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We consider two theorems formulated in the derivation of the Quantum Hamilton–Jacobi Equation from the
EP. The first one concerns the proof that the cocycle condition uniquely defines the Schwarzian derivative.
This is equivalent to show that the infinitesimal variation of the stress tensor “exponentiates” to the Schwarzian
derivative. The cocycle condition naturally defines the higher dimensional version of the Schwarzian derivative
suggesting a role in the transformation properties of the stress tensor in higher dimensional CFT. The other
theorem shows that energy quantization is a direct consequence of the existence of the quantum Hamilton–
Jacobi equation under duality transformations as implied by the EP.

I. HJ EQUATION AND COORDINATE
TRANSFORMATIONS

Let us consider the Hamilton–Jacobi (HJ) equation for a
one dimensional system. This is obtained by considering the
canonical transformation (q, p)→ (Q,P) leading to a vanish-
ing Hamiltonian

H̃ = 0 .

The old and new momenta are expressed in terms of the gen-
erating function of such a transformation, the Hamilton’s prin-
cipal function

p =
∂S cl

∂q
, P = cnst =−∂S cl

∂Q
|Q=cnst ,

that satisfies the classical HJ equation

H
(

q, p =
∂S cl

∂q
, t

)
+

∂S cl

∂t
= 0 .

In the case of a time independent potential the time depen-
dence in the Hamilton’s principal function S cl is linear, that
is

S cl(q,Q, t) = S cl
0 (q,Q)−Et ,

where E denotes the energy of the stationary state. It follows
that S cl

0 , called Hamilton’s characteristic function or reduced
action, satisfies the Classical Stationary HJ Equation (CSHJE)

H
(

q, p =
∂S cl

0
∂q

)
−E = 0 ,

that is (W (q)≡V (q)−E)

1
2m

(
∂S cl

0
∂q

)2

+W = 0 .

Following [1] we now consider a similar question to that
leading to the CSHJE but starting with

p =
∂S cl

0
∂q

,

rather than with p and q considered as independent vari-
ables. More precisely, given a one dimensional system, with
time–independent potential (the higher dimensional time–
dependent case is considered in [2]) we look for the coordi-
nate transformation q→ q0 such that

S cl
0 (q)

Coord. Trans f .←→ S̃ cl 0
0 (q0) , (1)

with S̃ cl 0
0 (q0) denoting the reduced action of the system with

vanishing Hamiltonian. Note that in (1) we required that this
transformation be an invertible one. This is important point
since by compositions of the maps it follows that if for each
system there is a coordinate transformation leading to the triv-
ial state, then even two arbitrary systems are equivalent under
coordinate transformations. Imposing this apparently harm-
less analogy immediately leads to rather peculiar properties of
Classical Mechanics (CM). First, it is clear that such an equiv-
alence principle cannot be satisfied in CM, in other words
given two arbitrary systems a and b, the condition

S cl b
0 (qb) = S cl a

0 (qa) , (2)

cannot be generally satisfied. In particular, since

S̃ cl 0
0 (q0) = cnst ,

it is clear that (1) is a degenerate transformation. However,
in principle, by itself the failure of (2) for arbitrary systems
would be a possible natural property. Nevertheless, a more
careful analysis shows that such a failure is strictly dependent
on the choice of the reference frame. This is immediately seen
by considering two free particles of mass ma and mb moving
with relative velocity v. For an observer at rest with respect to
the particle a the two reduced actions are

S cl a
0 (qa) = cnst , S cl b

0 (qb) = mbvqb .

It is clear that there is no way to have an equivalence under co-
ordinate transformations by setting S cl b

0 (qb) = Scl a
0 (qa). This

means that at the level of the reduced action there is no coordi-
nate transformation making the two systems equivalent. How-
ever, note that this coordinate transformation exists if we con-
sider the same problem described by an observer in a frame in
which both particles have a non–vanishing velocity so that the
two particles are described by non–constant reduced actions.
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Therefore, in CM, it is possible to connect different systems
by a coordinate transformation except in the case in which
one of the systems is described by a constant reduced action.
This means that in CM equivalence under coordinate trans-
formations is frame dependent. In particular, in the CSHJE
description there is a distinguished frame. This seems pecu-
liar as on general grounds what is equivalent under coordinate
transformations in all frames should remain so even in the one
at rest.

II. THE EQUIVALENCE POSTULATE

The above investigation already suggests that the concept
of point particle itself cannot be consistent with the equiva-
lence under coordinate transformations. In particular, it sug-
gests that the system where a particle is at rest does not exist at
all. If this would be the case, then the above critical situation
would not occur simply because the reduced action is never a
constant. This should reflect in two main features. First the
classical concept of point particle should be reconsidered, sec-
ondly the CSHJE should be modified accordingly. A natural
suggestion would be to consider particles as a kind of string
with a lower bound on the vibrating modes in such a way that
there is no way to define a system where the particle is at rest.
It should be observed that this kind of string may differ from
the standard one, rather its nature may be related to the fact
that in general relativity is impossible to define the concept of
relative stability of a system of particles.

We now start imposing the equivalence under coordinate
transformations. The key point is to consider, like in general
relativity, the (analogous of the) reduced action as a scalar
field under coordinate transformations.

We postulate that for any pair of one–particle states there
exists a field S0 such that

S b
0 (qb) = S a

0 (qa) , (3)

is well defined. We also require that in a suitable limit S0
reduces to S cl

0 . Eq.(3) can be considered as the scalar hypoth-
esis. Since the conjugate momentum is defined by

pi =
∂

∂qi S0(q) ,

it follows by (3) that the conjugate momenta pa and pb are
related by a coordinate transformation

pb
i = Λ j

i pa
j , (4)

where Λ j
i = ∂q j

a/∂qi
b. Note that we have the invariant

pb
i dqi

b = pa
i dqi

a . (5)

Since (3) holds for any pair of one–particle states, we have
DetΛ(q) 6= 0, ∀q.

The scalar hypothesis (3) implies that two one–particle
states are always connected by a coordinate transformation,
for such a reason we may equivalently consider (3) as im-
posing an Equivalence Postulate (EP). In particular, while in

arbitrary dimension the coordinate transformation is given by
imposing (4), in the one dimensional case the scalar hypothe-
sis immediately leads to

qb = S b
0
−1 ◦Sa

0(qa) .

We now consider the consequences of the EP (3). Let us de-
note by H the space of all possible W ≡V −E. We also call
v–transformations the ones leading from a system to another.
Eq.(3) is equivalent to require that

For each pair W a,W b ∈H , there is a v–transformation such
that

W a(q)−→W av(qv) = W b(qv) . (6)

This implies that there always exists the trivializing coordinate
q0 for which W (q)−→W 0(q0), where

W 0(q0)≡ 0 .

In particular, since the inverse transformation should exist as
well, it is clear that the trivializing transformation should be
locally invertible. We will also see that since classically W 0

is a fixed point, implementation of (6) requires that W states
transform inhomogeneously.

The fact that the EP cannot be consistently implemented in
CM is true in any dimension. To show this let us consider the
coordinate transformation induced by the identification

S cl v
0 (qv) = S cl

0 (q) . (7)

Then note that the CSHJE

1
2m

D

∑
k=1

(∂qk S cl
0 (q))2 +W (q) = 0 , (8)

provides a correspondence between W and S cl
0 that we can

use to fix, by consistency, the transformation properties of W
induced by that of S cl

0 . In particular, since S cl v
0 (qv) must sat-

isfy the CSHJE

1
2m

D

∑
k=1

(∂qk v S cl v
0 (qv))2 +W v(qv) = 0 , (9)

by (7) we have

∂S cl v
0 (qv)
∂qk v = Λ i

k
∂S cl

0 (q)
∂qi . (10)

Let us set (pv|p) = ptΛtΛp/pt p. By (8)–(10), we have
W (q)−→W v(qv) = (pv|p)W (q), so that

W 0(q0)−→W v(qv) = (pv|p0)W 0(q0) = 0 .

Thus we have [1]

W states transform as quadratic differentials under classical
v–maps. It follows that W 0 is a fixed point in H . Equiva-
lently, in CM the space H cannot be reduced to a point upon
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factorization by the classical v–transformations. Hence, the
EP (6) cannot be consistently implemented in CM. This can
be seen as the impossibility of implementing covariance of CM
under the coordinate transformation defined by (7).

It is therefore clear that in order to implement the EP we
have to deform the CSHJE. As we will see, this requirement
will determine the equation for S0.

In Ref.[1] the function T0(p), defined as the Legendre trans-
form of the reduced action, was introduced

T0(p) = qk pk−S0(q), S0(q) = pkqk−T0(p) .

While S0(q) is the momentum generating function, its Legen-
dre dual T0(p) is the coordinate generating function

pk =
∂S0

∂qk
, qk =

∂T0

∂pk
.

Note that adding a constant to S0 does not change the dynam-
ics. Then, the most general differential equation S0 should
satisfy has the structure

F (∇S0,∆S0, . . .) = 0 . (11)

Let us write down Eq.(11) in the general form

1
2m

D

∑
k=1

(∂qk S0(q))2 +W (q)+Q(q) = 0 .

The transformation properties of W +Q under the v–maps are
determined by the transformed equation

1
2m

D

∑
k=1

(∂qk v S v
0 (qv))2/2m+W v(qv)+Qv(qv) = 0 , (12)

so that

W v(qv)+Qv(qv) = (pv|p) [W (q)+Q(q)] . (13)

A basic guidance in deriving the differential equation for
S0 is that in some limit it should reduce to the CSHJE. In
[1][2][3] it was shown that the parameter which selects the
classical phase is the Planck constant. Therefore, in determin-
ing the structure of the Q term we have to take into account
that in the classical limit

lim
~→0

Q = 0 . (14)

The only possibility to reach any other state W v 6= 0 start-
ing from W 0 is that it transforms with an inhomogeneous
term. Namely as W 0 −→ W v(qv) 6= 0, it follows that for an
arbitrary W a state

W v(qv) = (pv|pa)W a(qa)+(qa;qv) , (15)

and by (13)

Qv(qv) = (pv|pa)Qa(qa)− (qa;qv) . (16)

Let us stress that the purely quantum origin of the inhomoge-
neous term (qa;qv) is particularly transparent once one con-
sider the compatibility between the classical limit (14) and
the transformation properties of Q in Eq.(16).

The W 0 state plays a special role. Actually, setting W a =
W 0 in Eq.(15) yields

W v(qv) = (q0;qv) ,

so that, according to the EP (6), all the states correspond to
the inhomogeneous part in the transformation of the W 0 state
induced by some v–map.

Let us denote by a,b,c, . . . different v–transformations.
Comparing

W b(qb) = (pb|pa)W a(qa)+(qa;qb) = (q0;qb) , (17)

with the same formula with qa and qb interchanged we have

(qb;qa) =−(pa|pb)(qa;qb) , (18)

in particular (q;q) = 0 More generally, imposing the commu-
tative diagram of maps

A
↗

B

−→
↘

C

that is comparing

W b(qb) = (pb|pc)W c(qc)+(qc;qb) =

(pb|pa)W a(qa)+(pb|pc)(qa;qc)+(qc;qb) ,

with (17) we obtain the basic cocycle condition

(qa;qc) = (pc|pb) [(qa;qb)+(qb;qc)] , (19)

which expresses the essence of the EP. In the one dimensional
case we have

(qa;qc) = (∂qcqb)
2 (qa;qb)+(qb;qc) . (20)

It is well–known that this is satisfied by the Schwarzian deriv-
ative. However, it turns out that it is essentially the unique
solution. More precisely, we have [1]

Theorem 1. Eq.(20) defines the Schwarzian derivative up to
a multiplicative constant and a coboundary term.

Since the differential equation for S0 should depend only on
∂k

qS0, k≥ 1, it follows that the coboundary term must be zero,
so that [1]

(qa;qb) =− β2

4m
{qa,qb} ,

where { f (q),q} = f ′′′/ f ′ − 3( f ′′/ f ′)2/2 is the Schwarzian
derivative and β is a nonvanishing constant that we identify



Marco Matone 319

with ~. As a consequence, S0 satisfies the Quantum Station-
ary Hamilton–Jacobi Equation (QSHJE) [1]

1
2m

(
∂S0(q)

∂q

)2

+V (q)−E +
~2

4m
{S0,q}= 0 . (21)

ψ = S ′0
−1/2

(
Ae−

i
~ S0 +Be

i
~ S0

)
solves the Schrödinger Equa-

tion (SE)
(
− ~

2

2m
∂2

∂q2 +V
)

ψ = Eψ . (22)

The ratio w = ψD/ψ of two real linearly independent solutions
of (22) is, in deep analogy with uniformization theory, the
trivializing map transforming any W to W 0 ≡ 0 [1][4]. This
formulation, proposed in collaboration with Faraggi, extends
to higher dimension and to the relativistic case as well [1][2].

Let q−/+ be the lowest/highest q for which W (q) changes
sign, we have [1]

Theorem 2. If

V (q)−E ≥
{

P2− > 0, q < q− ,
P2

+ > 0, q > q+ ,
(23)

then w is a local self–homeomorphism of R̂= R∪{∞} if and
only if Eq.(22) has an L2(R) solution.

The crucial consequence is that since the QSHJE is defined
if and only if w is a local self–homeomorphism of R̂, it fol-
lows that the QSHJE implies by itself energy quantization.
We stress that this result is obtained without any probabilistic
interpretation of the wave function.

III. PROOF OF THEOREM 1

The main steps in proving theorem 1 are two lemmas [1].
Let us start observing that if the cocycle condition (20) is
satisfied by ( f (q);q), then this is still satisfied by adding a
coboundary term

( f (q);q)−→ ( f (q);q)+(∂q f )2G( f (q))−G(q) . (24)

Since (Aq;q) evaluated at q = 0 is independent of A, we have

0 = (q;q) = (q;q)|q=0 = (Aq;q)|q=0 . (25)

Therefore, if both ( f (q);q) and (24) satisfy (20), then G(0) =
0, which is the unique condition that G should satisfy. We now
use (11) to fix the ambiguity (24). First of all observe that the
differential equation we are looking for is

(q0;q) = W (q) . (26)

Then, recalling that q0 = S 0−1

0 ◦S0(q), we see that a necessary
condition to satisfy (11) is that (q0;q) depends only on the first
and higher derivatives of q0. This in turn implies that for any

constant B we have (qa +B;qb) = (qa;qb) that, together with
(18), gives

(qa +B;qb) = (qa;qb) = (qa;qb +B) . (27)

Let A be a non–vanishing constant and set h(A,q) = (Aq;q).
By (27) we have h(A,q + B) = h(A,q), that is h(A,q) is in-
dependent of q. On the other hand, by (25) h(A,0) = 0 that,
together with (18), implies

(Aq;q) = 0 = (q;Aq) . (28)

Eq.(20) implies (qa;Aqb) = A−2((qa;qb)− (Aqb;qb)), so that
by (28)

(qa;Aqb) = A−2(qa;qb) . (29)

By (18) and (29) we have

(Aqa;qb) =−A−2(∂qb qa)2(qb;Aqa)

=−(∂qb qa)2(qb;qa) = (qa;qb) ,

that is

(Aqa;qb) = (qa;qb) . (30)

Setting f (q) = q−2(q;q−1) and noticing that by (18) and (30)
f (Aq) =− f (q−1), we obtain

(q;q−1) = 0 = (q−1;q) . (31)

Furthermore, since by (20) and (31) one has (qa;q−1
b ) =

q4
b(qa;qb), it follows that

(q−1
a ;qb) =−(

∂qb q−1
a

)2
(qb;q−1

a )

=−(
∂qb qa

)2 (qb;qa) = (qa;qb) ,

so that

(q−1
a ;qb) = (qa;qb) = q−4

b (qa;q−1
b ) . (32)

Since translations, dilatations and inversion are the generators
of the Möbius group, it follows by (27)(29)(30) and (32) that

Lemma 1.Up to a coboundary term, Eq.(20) implies

(γ(qa);qb) = (qa;qb) ,

(qa;γ(qb)) =
(
∂qbγ(qb)

)−2 (qa;qb) ,

where γ(q) is an arbitrary PSL(2,C) transformation.

Now observe that since (qa;qb) should depend only on
∂k

qb
qa, k ≥ 1, we have

(q+ ε f (q);q) = c1ε f (k)(q)+O(ε2) , (33)
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where qa = q+ε f (q), q≡ qb and f (k) ≡ ∂k
q f , k≥ 1. Note that

by lemma 1 and (33)

(Aq+ εA f (q);Aq) = (q+ ε f (q);Aq) =

= A−2(q+ ε f (q);q) = A−2c1ε f (k)(q)+O(ε2) , (34)

on the other hand, setting F(Aq) = A f (q), by (33)

(Aq+ εA f (q);Aq) = (Aq+ εF(Aq);Aq) =

= c1ε∂k
AqF(Aq)+O(ε2) = A1−kc1ε f (k)(q)+O(ε2) ,

that compared with (34) gives k = 3. The above scaling prop-
erty generalizes to higher order contributions in ε. In partic-
ular, at order εn the quantity (Aq + εA f (q);Aq) is a sum of
terms of the form

ci1...in ∂i1
AqεF(Aq) · · ·∂in

AqεF(Aq) =

= ci1...inεnAn−∑ ik f (i1)(q) · · · f (in)(q) ,

and by (34) ∑n
k=1 ik = n+2. On the other hand, since (qa;qb)

depends only on ∂k
qb

qa, k ≥ 1, we have

ik ≥ 1 , k ∈ [1,n] ,

so that either

ik = 3 , i j = 1 , j ∈ [1,n] , j 6= k ,

or

ik = i j = 2 , il = 1 , l ∈ [1,n] , l 6= k, l 6= j .

Hence

(q+ ε f (q);q) =

∞

∑
n=1

εn
(

cn f (3) f (1)n−1
+dn f (2)2

f (1)n−2
)

, d1 = 0 . (35)

Let us now consider the transformations

qb = vba(qa) , qc = vcb(qb) = vcb ◦ vba(qa) , qc = vca(qa) .

Note that vab = vba−1
, and

vca = vcb ◦ vba . (36)

We can express these transformations in the form

qb = qa + εba(qa) ,

qc = qb + εcb(qb) = qb + εcb(qa + εba(qa)) , (37)

qc = qa + εca(qa) .

Since qb = qa− εab(qb), we have qb = qa− εab(qa + εba(qa))
that compared with qb = qa + εba(qa) yields

εba + εab ◦ (1+ εba) = 0 ,

where 1 denotes the identity map. More generally, Eq.(37)
gives

εca(qa) = εcb(qb)+ εba(qa) = εcb(qb)− εab(qb) ,

so that we obtain (36) with vyx = 1+ εyx

εca = εcb ◦ (1+ εba)+ εba = (1+ εcb)◦ (1+ εba)−1 . (38)

Let us consider the case in which εyx(qx) = ε fyx(qx), with ε
infinitesimal. At first–order in ε Eq.(38) reads

εca = εcb + εba , (39)

in particular, εab = −εba. Since (qa;qb) = c1εab′′′(qb) +
Oab(ε2), where ′ denotes the derivative with respect to the ar-
gument, we can use the cocycle condition (20) to get

c1εac′′′(qc)+Oac(ε2) = (1+ εbc′(qc))2

×
(

c1εab′′′(qb)+Oab(ε2)− c1εcb′′′(qb)−Ocb(ε2)
)

, (40)

that at first–order in ε corresponds to (39). We see that c1 6= 0.
For, if c1 = 0, then by (40), at second–order in ε one would
have

Oac(ε2) = Oab(ε2)−Ocb(ε2) , (41)

which contradicts (39). In fact, by (35) we have

Oab(ε2) = c2εab′′′(qb)εab′(qb)+d2εab′′2(qb)+Oab(ε3) ,

that together with (41) provides a relation which cannot be
consistent with εac(qc) = εab(qb)− εcb(qb). A possibility is
that (qa;qb) = 0. However, this is ruled out by the EP, so that

c1 6= 0 .

Higher–order contributions due to a non–vanishing c1 are ob-
tained by using

qc = qb + εcb(qb) , εac(qc) = εab(qb)− εcb(qb) ,

and εbc(qc) =−εcb(qb) in c1∂3
qcεac(qc) and in

c1

(
2∂qcεbc(qc)+∂qcεbc(qc)

2
)

∂3
qb

(
εab(qb)− εcb(qb)

)
.

Note that one can also consider the case in which both the
first– and second–order contributions to (qa;qb) are vanishing.
However, this possibility is ruled out by a similar analysis. In
general, one has that if the first non–vanishing contribution to
(qa;qb) is of order εn, n ≥ 2, then, unless (qa;qb) = 0, the
cocycle condition (20) cannot be consistent with the linearity
of (39). Observe that we proved that c1 6= 0 is a necessary
condition for the existence of solutions (qa;qb) of the cocycle
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condition (20), depending only on the first and higher deriva-
tives of qa. Existence of solutions follows from the fact that
the Schwarzian derivative {qa,qb} solves (20) and depends
only on the first and higher derivatives of qa.

The fact that c1 = 0 implies (qa;qb) = 0, can be also seen
by explicitly evaluating the coefficients cn and dn. These can
be obtained using the same procedure considered above to
prove that c1 6= 0. Namely, inserting the expansion (35) in
(20) and using qc = qb + εcb(qb), εac(qc) = εab(qb)− εcb(qb)
and εbc(qc) =−εcb(qb), we obtain

cn = (−1)n−1c1 , dn =
3
2
(−1)n−1(n−1)c1 , (42)

which in fact are the coefficients one obtains expanding
c1{q + ε f (q),q}. However, we now use only the fact that
c1 6= 0, as the relation (q+ε f (q);q) = c1{q+ε f (q),q} can be
proved without making the calculations leading to (42). Sum-
marizing, we have

Lemma 2.If

qa = qb + εab(qb) ,

the unique solution of Eq.(20), depending only on the first and
higher derivatives of qa, is

(qa;qb) = c1εab′′′(qb)+Oab(ε2) , c1 6= 0 .

It is now easy to prove that, up to a multiplicative con-
stant and a coboundary term, the Schwarzian derivative is the
unique solution of the cocycle condition (20). Let us first note
that

[qa;qb] = (qa;qb)− c1{qa;qb} ,

satisfies the cocycle condition

[qa;qc] = (∂qcqb)
2 ([qa;qb]− [qc;qb]) .

In particular, since both (qa;qb) and {qa;qb} depend only on
the first and higher derivatives of qa, we have, as in the case
of (q+ ε f (q);q), that

[q+ ε f (q);q] = c̃1ε f (3)(q)+O(ε2) ,

where either c̃1 6= 0 or [q+ε f (q);q] = 0. However, since {q+
ε f (q);q}= ε f (3)(q)+ O(ε2) and (q+ ε f (q);q) = ε f (3)(q)+
O(ε2), we have c̃1 = 0 and the Lemma yields [q+ ε f (q);q] =
0. Therefore, we have that the EP univocally implies that

(qa;qb) =− β2

4m
{qa,qb} ,

where for convenience we replaced c1 by −β2/4m. This con-
cludes the proof of theorem 1.

We observe that despite some claims [5][6], we have not
be able to find in the literature a complete and close proof of
the above theorem. We thank D.B. Fuchs for a bibliographic
comment concerning the above theorem.

In deriving the equivalence of states we considered the case
of one–particle states with identical masses. The generaliza-
tion to the case with different masses is straightforward. In
particular, the right hand side of Eq.(20) gets multiplied by
mb/ma, so that the cocycle condition becomes

ma(qa;qc) = ma (∂qcqb)
2 (qa;qb)+mb(qb;qc) ,

explicitly showing that the mass appears in the denominator
and that it refers to the label in the first entry of (· ; ·), that is

(qa;qb) =− ~2

4ma
{qa;qb} . (43)

The QSHJE (21) follows almost immediately by (43) [1].
The above investigation may be applied to CFT. Let us con-

sider a local conformal transformation of the stress tensor in a
2D CFT. The infinitesimal variation of T is given by

δεT (w) =− 1
12

c∂3
wε(w)−2T (w)∂wε(w)− ε(w)∂wT (w) ,

(44)
where c is the central charge. The finite version of such a
transformation is

T̃ (w) = (∂wz)2T (z)+
c

12
{w,z} . (45)

While it is immediate to see that (45) implies (44), the vicev-
ersa is not evident. A possible way to prove (45) is just to
set

T̃ (w) = (∂wz)2T (z)+ k(w;z) , (46)

and then to impose the cocycle condition which will show that
(w;z) is proportional to {w,z}. Comparison with the infinites-
imal transformation (44) fixes the constant k.

In [2] it has been shown that the cocycle condition fixes the
higher dimensional version of the Schwarzian derivative. In
this respect we observe that its definition seems an open ques-
tion in mathematical literature. While in the one dimensional
case the QSHJE reduces to a unique differential equation, this
is not immediate in the higher dimensional case. However,
it turns out that such a reduction exists upon introducing an
antisymmetric tensor [2] (in this respect it is worth noticing
that some author introduces a connection to define the higher
dimensional Schwarzian derivative).

A basic feature of the cocycle condition is that it implies,
as it should, the higher dimensional Möbious invariance with
respect to qa in (qa;qb) (with similar properties with respect
to qb). In particular, in [2] it has been shown that

(qa;qb) =− ~
2

2m

[
(pb|pa)

∆aRa

Ra − ∆bRb

Rb

]
. (47)

It would be interesting to consider such a definition in the
context of the transformation properties of the stress tensor
in higher dimensional CFTs.
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IV. PROOF OF THEOREM 2

The QSHJE is equivalent to

{w,q}=−4m
~2 W (q) , (48)

where w = ψD/ψ with ψD and ψ two real linearly independent
solutions of the Schrödinger equation. Existence of this equa-
tion requires some conditions on the continuity properties of
w and its derivatives. Since the QSHJE is the consequence of
the EP, we can say that the EP imposes some constraints on
w = ψD/ψ. These constraints are nothing but the existence of
the QSHJE (21) or, equivalently, of Eq.(48). That is, imple-
mentation of the EP imposes that {w,q} exists, so that

w 6= cnst, w ∈C2(R), and ∂2
qw di f f erent. on R . (49)

These conditions are not complete. The reason is that, as
we have seen, the implementation of the EP requires that the
properties of the Schwarzian derivative be satisfied. Actually,
its very properties, derived from the EP, led to the identifica-
tion (qa;qb) =−~2{qa,qb}/4m. Therefore, in order to imple-
ment the EP the transformation properties of the Schwarzian
derivative and its symmetries must be satisfied. In deriving
the transformation properties of (qa;qb) we noticed how, be-
sides dilatations and translations, there is a highly non–trivial
symmetry such as that under inversion. Therefore, we have
that (48) must be equivalent to

{w−1,q}=−4m
~2 W (q) .

A property of the Schwarzian derivative is duality between its
entries

{w,q}=−
(

∂w
∂q

)2

{q,w} . (50)

This shows that the invariance under inversion of w reflects in
the invariance, up to a Jacobian factor, under inversion of q.
That is {w,q−1} = q4{w,q}, so that the QSHJE (48) can be
written in the equivalent form

{w,q−1}=−4m
~2 q4W (q) . (51)

In other words, starting from the EP one can arrive to either
Eq.(48) or Eq.(51). The consequence of this fact is that since
under

q→ 1
q

,

0± maps to ±∞, we have to extend (49) to the point at infin-
ity. In other words, (49) should hold on the extended real line
R̂=R∪{∞}. This aspect is related to the fact that the Möbius
transformations, under which the Schwarzian derivative trans-
forms as a quadratic differential, map circles to circles. We
stress that we are considering the systems defined on R and
not R̂. What happens is that the existence of QSHJE forces

us to impose smoothly joining conditions even at ±∞, that is
(49) must be extended to

w 6= cnst, w ∈C2(R̂), and ∂2
qw di f f erent. on R̂ . (52)

One may easily check that w is a Möbius transformation of
the trivializing map [1]. Therefore, Eq.(50), which is defined
if and only if w(q) can be inverted, that is if ∂qw 6= 0, ∀q ∈ R,
is a consequence of the cocycle condition (19). By (51) we
see that also local univalence should be extended to R̂. This
implies the following joining condition at spatial infinity

w(−∞) =
{

w(+∞) , f or w(−∞) 6=±∞ ,
−w(+∞) , f or w(−∞) =±∞ .

(53)

As illustrated by the non–univalent function w = q2, the ap-
parently natural choice w(−∞) = w(+∞), one would consider
also in the w(−∞) = ±∞ case, does not satisfy local univa-
lence.

We saw that the EP implied the QSHJE (21). However,
although this equation implies the SE, we saw that there are
aspects concerning the canonical variables which arise in con-
sidering the QSHJE rather than the SE. In this respect a nat-
ural question is whether the basic facts of QM also arise in
our formulation. A basic point concerns a property of many
physical systems such as energy quantization. This is a matter
of fact beyond any interpretational aspect of QM. Then, as we
used the EP to get the QSHJE, it is important to understand
how energy quantization arises in our approach. According to
the EP, the QSHJE contains all the possible information on a
given system. Then, the QSHJE itself should be sufficient to
recover the energy quantization including its structure. In the
usual approach the quantization of the spectrum arises from
the basic condition that in the case in which limq→±∞ W > 0,
the wave–function should vanish at infinity. Once the pos-
sible solutions are selected, one also imposes the continuity
conditions whose role in determining the possible spectrum
is particularly transparent in the case of discontinuous poten-
tials. For example, in the case of the potential well, besides
the restriction on the spectrum due to the L2(R) condition for
the wave–function (a consequence of the probabilistic inter-
pretation of the wave–function), the spectrum is further re-
stricted by the smoothly joining conditions. Since the SE con-
tains the term ∂2

qψ, the continuity conditions correspond to
an existence condition for this equation. On the other hand,
also in this case, the physical reason underlying this request
is the interpretation of the wave–function in terms of prob-
ability amplitude. Actually, strictly speaking, the continuity
conditions come from the continuity of the probability density
ρ = |ψ|2. This density should also satisfy the continuity equa-
tion ∂tρ+∂q j = 0, where j = i~(ψ∂qψ̄−ψ̄∂qψ)/2m. Since for
stationary states ∂tρ = 0, it follows that in this case j = cnst.
Therefore, in the usual formulation, it is just the interpreta-
tion of the wave–function in terms of probability amplitude,
with the consequent meaning of ρ and j, which provides the
physical motivation for imposing the continuity of the wave–
function and of its first derivative.

Now observe that in our formulation the continuity condi-
tions arise from the QSHJE. In fact, (52) implies continuity of
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ψD, ψ, with ∂qψD and ∂qψ differentiable, that is

EP → (ψD,ψ) cont. and (ψD′ ,ψ′) di f f erent. . (54)

In the following we will see that if V (q) > E, ∀q ∈ R, then
there are no solutions such that the ratio of two real linearly
independent solutions of the SE corresponds to a local self–
homeomorphism of R̂. The fact that this is an unphysical sit-
uation can be also seen from the fact that the case V > E,
∀q∈R, has no classical limit. Therefore, if V > E both at−∞
and +∞, a physical situation requires that there are at least
two points where V −E = 0. More generally, if the potential
is not continuous, V (q)−E should have at least two turning
points. Let us denote by q− (q+) the lowest (highest) turning
point. Note that by (23) we have

Z −∞

q−
dxκ(x) =−∞,

Z +∞

q+
dxκ(x) = +∞ ,

where κ =
√

2m(V −E)/~. Before going further, let us stress
that what we actually need to prove is that, in the case (23), the
joining condition (53) requires that the corresponding SE has
an L2(R) solution. Observe that while (52), which however
follows from the EP, can be recognized as the standard condi-
tion (54), the other condition (53), which still follows from the
existence of the QSHJE, and therefore from the EP, is not di-
rectly recognized in the standard formulation. Since this leads
to energy quantization, while in the usual approach one needs
one more assumption, we see that there is a quite fundamental
difference between the QSHJE and the SE. We stress that (52)
and (53) guarantee that w is a local self–homeomorphism of
R̂.

Let us first show that the request that the corresponding SE
has an L2(R) solution is a sufficient condition for w to satisfy
(53). Let ψ ∈ L2(R) and denote by ψD a linearly independent
solution. As we will see, the fact that ψD 6∝ ψ implies that if
ψ ∈ L2(R), then ψD /∈ L2(R). In particular, ψD is divergent
both at q =−∞ and q = +∞. Let us consider the real ratio

w =
AψD +Bψ
CψD +Dψ

,

where AD−BC 6= 0. Since ψ ∈ L2(R), we have

lim
q→±∞

w = lim
q→±∞

AψD +Bψ
CψD +Dψ

=
A
C

, (55)

that is w(−∞) = w(+∞). In the case in which C = 0 we have

lim
q→±∞

w = lim
q→±∞

AψD

Dψ
=±ε ·∞ ,

where ε = ±1. The fact that limq→±∞ AψD/Dψ diverges
follows from the mentioned properties of ψD and ψ. It
remains to check that if limq→−∞ AψD/Dψ = −∞, then
limq→+∞ AψD/Dψ = +∞, and vice versa. This can be seen
by observing that

ψD(q) = cψ(q)
Z q

q0

dxψ−2(x)+dψ(q) ,

c ∈ R\{0}, d ∈ R. Since ψ ∈ L2(R) we have ψ−1 6∈
L2(R) and

R +∞
q0

dxψ−2(x) = +∞,
R −∞

q0
dxψ−2(x) = −∞, so

that ψD(−∞)/ψ(−∞) = −ε ·∞ = −ψD(+∞)/ψ(+∞), where
ε = sgnc.

We now show that the existence of an L2(R) solution of
the SE is a necessary condition to satisfy the joining condition
(53). We give two different proofs of this, one is based on
the WKB approximation while the other one uses Wronskian
arguments. In the WKB approximation, we have

ψ =
A−√

κ
e−

R q
q− dxκ(x) +

B−√
κ

e
R q

q− dxκ(x)
, q¿ q− , (56)

and

ψ =
A+√

κ
e−

R q
q+ dxκ(x) +

B+√
κ

e
R q

q+ dxκ(x)
, qÀ q+ . (57)

In the same approximation, a linearly independent solution
has the form

ψD =
AD−√

κ
e−

R q
q− dxκ(x) +

BD−
κ

e
R q

q− dxκ(x)
, q¿ q− .

Similarly, in the qÀ q+ region we have

ψD =
AD

+√
κ

e−
R q

q+ dxκ(x) +
BD

+√
κ

e
R q

q+ dxκ(x)
, qÀ q+ .

Note that (56) and (57) are derived by solving the dif-
ferential equations corresponding to the WKB approxima-
tion for q ¿ q− and q À q+, so that the coefficients of
κ−1/2 exp±R q

q− dxκ(x), e.g. A− and B− in (56), cannot be si-
multaneously vanishing. In particular, the fact that ψD 6∝ ψ
yields

A−BD
−−AD

−B− 6= 0 , A+BD
+−AD

+B+ 6= 0 . (58)

Let us now consider the case in which, for a given E satisfying
(23), any solution of the corresponding SE diverges at least at
one of the two spatial infinities, that is

lim
q→+∞

(|ψ(−q)|+ |ψ(q)|) = +∞ . (59)

This implies that there is a solution diverging both at q =
−∞ and q = +∞. In fact, if two solutions ψ1 and ψ2 sat-
isfy ψ1(−∞) = ±∞, ψ1(+∞) 6= ±∞ and ψ2(−∞) 6= ±∞,
ψ2(+∞) = ±∞, then ψ1 + ψ2 diverges at ±∞. On the other
hand, (58) rules out the case in which all the solutions in their
WKB approximation are divergent only at one of the two spa-
tial infinities, say−∞. Since, in the case (23), a solution which
diverges in the WKB approximation is itself divergent (and
vice versa), we have that in the case (23), the fact that all the
solutions of the SE diverge only at one of the two spatial in-
finities cannot occur.

Let us denote by ψ a solution which is divergent both at−∞
and +∞. In the WKB approximation this means that both A−
and B+ are non–vanishing, so that

ψ ∼
q→−∞

A−√
κ

e−
R q

q− dxκ
, ψ ∼

q→+∞
B+√

κ
e
R q

q+ dxκ
.



324 Brazilian Journal of Physics, vol. 35, no. 2A, June, 2005

The asymptotic behavior of the ratio ψD/ψ is given by

lim
q→−∞

ψD

ψ
=

AD−
A−

, lim
q→+∞

ψD

ψ
=

BD
+

B+
.

Note that since in the case at hand any divergent solution also
diverges in the WKB approximation, we have that (59) rules
out the case AD− = BD

+ = 0. Let us then suppose that either
AD− = 0 or BD

+ = 0. If AD− = 0, then w(−∞) = 0 6= w(+∞).
Similarly, if BD

+ = 0, then w(+∞) = 0 6= w(−∞). Hence, in
this case w, and therefore the trivializing map, cannot satisfy
(53). On the other hand, also in the case in which both AD−
and BD

+ are non–vanishing, w cannot satisfy Eq.(53). For, if
AD−/A− = BD

+/B+, then

φ = ψ− A−
AD−

ψD = ψ− B+

BD
+

ψD ,

would be a solution of the SE whose WKB approximation has
the form

φ =
B−√

κ
e
R q

q− dxκ(x)
, q¿ q− ,

and

φ =
A+√

κ
e−

R q
q+ dxκ(x)

, qÀ q+ .

Hence, if AD−/A− = BD
+/B+, then there is a solution whose

WKB approximation vanishes both at −∞ and +∞. On the
other hand, we are considering the values of E satisfying
Eq.(23) and for which any solution of the SE has the prop-
erty (59). This implies that no solutions can vanish both at
−∞ and +∞ in the WKB approximation. Hence

AD−
A−

6= BD
+

B+
,

so that w(−∞) 6= w(+∞). We also note that not even the case
w(−∞) =±∞ =−w(+∞) can occur, as this would imply that
A− = B+ = 0, which in turn would imply, against the hypoth-
esis, that there are solutions vanishing at q = ±∞. Hence, if
for a given E satisfying (23), any solution of the correspond-
ing SE diverges at least at one of the two spatial infinities, we
have that the trivializing map has a discontinuity at q = ±∞.
As a consequence, the EP cannot be implemented in this case
so that this value E cannot belong to the physical spectrum.

Therefore, the physical values of E satisfying (23) are those
for which there are solutions which are divergent neither at
−∞ nor at +∞. On the other hand, from the WKB approx-
imation and (23), it follows that the non–divergent solutions
must vanish both at −∞ and +∞. It follows that the only en-
ergy levels satisfying the property (23), which are compat-
ible with the EP, are those for which there exists the solu-
tion vanishing both at ±∞. On the other hand, solutions van-
ishing as κ−1/2 exp

R q
q− dxκ at −∞ and κ−1/2 exp−R q

q+
dxκ at

+∞, with P2± > 0, cannot contribute with an infinite value toR +∞
−∞ dxψ2(x). The reason is that existence of the QSHJE re-

quires that {e
2i
~ S0 ,q} be defined and this, in turn, implies that

any solution of the SE must be continuous. On the other hand,
since ψ is continuous, and therefore finite also at finite values
of q, we have

R qb
qa

dxψ2(x) < +∞ for all finite qa and qb. In
other words, the only possibility for a continuous function to
have a divergent value of

R +∞
−∞ dxψ2(x) comes from its behav-

ior at ±∞. Therefore, since the implementation of the EP in
the case (23) requires that the corresponding E should admit
a solution with the behavior

ψ ∼
q→−∞

A−√
κ

e
R q

q− dxκ
, ψ ∼

q→+∞
B+√

κ
e−

R q
q+ dxκ

,

we have the following basic fact

The values of E satisfying

V (q)−E ≥
{

P2− > 0, q < q− ,
P2

+ > 0, q > q+ ,
(60)

are physically admissible if and only if the corresponding SE
has an L2(R) solution.

We now give another proof of the fact that if W is of the
type (60), then the corresponding SE must have an L2(R) so-
lution in order to satisfy (53). In particular, we will show that
this is a necessary condition. That this is sufficient has been
already proved above.

By Wronskian arguments, which can be found in Messiah’s
book [7], imply that if V (q)−E ≥ P2

+ > 0, q > q+, then as
q→+∞, we have (P+ > 0)

– There is a solution of the SE that vanishes at least as
e−P+q.

– Any other linearly independent solution diverges at
least as eP+q.

Similarly, if V (q)−E ≥ P2− > 0, q < q−, then as q→−∞, we
have (P− > 0)

– There is a solution of the SE that vanishes at least as
eP−q.

– Any other linearly independent solution diverges at
least as e−P−q.

These properties imply that if there is a solution of the SE in
L2(R), then any solution is either in L2(R) or diverges both at
−∞ and +∞. Let us show that the possibility that a solution
vanishes only at one of the two spatial infinities is ruled out.
Suppose that, besides the L2(R) solution, which we denote
by ψ1, there is a solution ψ2 which is divergent only at +∞.
On the other hand, the above properties show that there exists
also a solution ψ3 which is divergent at−∞. Since the number
of linearly independent solutions of the SE is two, we have
ψ3 = Aψ1 + Bψ2. However, since ψ1 vanishes both at −∞
and +∞, we see that ψ3 = Aψ1 +Bψ2 can be satisfied only if
ψ2 and ψ3 are divergent both at −∞ and +∞. This fact and
the above properties imply that

If the SE has an L2(R) solution, then any solution has two
possible asymptotics
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– Vanishes both at −∞ and +∞ at least as eP−q and e−P+q

respectively.

– Diverges both at −∞ and +∞ at least as e−P−q and eP+q

respectively.

Similarly, we have

If the SE does not admit an L2(R) solution, then any solution
has three possible asymptotics

– Diverges both at −∞ and +∞ at least as e−P−q and eP+q

respectively.

– Diverges at −∞ at least as e−P−q and vanishes at +∞ at
least as e−P+q.

– Vanishes at −∞ at least as eP−q and diverges at +∞ at
least as eP+q.

Let us consider the ratio w = ψD/ψ in the latter case. Since
any different choice of linearly independent solutions of the
SE corresponds to a Möbius transformation of w, we can
choose

ψD ∼
q→−∞

a−eP−q , ψD ∼
q→+∞

a+eP+q ,

and

ψ ∼
q→−∞

b−e−P−q , ψ ∼
q→+∞

b+e−P+q ,

were by∼ we mean that ψD and ψ either diverge or vanish “at
least as”. Their ratio has the asymptotic

ψD

ψ
∼

q→−∞
c−e2P−q → 0 ,

ψD

ψ
∼

q→+∞
c+e2P+q →±∞ ,

so that w cannot satisfy Eq.(53). This concludes the alterna-
tive proof of the fact that, in the case (60), the existence of
the L2(R) solution is a necessary condition in order (53) be
satisfied. The fact that this is a sufficient condition has been
proved previously in deriving Eq.(55).

The above results imply that the usual quantized spectrum
arises as a consequence of the EP.

Let us note that we are considering real solutions of the SE.
Thus, apparently, in requiring the existence of an L2(R) solu-
tion, one should specify the existence of a real L2(R) solution.
However, if there is an L2(R) solution ψ, this is unique up to
a constant, and since also ψ̄ ∈ L2(R) solves the SE, we have
that an L2(R) solution of the SE is real up to a phase.

V. THE TWO–PARTICLE MODEL

The EP leads to the introduction of length scales [1][2][3], a
fact related to the nontriviality of the quantum potential, even
in the case of W 0. We note that also S0, as follows by the EP,
is never trivial, in particular

S0 6= cnst , ∀W ∈H . (61)

The QSHJE (21), first investigated by Floyd in a series of
important papers [8], has been studied and reviewed by several
authors [9][10].

The real solution of the QSHJE (21) is

e
2i
~ S0{δ} = eiα w+ i ¯̀

w− i`
, δ≡ {α, `} ,

with α ∈ R and ` = `1 + i`2, `1 6= 0, are integration constants.
The condition `1 6= 0 is necessary for S0 and the quantum po-
tential Q to be well–defined.

The formulation has a manifest duality between real pairs
of linearly independent solutions [1], a property strictly re-
lated to Legendre duality [11] (see [12] for related issues).
A similar structure also appears in uniformization theory of
Riemann surfaces [1][4]. Whereas in the standard approach
one usually considers only one solution of the SE, i.e. the
wave–function itself, in our formulation the relevant formulas
contain the linear combination ψD + i`ψ. Since `1 6= 0, ψD

and ψ appears always in pair. So, Legendre duality, nontrivi-
ality of S0 and Q are deeply related features which are direct
consequences of the EP. In turn, these properties imply the ap-
pearance of fundamental constants such as the Planck length
[1][2][3]. The simplest way to see this is to consider the SE in
the trivial case, that is ∂2

q0
ψ = 0, so that ψD = q0, ψ = 1 and

the typical combination reads q0 + i`0, implying that `0 ≡ `
should have the dimension of a length. The fact that ` has the
dimension of a length is true for any state. Since `0 appears in
the QSHJE with W 0 ≡ 0, the system does not provide any di-
mensional quantity, so that we have to introduce some funda-
mental length. The appearance of fundamental constants also
arises in considering the limits ~→ 0 and E → 0 in the case
of a free particle [1]. So, for example, a consistent expression
for the quantum potential associated to the trivial state W 0,
which vanishes as ~→ 0, is

Q0 =
~

4m
{S 0

0 ,q0}=− ~
3G

2mc3
1

|q0− iλp|4 ,

where

λp =
√
~G/c3 ,

is the Planck length. However, in considering the classical
limit of the reduced action one should include the gravita-
tional contribution. So, for example, it is clear that also at
the classical level the reduced action for a pair of “free” parti-
cles should include the Newton potential. This may be related
to the above mentioned appearance of fundamental constants
in the QSHJE [1][2][3]. Related to this is the Floyd observa-
tion that in the classical limit there is a residual indeterminacy
depending on the integration constants [8]. Thus we see that
the classical limit may in fact lead to some effect which is
of quantum origin even if ~ does not appear explicitly. We
also note that, in principle, the Planck constant may appear in
macroscopic phenomena. This indicates that it is worth study-
ing the structure of the quantum potential also at large scales.

It seems that the fundamental properties of Q have not yet
fully been investigated because the usual solutions one finds
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are essentially trivial. This is due to a clearly unsatisfactory
identification, that may lead to some inconsistency, of Re

i
~ S0

with the wave–function. As noticed by Floyd [8], if

Re
i
~ S0 ,

solves the SE, then the wave–function will in general have
the form R(Ae−

i
~ S0 +Be

i
~ S0). This simple remark has impor-

tant consequences. So, for example, note that a real wave–
function, such as the one for bound states, simply implies
|A|= |B| rather than S0 = 0. As Einstein noticed in a letter to
Bohm, the latter would imply that a quantum particle in a box
is at rest and starts moving in the classical limit. Therefore,
besides the mathematical consistency, identifying the wave–
function with Re

i
~ S0 cannot in general lead to a quantum ana-

log of the reduced action. This change in the definition of S0
implies a new view of Q which needs to be further investi-
gated. In this respect we note that Q provides particle’s re-
sponse to an external perturbation. For example, in the case
of tunnelling, where according to the standard definition S0
would be vanishing, the attractive nature of Q guarantees the
reality of the conjugate momentum [1]. As a consequence, the
role of this intrinsic energy, which is a property of all forms
of matter, should manifest itself through effective interactions
depending on the above fundamental constants.

It is therefore natural to consider the so called two–particle
model [3], consisting of two free particles in the three dimen-
sional space. This provides a simple physical model to in-
vestigate the structure of the interaction provided by Q. The
QSHJE decomposes in equations for the center of mass and
for the relative motion. The latter is the QSHJE

1
2m

(∇S0)2−E− ~2

2m
∆R
R

= 0 , ∇ · (R2∇S0) = 0 ,

where

r = r1− r2 , m =
m1m2

m1 +m2
.

Due to the quantum potential, the QSHJE has solutions in
which the relative motion is not free as in the classical case.
Also note that the quantum potential is negative definite.
Since ψ = Re

i
~ S0 is a solution of the SE, we have

S0 =
~
2i

ln(ψ/ψ) ,

so that

(∇S0)2 =− ~2

4|ψ|4 (ψ∇ψ−ψ∇ψ)2 ,

where

ψ =
∞

∑
l=0

l

∑
m=−l

2

∑
j=1

clm jRkl j(r)Ylm(θ,φ) ,

with Ylm the spherical harmonics and Rkl j the solutions of the
radial part of the SE [3].

As m = l → ∞ Pl
l ∝ sinl θ vanishes unless θ = π/2, and the

motion is on a plane as in the classical orbits. However, since
liml→∞ ∂θPl

l (cosθ) = 0, we have

lim
m∼l→∞

∂θPm
l (cosθ) = 0 .

Thus, considering solutions with clm j 6= 0 only for sufficiently
large m and l, we have

∇ψ = ∑
{lm j}

(
clm jR′kl jYlm,0,

i
r

clm jRkl jmYlm

)
.

Depending on the coefficients clm j, (∇S0)2/2m may con-
tain nontrivial terms which do not cancel as ~→ 0. These
may arise as a deformation of the classical kinetic term, which
includes the centrifugal term. The clm j, which may depend on
fundamental constants, fix the structure of the possible inter-
action in the two–particle model. The clm j may be related to
some boundary conditions implied by the geometry and the
matter content of the three–dimensional space. This would
relate the fundamental constants to possible collective effects
[3] which may depend on cosmological aspects.
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