values and becomes an increasingly erratic
object [9], in particular for non-integrable systems. As a
consequence, at this time scale quantum fidelity Fδ(t) starts
to deviate from the classical fidelity Fcl

δ (t) which continues to
decay with Lyapunov rates for chaotic systems. On the other
hand, for t � t∗, one can use the correlation function formula
(12), or Fermi golden rule, to predict decay of quantum
fidelity, which now decays with a slower rate (for σ < 1)
depending quadratically on the strength of perturbation.

Quite paradoxically, for t > t∗, the dependence on the
strength of chaos of Fδ(t) and Fcl

δ (t) is just the opposite

than for t < t∗. While for t < t∗ both objects (quantum
and classical) follow intuitive behavior (more chaos lower
fidelity), on the contrary for t > t∗ the quantum fidelity Fδ(t)
behaves just the opposite in the sense (more chaos - faster
decay of temporal correlations - higher fidelity).

In order to illustrate all these behaviors in as intuitive
way as possible we provided cartoons in the classical phase
space of Wigner functions and classical densities, and the
corresponding fidelities. For the purpose of numerical
demonstration we choose a kicked top [10], a system of a
single quantum spin �J with time-dependent Hamiltonian

Hδ(�J, t) = (α+δ)
J2

z

2J2 + γ
∞

∑
k=−∞

δ(t − k)
Jy

J
, (24)

and we fix � = 1/J = 0.01. Perturbation is chosen simply as a
variation of the parameter α with the strength δ = 0.04, while
the parameter γ is fixed to γ = π/2. The classical phase space
is now a unit sphere �j, �j ·�j = 1, which we parameterize with
two spherical angles ϕ,ϑ ∈ [0,2π]× [0,π], as jx = sinϑcosϕ,
jy = sinϑsinϕ, jz = cosϑ. We chose two different values of
the parameter alpha: α = 1 where the corresponding classi-
cal dynamics is almost regular (KAM), and α = 4 where the
corresponding classical dynamics is predominantly chaotic -
almost ergodic. We compute the Wigner function Wψ(ϕ,z),
where z = cosϑ, of a quantum state of angular momentum us-
ing a prescription due to Agarawal [11]. Note that (ϕ,z) are
canonical coordinates in the sense of preservation of phase
space area under dynamics.

As for the initial state we choose the most classical state,
namely SU(2) coherent state |ϑ∗,ϕ∗〉 centered at the point
(ϕ∗,z∗ = cosϑ∗) in the classical phase space

|ϑ∗,ϕ∗〉 =
J

∑
m=−J

(
2J

J +m

)1/2

cosJ+m
(

ϑ∗

2

)

× sinJ−m
(

ϑ∗

2

)
e−imϕ∗ |m〉. (25)

where |m〉 are eigenstates of Jz. Note that the Wigner func-
tions of coherent states - which we shall take as initial Louiv-
illian densities for the corresponding classical dynamics -
are positive almost-Gaussian distributions centered around
(ϕ∗,z∗).

First, let us consider the classically chaotic case α = 4. In
fig. 1 we compare time evolutions of the quantum Wigner
function and the classical Liouville density starting from the
same (nearly) Gaussian initial wave packet. In addition we
show the evolution of perturbed dynamics, namely the quan-
tity WU(t)ψ(WU(t)ψ −WUδ(t)ψ) and the corresponding classical
analog, whose phase space integrals yield, correspondingly,
the quantum and the classical fidelity. It is interesting to note
that around the Ehrenfest time t∗, the Wigner function starts
to exhibit oscillatory behavior due to interference fringes and
thus its structure starts to deviate qualitatively from the Liou-
ville density which remains strictly positive but at the same
time t∗ starts to develop phase-space structures on a scale
smaller than �. Even further, the value distribution of the
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W (ϕ, cosϑ) ρ(ϕ, cos ϑ) W · (W − Wδ) ρ · (ρ − ρδ)

t=0
-1 -0.5  0  0.5  1

t=1

t=2

t=3

t=5

t=10

FIG. 1: Wigner function against classical Liouville density for chaotic dynamics α = 4 of the kicked top, as a function of time, for t =
0,1,2,3,5,10 kicks. Rectangular phase space (ϕ,cosϑ) ∈ [0,2π]× [−1,1] parameterizes the unit sphere. Both densities start from a nearly-
Gaussian packet corresponding to a coherent state sitting at ϕ∗ = π/

√
2,ϑ∗ = π/

√
3. Second frame on the top shows the corresponding

classical phase space portrait. The first column is the quantum Wigner function, the second column is the corresponding classical Liouville
density, the third and the fourth columns are the corresponding quantum and classical quantities which upon integration give the fidelities.
Color (grey) scale indicates the density value (dark=negative,bright=positive).

Wigner function for such an increasingly random state ap-
proaches a Gaussian and it’s nodal line/domain structure re-
sembles that of an eigenfunction of a Laplacian in a ’chaotic’
billiard domain [9]. This is illustrated by zoom-in of the
Wigner function and Liouville density evolutions in Fig. 2.

In Fig. 3 we show the corresponding curves of quantum and
classical fidelity as a function of time. We note that up to the
Ehrenfest time t∗, which is in this case around 3 kicks, the
two quantities agree, and after that they strongly deviate. Af-
ter t∗ one can argue that the double integral of time-correlation
function (13) in formula (12) starts to behave asymptotically
as ∼ σt where σ ∝ δ2 is a certain diffusion constant. This
is consistent with oscillating behavior of the Wigner function,

which is necessary in order to prevent faster - Lyapunov decay
as it happens for the classical fidelity [8]. In a semi-log scale
(Fig. 4) one can clearly see asymptotic exponential decays,
for the quantum curve the rate is determined by Fermi Golden
rule and for the classical curve by the Lyapunov exponent.
The former scales with perturbation strength as ∝ δ2 while the
latter is δ-independent. This a clear manifestation of the qual-
itative breakdown of quantum-classical correspondence at the
Ehrenfest (log-time) barrier t∗. Beyond t∗ quantum and clas-
sical fidelities behave just in the opposite ways with respect to
a degree of chaoticity of the underlying classical system.

Due to unitarity of quantum and classical time-evolution,
one can use the equivalence between fidelity and the
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FIG. 2: Zoom-in of Wigner function against classical Liouville density for chaotic dynamics α = 4. A region of the phase-space area of one
Planck cell 2π� (indicated above by small rectangles) is magnified in snapshots below. Again, the same representation is used as in fig. 1.
Curves in Wigner function plots are nodal lines.

Loschmidt echo, namely equivalence between representations
(16,22) and (17,23). Therefore, fidelity of an initial Gaussian
wave-packet (coherent state) can be computed as an overlap of
the initial Gaussian with the Wigner function (Liouville den-
sity) after echo-dynamics. In fig. 5 we show the corresponding
echoed Wigner functions and echoed Lioville densities, which
again exhibit significant deviation (due to oscillatory behavior
in the Wigner function) at around t∗.

Second, for completing the story, we make the same numer-
ical experiments in the regime where the classical dynamics is
quasi-regular, α = 1. Since here we have a linear instead of
an exponential divergence of classical packets, one expects
the breakdown time to scale as t∗ ∝ �

−1/2. In fig. 6 we show
an analogous plot to fig. 1. Note that quantum Wigner func-
tion and classical Liouville density for short times are here

hardly distinguishable in contrast to classically chaotic dy-
namics. This fact is also illustrated by plotting in fig. 7,
in comparison, quantum and classical fidelity curves for the
regular case.

IV. RELATION TO DECOHERENCE MEASURES AND
CONCLUSIONS

Understanding of the behavior of quantum fidelity or quan-
tum Loschmidt echoes, as discussed in previous sections, may
turn useful for a design of devices that will be capable of ma-
nipulation with quantum information (quantum computers),
and to understand the origin of dynamical irreversibility in
statistical Hamiltonian mechanics.
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FIG. 3: Quantum fidelity (full curve) against classical fidelity (dashed) for classically fully chaotic dynamics, α = 4. We observe clear deviation
of the two curves at the log-time (or Ehrenfest time) t∗ ≈ 3.
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FIG. 4: The same as in previous figure (3) but in semi-log scale. One may observe exponential decays.

In addition, there is also a link between fidelity and deco-
herence as expressed in terms of a purity of a reduced density
matrix. Let us assume that we want to describe a compos-
ite quantum system, which is a direct product of the central
system Hc and the environment He, using a unitary quantum
evolution on the product Hilbert space Hc ×He. Decoherence
is then directly related to the loss of purity of reduced den-
sity matrix ρc(t) = tre|ψ(t)〉〈ψ(t)|. The purity is quantified as
I(t) = trc[ρc(t)]2 and is equal to 1 for pure states and ∼ 1/N
for maximally mixed states, where N is the dimension of the
smaller of the Hilbert spaces Hc, and He. The rate of deco-
herence can thus be measured in terms of decay of I(t) down
from 1.

One can show a strict inequality between purity I(t) and
quantum fidelity F(t) as defined for evolving the same initial
state with two dynamics: the coupled system (central system
Hamiltonian plus environment Hamiltonian plus coupling) as
compared to the uncoupled system (total Hamiltonian without
the coupling). Namely the strong result [12] shows that

I(t) ≥ (F(t))2. (26)

Thus the understanding of the decay rates of fidelity provides
the upper bounds to the decay rates for purity. In fact, it has
been shown [12] that this upper bound is typically reached
(equality sign in (26)) in the case of chaotic classical dynam-
ics, whereas in classically regular dynamics the purity may
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Classical Quantum
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FIG. 5: Wigner function and classical densities of the echo-dynamics of classically chaotic dynamics. Quantum (first column, magnified in
second column) against classical (third column, magnified in fourth column). All the parameters are the same as in fig. 1.

decay drastically slower [13].
In this paper we have reviewed recent theoretical ap-

proaches to describe decay of quantum fidelity in dynamical
systems, and in addition provided clear phase space picture
and illustration of the approach in terms of quantum Wigner
functions. It is clear that seemingly paradoxical behavior of
quantum fidelity with respect to the classical correspondent is
a consequence of the breakdown of quantum classical corre-
spondence in the Wigner function at the Ehrenfest time.
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FIG. 7: Quantum fidelity (full curve) against classical fidelity (dashed) for classically regular dynamics α = 1. Other parameters are the same
as in fig. 3.


