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Feature binding denotes how a large collection of coupled neurons combines external signals with internal
memories into new coherent patterns of meaning. An external stimulus spreads over an assembly of coupled
neurons, building up a corresponding collective state. Thus, the synchronization of spike trains of many indi-

vidual neurons is the basis of a coherent perception.

Homoclinic chaos has been proposed as the most suitable way to code information in time by trains of equal
spikes occurring at apparently erratic times; a new quantitative indicator, called propensity, is introduced to

select the most appropriate neuron model.

In order to classify the set of different perceptions, the percept space is given a metric structure. The distance
in percept space is conjugate to the duration of the perception in the sense that an uncertainty relation in percept
space is associated with time limited perceptions. Thus coding of different percepts by synchronized spike trains
entails fundamental quantum features with a quantum constant related to the details of the perceptual chain and

very different from Planck’s action.

I. FEATURE BINDING
A. Neuron synchronization

It is by now established that a holistic perception emerges,
out of separate stimuli entering different receptive fields, by
synchronizing the corresponding spike trains of neural action
potentials [1, 2].

Action potentials play a crucial role for communication be-
tween neurons. They are steep variations in the electric po-
tential across a cell’s membrane, and they propagate in essen-
tially constant shape from the soma (neuron’s body) along ax-
ons toward synaptic connections with other neurons. At the
synapses they release an amount of neurotransmitter mole-
cules depending upon the temporal sequences of spikes, thus
transforming the electrical into a chemical carrier.

As a fact, neural communication is based on a temporal
code whereby different cortical areas which have to contribute
to the same percept P synchronize their spikes. Limiting for
convenience the discussion to the visual system, spike emis-
sion in a single neuron of the higher cortical regions results
as a trade-off between bottom-up stimuli arriving through the
LGN (lateral geniculate nucleus) from the retinal detectors
and threshold modulation due to top-down signals sent as con-
jectures by the semantic memory. This is the core of ART
(adaptive resonance theory [3]) or other computational mod-
els of perception [4] which assume that a stable cortical pat-
tern is the result of a Darwinian competition among different
percepts with different strength. The winning pattern must be
confirmed by some matching procedure between bottom-up
and top-down signals.

B. Perceptions, feature binding and Qualia

The role of elementary feature detectors has been exten-
sively studied in the past decades [5]. By now we know that
some neurons are specialized in detecting exclusively verti-
cal or horizontal bars, or a specific luminance contrast, etc.
However the problem arises: how elementary detectors con-

tribute to a holistic (Gestalt) perception? A hint is provided
by [2]. Suppose we are exposed to a visual field containing
two separate objects. Both objects are made of the same vi-
sual elements, horizontal and vertical contour bars, different
degrees of luminance, etc. What are then the neural correlates
of the identification of the two objects? We have one million
fibers connecting the retina to the visual cortex, through the
LGN. Each fiber results from the merging of approximately
100 retinal detectors (rods and cones) and as a result it has
its own receptive field. Each receptive field isolates a specific
detail of an object (e.g. a vertical bar). We thus split an image
into a mosaic of adjacent receptive fields.

Now the “feature binding” hypothesis consists of assuming
that all the cortical neurons whose receptive fields are point-
ing to a specific object synchronize the corresponding spikes,
and as a consequence the visual cortex organizes into separate
neuron groups oscillating on two distinct spike trains for the
two objects (Fig.1).

Direct experimental evidence of this synchronization is ob-
tained by insertion of microelectrodes in the cortical tissue of
animals just sensing the single neuron [2]. Indirect evidence
of synchronization has been reached for human beings as well,
by processing the EEG (electro-encephalo-gram) data [6].

Based on the neurodynamical facts reported above, we can
understand how this occurs [3]. The higher cortical stages
where synchronization takes place have two inputs. One
(bottom-up) comes from the sensory detectors via the early
stages which classify elementary features. This single input
is insufficient, because it would provide the same signal for
e.g. horizontal bars belonging indifferently to either one of
the two objects. However, as we said already, each neuron
is a nonlinear system passing close to a saddle point, and the
application of a suitable perturbation can stretch or shrink the
interval of time spent around the saddle, and thus lengthen or
shorten the interspike interval. The perturbation consists of
top-down signals corresponding to conjectures made by the
semantic memory (Fig.2).

In other words, the perception process is not like the pas-
sive imprinting of a camera film, but it is an active process
whereby the external stimuli are interpreted in terms of past
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FIG. 1: Feature binding: the lady and the cat are respectively repre-
sented by the mosaic of empty and filled circles, each one represent-
ing the receptive field of a neuron group in the visual cortex. Within
each circle the processing refers to a specific detail (e.g. contour
orientation). The relations between details are coded by the tempo-
ral correlation among neurons, as shown by the same sequences of
electrical pulses for two filled circles or two empty circles. Neurons
referring to the same individual (e.g. the cat) have synchronous dis-
charges, whereas their spikes are uncorrelated with those referring to
another individual (the lady) (from [2]).
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FIG. 2: ART = Adaptive Resonance Theory. Role of bottom-up
stimuli from the early visual stages an top-down signals due to ex-
pectations formulated by the semantic memory. The focal atten-
tion assures the matching (resonance) between the two streams (after
Julesz).

memories. A focal attention mechanism assures that a match-
ing is eventually reached. This matching consists of resonant
or coherent behavior between bottom-up and top-down sig-
nals. If matching does not occur, different memories are tried,
until the matching is realized. In presence of a fully new im-
age without memorized correlates, then the brain has to accept
the fact that it is exposed to a new experience.

Notice the advantage of this time dependent use of neurons,
which become available to be active in different perceptions
at different times, as compared to the computer paradigm of
fixed memory elements which store a specific object and are
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not available for others (the so called “grandmother neuron”
hypothesis).

II. HOMOCLINIC CHAOS, SYNCHRONIZATION AND
PROPENSITY

Let us model the neurodynamics of spike formation As for
the dynamics of the single neuron, a saddle point instability
separates in parameter space an excitable region, where ax-
ons are silent, from a periodic region, where the spike train
is periodic (equal interspike intervals). If a control parame-
ter is tuned at the saddle point, the corresponding dynamical
behavior (homoclinic chaos) consists of a frequent return to
the instability [7]. This manifests as a train of geometrically
identical spikes, which however occur at erratic times (chaotic
interspike intervals). Around the saddle point the system dis-
plays a large susceptibility to an external stimulus, hence it is
easily adjustable and prone to respond to an input, provided
this is at sufficiently low frequencies; this means that such
a system is robust against high frequency noise as discussed
later.

Such a type of dynamics has been recently dealt with in a
series of reports that here I recapitulate as the following chain
of linked facts.

1. A single spike in a 3D dynamics corresponds to a quasi-
homoclinic trajectory around a saddle focus SF (fixed
point with 1 (2) stable direction and 2 (1) unstable
ones); the trajectory leaves the saddle and returns to it
(Fig.3).We say “quasi-homoclinic” because, in order to
stabilize the trajectory away from SF, a second fixed
point, namely a saddle node SN, is necessary to assure
a heteroclinic connection. The experiment on a CO;
laser confirms this behavior(Fig.4)

2. A train of spikes corresponds to the sequential return to,
and escape from, the SF. A control parameter can be set
at a value BC for which this return is erratic (chaotic in-
terspike interval). As the control parameter is set above
or below Bc, the system moves from excitable (single
spike triggered by an input signal) to periodic (yield-
ing a regular sequence of spikes without need for an
input), with a frequency monotonically increasing with
the separation AB from B¢ [8].

3. Around SF, any tiny disturbance provides a large re-
sponse. Thus the homoclinic spike trains can be syn-
chronized by a periodic sequence of small disturbances
(Fig. 5). However each disturbance has to be applied
for a minimal time, below which it is no longer effec-
tive; this means that the system is insensitive to broad-
band noise, which is a random collection of fast positive
and negative signals [9].

4. The above considerations lay the floor for the use of mu-
tual synchronization as the most convenient way to let
different neurons respond coherently to the same stim-
ulus, organizing as a space pattern. In the case of a
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FIG. 3: Schematic view of the phase space trajectory approaching
the saddle S and escaping from it. Chaos is due to the shorter or
longer permanence around S; from a geometrical point of view most
of the orbit P provides a regular spike.
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FIG. 4: Experimental time series of the laser intensity for a CO,
laser with feedback in the regime of homoclinic chaos. (b) Time
expansion of a single orbit. (c) Phase space trajectory built by an
embedding technique with appropriate delays (from [7]).

single dynamical system, it can be fed back by its own
delayed signal. As the delay is long enough the system
is decorrelated with itself and this is equivalent to feed-
ing an independent system. This process allows to store
meaningful sequences of spikes as necessary for a short
term memory [10].

5. Several neuron models (integrate-and-fire, Hodgkin-
Huxley, FitzHugh-Nagumo, Hindmarsh-Rose ) have
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FIG. 5: Left: experimental time series for different synchronization
ratios induced by periodic changes of the control parameter. (a) 1:1
locking, (b) 1:2, (c) 1:3, (d) 2:1 . Right: when the system is not
able to spike for each period of the driver, a phase slip (one spike
less or more) occurs, it is a jump of +/- 2, if the interspike interval is
normalized to 2. The rate of +/- phase slips increases with the offset
of the driving frequency from the natural frequency (associated with
the average interspike interval of the free system).
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FIG. 6: The coherence parameter R is defined as the ratio between
the average ISI (interspike interval) and its r.m.s. fluctuation. R is
unity for a fully chaotic system and tends to infinity for a periodic
system. Here we plot in log scale the ratio between R for a driving
periodic disturbance of 1% to a control parameter and Rfree for the
free system, at different frequencies ® away from the natural one
o (average of the chaotic spiking in the unperturbed system); for
HC (circles) the ratio is 30 at gy and it goes up to 104 for higher
frequencies; for the Lorenz system(squares) the ratio stays flat to 1.
We thus take this ratio as a quantitative indicator of the propensity to
synchronization

been used by different investigators. We have intro-
duced the propensity to synchronization as a quantita-
tive indicator of how easy is for a chaotic system to
recognize an external input (Fig. 6) [11].

6. In presence of localized stimuli over a few neurons, the
corresponding disturbances propagate by inter-neuron
coupling (either excitatory or inhibitory); a synchro-
nized pattern is uniquely associated with each stimulus;
the degree of mutual synchronization is measured by
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the disappearance of phase slips, or defects in a space-
time fabric [12].

These facts have been established experimentally and con-
firmed by a convenient model in the case of a class B laser
with a feedback loop which readjusts the amount of losses de-
pending on the value of the light intensity output [13].

I here recall the classification widely accepted in laser
physics. Class A lasers are ruled by a single order parameter,
the amplitude of the laser field, which obeys a closed dynam-
ical equation; all the other variables having much faster decay
rate, thus adjusting almost instantly to the local field value.
Class B lasers are ruled by two order parameters, the laser
field and the material energy storage providing gain; the two
degrees of freedom having comparable characteristic times
and behaving as activator and inhibitor in chemical dynamics
[14].

The above listed facts hold in general for any dynamical
system which has a 3-dimensional sub-manifold separating a
region of excitability from a region of periodic oscillations:
indeed, this separatrix has to be a saddle focus.

III. TIME CODE IN NEURAL INFORMATION
EXCHANGE

How does a synchronized pattern of neuronal action po-
tentials become a relevant perception? Not only the different
receptive fields of the visual system, but also other sensory
channels as auditory, olfactory, etc. integrate via feature bind-
ing into a holistic perception. Its meaning is “decided” in the
PFC (pre-frontal cortex) which is a kind of arrival station from
the sensory areas and departure for signals going to the mo-
tor areas. On the basis of the perceived information, motor
actions are started, including linguistic utterances [6].

Sticking to the neurodynamical level, and leaving to psy-
chophysics the investigation of what goes on at higher levels
of organization, we stress here a fundamental temporal limi-
tation.

Taking into account that each spike lasts about 1 msec, that
the minimal interspike separation is 3 msec, and that the deci-
sion time at the PCF level is estimated to be 7 ~ 200 ms, we
can split T into 200 /3 ~ 66 bins of 3 msec duration, which are
designated by 1 or O depending on whether they have a spike
or not. Thus the a priori total number of different messages
which can be transmitted is:

200 ~6.101 .

However we must account also for the average rate at which
spikes proceed in our brain, which is r = 40 Hz (so called
Y band, < ISI > (average ISI) = 25 ms). When we account
for this rate we can evaluate a reduction factor o0 = % =0.54

where S is an entropy [15], thus there are roughly 25 ~ 10!
words with significant probability. Even though this number
is large, we are still within a finitistic realm. Provided we have
time enough to ascertain which one of the different messages
we are dealing with, we can classify it with the accuracy of a
digital processor, without residual error.
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But suppose we expose the cognitive agent to fast changing
scenes, for instance by presenting in sequence unrelated video
frames with a time separation less than 200 msec. While small
gradual changes induce the sense of motion as in movies,
big differences imply completely different subsequent spike
trains. Here any spike train gets interrupted after a duration
AT less than the canonical T. This means that the brain cannot
decide among all coded perceptions having the same structure
up to AT, but different afterwards.

Whenever we stop the perceptual task at AT shorter than
the total time, then the bin stretch T — AT (we measure the
times in bin units) is not explored. This means that all stimuli
which provide equal spike sequences up to AT, and differ af-
terwards by at least one spike will cover an uncertainty region
AP whose size is given by:

AP — 20LT27[XAT — PMefocATan , (1)
where Py =~ 10! is the maximum perceptual size available
with the chosen T ~ 66.6 bins per perceptual session and rate
r =40 Hz. Relation (1) is very different from the standard
uncertainty relation,

AP-AT =C , )

that we would expect in a word-bin space ruled by Fourier
transform relations.

Indeed, the trascendental equation (1) is more rapidly con-
verging at short and long AT than the hyperbola (2). We
fit (1) by (2) in the neighborhood of a small uncertainty
AP = 10words, which corresponds to AT = 62 bins. Around
AT = 62 bins the local uncertainty (2) yields a quantum con-
stant:

C=10-62 =620words - bins . 3)
To convert C into Js as Planck’s A, consider that:
1. 1bin=3 ms

2. in order to jump from an attractor corresponding to one
perception to a nearby one, a minimal amount of energy
is needed, corresponding to one spike; but one spike re-
quires the energy corresponding to about 107 transitions
ATP — ADP + P [16] each one taking 0.3 eV; thus the
total energy quantum is about 1074 joules. The con-
version factor is then:

C~10""1s~10h .

Quantum limitations were also put forward by Penrose [17]
but on a completely different basis. In his proposal, the
quantum character was attributed to the physical behavior of
the “microtubules” which are microscopic components of the
neurons playing a central role in the synaptic activity. How-
ever, speaking of quantum coherence at the & level in bio-
logical processes is not plausible, if one accounts for the ex-
treme vulnerability of any quantum system to decoherence
processes, which make quantum superposition effects observ-
able only in extremely controlled laboratory situations, and at
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sub-picosecond time ranges ,not relevant for synchronization
purposes in the 10 — 100 msec range.

Our tenet is that the quantum C-level in a living being
emerges from the limited time available in order to take vi-
tal decisions ;it is logically based on a non-commutative set
of relevant variables and hence it requires the logical machin-
ery built for the & quantum description of the microscopic
world where non-commutativity emerges from use of vari-
ables coming from macroscopic experience ,as coordinate and
momenta, to account for new facts.

A more precise consideration consists in classifying the
spike trains. Precisely, if we have a sequence of identical
spikes of unit area localized at erratic time positions T; then
the whole sequence is represented by:

f0)=Y8¢t—m), 4)
l

where T; is the set of position of the spikes. A temporal code,
based on the mutual position of successive spikes, depends on
the moments of the interspike interval distributions:

(ISI)] = (1 —‘C[,1) . 5

Different ISIs encode different sensory information.

A time ordering within the sequence (3) is established by
comparing the overlap of two signals as (3) mutually shifted
in time. Weighting all shifts with a phase factor and summing
up, this amounts to constructing a Wigner function [18]:

z .. .

Wito)=  f(t+5)- f(t—%)exp(i(m)d’c. ©6)

If now f is the sum of two packets f = f| + f> as in Fig. 8,
the frequency-time plot displays an intermediate interference.
Eq. (5) would provide interference whatever is the time sep-
aration between fi and f>. In fact, we know that the decision
time T truncates a perceptual task, thus we must introduce a

cutoff function g(t) = exp(—7z ) which transforms the Wigner
function as:
z

Feo T T .
W)= fli+3) flt-3)expliong(®dt . ()

In the quantum jargon, the brain physiology breaks the
quantum interference for t > T (decoherence phenomenon ).

IV. THE ROLE OF THE WIGNER FUNCTION IN BRAIN
OPERATIONS.

We have seen that feature binding in perceptual tasks im-
plies the mutual synchronization of axonal spike trains in neu-
rons which can be even far away and yet contribute to a well
defined perception by sharing the same pattern of spike se-
quence. The synchronization conjecture was given experi-
mental evidence by inserting several micro-electrodes probing
each one single neuron in the cortex of cats and then studying
the temporal correlation in response to specific visual inputs
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[2]. In the human case, indirect evidence is acquired by ex-
posing a subject to transient patterns and reporting the time-
frequency plots of the EEG signals [6]. Even though the space
resolution is poor, phase relations among EEG signals coming
from different cerebral areas at different times provide an in-
direct evidence of the synchronization mechanism.

The dynamics of homoclinic chaos (HC) was motivated by
phenomena observed in lasers and then explored in its math-
ematical aspects, which display strong analogies with the dy-
namics of many biological clocks ,in particular that of a model
. HC provides almost equal spikes occurring at variable time
positions and presents a region of high sensitivity to external
stimuli; perturbations arriving within the sensitivity window
induce easily a synchronization, either to an external stimulus
or to each other (mutual synchronization ) in the case of an ar-
ray of coupled HC individuals (from now on called neurons).

But who reads temporal information contained across syn-
chronized and oscillatory spike trains? [19].

In view of the above facts, we can model the encoding of
external information on a sensory cortical area (e.g. V1 in
the visual case) as a particular spike train assumed by an in-
put neuron directly exposed to the arriving signal and then
propagated by coupling through the array. As shown by the
experiments on feature binding [2], we must transform the lo-
cal time information provided by Eqs.(3) and (4) into a spatial
information which tells the amount of a cortical area which
is synchronized. If many sites have synchronized by mutual
coupling, then the read-out problem consists in tracking the
pattern of values (3), one for each site. Let us take for sim-
plicity a continuous site coordinate r. In case of two or more
different signals applied at different sites a competition starts
and we conjecture that the winning information (that is, the
one channeled to a decision center) corresponds to a “major-
ity rule”. Precisely, if the encoding layer is a 1-dimensional
chain of N coupled sites activated by external stimuli at the
two ends (i = 1 and i = N),the majority rule says that the pre-
vailing signal is that which has synchronized more sites.

The crucial question is then :who reads that information in
order to decide upon? We can not recur to some homunculus
who reads the synchronization state. Indeed, in order to be
made of physical components, the homunculus itself should
have some interpreter which would be a new homunculus, and
so on with a “regressio ad infinitum”.

On the other hand, it is well known that ,as we map the in-
terconnections in the vision system,V 1 exits through the Ver-
tical stream and the Dorsal stream toward the Inferotemporal
Cortex and Parietal Cortex respectively. The two streams con-
tain a series of intermediate layers characterized by increasing
receptive fields ; hence they are cascades of layers where each
one receives converging signals from two or more neurons of
the previous layer. Let us take for the time being this feed-
forward architecture as a network enabled to extract relevant
information upon which to drive consequent actions. We show
how this cascade of layers can localize the interface between
two domains corresponding to different synchronization. It is
well known that ON/OFF cells with a center-surround con-
figuration perform a first and second space derivative [5].
Suppose this operation was done at certain layer . At the suc-
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cessive one, as the converging process goes on, two signals
will converge on a simple cells which then performs a higher
order derivative, and so on. This way ,we build a power series
of space derivatives. A translated function as f(r+ &) is then
reconstructed by adding up many layers, as can be checked
by a Taylor expansion. Notice that the alternative of explor-
ing different neighborhoods & of r by varying & would imply
a moving pointer to be set sequentially at different positions,
and there is nothing like that in our physiology.

The next step consists in comparing the function f(r+ &)
with a suitable standard, to decide upon its value. Since there
are no metrological standards embedded in a living brain, such
a comparison must be done by comparing f with a shifted ver-
sion of itself, something like the product:

fr+8)-f(r=9) .

Such a product can be naturally be performed by converg-
ing the two signals f(r +&) onto the same neuron, exploit-
ing the nonlinear (Hebbian) response characteristic limited to
the lowest quadratic nonlinearity, thus taking the square of
the sum of the two converging inputs and isolating the double
product. This operation is completed by summing up the dif-
ferent contributions corresponding to different, with a kernel
which keeps track of the scanning over different &, keeping
information on different domain sizes. If this kernel were just
a constant, then we would retrieve a trivial average which can-
cels the & information.

Without loosing in generality, we adopt a Fourier kernel
exp(ikE) and hence have built the quantity:

Z .. e

W= fr— o) flrt D) exp(hOdE . @

It contains information on both the space position » around
which we are exploring the local behavior, as well as the fre-
quency k which is associated with the space resolution. As

well known, it contains the most complete information com-
patible with the Fourier uncertainty:

AxAk =1 . )

Notice that building a joint information on locality (x) and
resolution (k) by physical measuring operations implies such
an intrinsic limitation.

In summary, it appears that the Wigner function is the best
read-out of a synchronized layer that can be done by exploit-
ing natural machinery, rather than recurring to a homunculus.
The local value of the Wigner function represents a decision
to be sent to motor areas triggering a suitable action.

In order to have a suitable description of the feature binding
mechanism in terms of a Wigner function in time (at a single
site) and space (over an array of sites), we need an evolution
equation. But which are the physical objects whose evolution
describes the phenomenology? I conjecture that the transition
from decoupled to fully synchronized neurons is controlled by
the dynamics of defects (see Fig. 7). A preliminary treatment
of defects as harmonic oscillators is summarized in Fig. 9.
The total Hamiltonian then rules the evolution equation for
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Synchronization patterns in arrays of
homoclinic chaotic systems
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FIG. 7: Space-time representation of spike positions for a linear array
of 40 neurons and for different amounts of nearest neighbor coupling.
At € = 0.25 percolation has been reached, in the sense that spikes
at all sites are connected (besides a mutual time lag to the transfer
operation); at € = 0, no correlation at all among different sites; in
between, a partial synchronization with the evidence of defects as
phase slips (one spike more, or less, with respect to the neighbor
site)
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FIG. 8: Wigner distribution of two localized sinusoidal packets
shown at the top. Bottom :frequency-time representation of the levels
of the (real but not always positive!) Wigner function. The oscillat-
ing interference is centered at the middle time-frequency location.

the Wigner function and should provide a complete quantum
description.

The oscillating interference of Fig. 8 is crucial for quan-
tum computation. The reason why we don’t see it in ordinary
life is “decoherence”. Let us explain what we mean. If the
system under observation is affected by the environment, then
the two states of the superposition have a finite lifetime; how-
ever, even worse, the interference decays on a much shorter
time (the smaller, the bigger is the separation between the two
states): so while the separation is still manageable for the two
polarization states of a photon, it becomes too big for the two
states of a macroscopic quantum system. Precisely if we call
7; the intrinsic decay of each one of the two states of the super-
position, then the mutual interference in the Wigner function
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Dynamical model for a synclwonized HC array
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FIG. 9: A summary of the strategy to characterize the quantum as-
pects of the time code. Here x is an N-dimensional (N=6 for HC)
dynamical field depending on position 7. Its local dynamics is given
by the equation f(x). Furthermore, the space coupling of strength € is
given by the Laplacian. Linearizing the equation at parameter values
below the percolation threshold, Fourier transforming, and diagonal-
izing the linearized equation, we have harmonic oscillators. Their
coordinate and momenta do not commute, because of the funda-
mental energy-time uncertainty with the quantum constant C. From
the k—dependence of the oscillator amplitudes one reconstructs the
space features of the defects.
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decays with the so-called decoherence time:
/'c.
Tdec = H; s (10)

where D? is the square of the separation D in phase space be-
tween the centers of the Wigner functions of the two separate
states. Notice that, in microscopic physics, D? is measured in

units of h. Usually %zis much bigger than unity for a macro-
scopic system and hence T4 is so short that any reasonable
observation time is too long to detect a coherent superposi-
tion. Instead, in neurodynamics, we perform measurement
operations which are limited by the intrinsic sizes of space
and time resolutions peculiar of brain processes. The associ-
ated uncertainty constant C is such that it is very easy to have
arelation as (9) with D?/C comparable to unity, and hence su-
perposition lifetimes comparable to times of standard neural
processes. This implies the conjecture that for short times or
close cortical domains a massive parallelism typical of quan-
tum computation should be possible. The threshold readjust-
ment due to expectations arising from past memory acts as
an environmental disturbance, which orthogonalizes different
neural states, destroying parallelism.
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