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The quantization of the gravitational field is discussed within the exact uncertainty approach. The method
may be described as a Hamilton-Jacobi quantization of gravity. It differs from previous approaches that take the
classical Hamilton-Jacobi equation as their starting point in that it incorporates some new elements, in particular
the use of a formalism of ensembles in configuration space and the postulate of an exact uncertainty relation.
These provide the fundamental elements needed for the transition from the classical theory to the quantum

theory.

1 Introduction

Perhaps one of the most fundamental distinctions between
classical and quantum systems is that a quantum system must
obey the uncertainty principle, while a classical system is not
subject to such a limitation. The degree to which a quantum
system is subject to this limitation is given by Heisenberg’s
uncertainty relation, which provides a bound on the minimum
uncertainty of two conjugate variables such as the position z
and the momentum p of a particle: it states that the product of
their uncertainties must be equal to or exceed a fundamental
limit proportional to Planck’s constant, AxAp > /2. This
inequality, however, is not sufficiently restrictive to provide
a means of going from classical mechanics to quantum me-
chanics. Indeed, in most approaches to quantization, no di-
rect reference is made to the need for an uncertainty principle.
For example, in the standard approach to canonical quantiza-
tion, one introduces a Hilbert space, operators to represent
observables, and a representation of the Poisson brackets of
the fundamental conjugate variables in terms of commuta-
tors of their corresponding operators. Once this structure is
in place, one can show that the Heisenberg uncertainty rela-
tions are indeed satisfied — but the uncertainty relations are
derived, and the uncertainty principle, instead of motivating
the method of quantization, seems to be little more than a
consequence of the mathematical formalism.

One can, however, introduce an exact form of the uncer-
tainty principle which is strong enough to provide a means of
going from classical to quantum mechanics — indeed, this ex-
act uncertainty principle provides the key element needed for
such a transition. In particular, the assumption that a classical
ensemble of particles is subject to nonclassical momentum
fluctuations, of a strength inversely proportional to uncer-
tainty in position, leads directly from the classical equations
of motion to the Schrodinger equation [1, 2]. This approach
can also be generalized and used to derive bosonic field equa-
tions [3]. The exact uncertainty approach is extremely min-

imalist in nature: unlike canonical quantization, no a priori
assumptions regarding the existence of a Hilbert space struc-
ture, linear operators, wavefunctions, etc. is required. The
sole “nonclassical” element needed is the addition of fluctu-
ations to the momentum variable. The exact uncertainty ap-
proach is thus rather economical, in that it appears to make
use of the minimum that is required for the description of a
quantum system.

The paper is organized as follows. In the next two sec-
tions, I briefly review the case of a non-relativistic particle: in
section 2, I discuss classical ensembles and derive the equa-
tions of motion from an ensemble Hamiltonian; in section
3, I present the derivation of the Schrédinger equation using
the exact uncertainty approach. In the remaining sections, I
discuss the application of the exact uncertainty approach to
gravity. A recent paper [4] provides an overview of the ex-
act uncertainty approach in quantum mechanics and quantum
gravity that emphasizes conceptual foundations. Therefore,
in the last sections I focus instead on some technical issues
and on some issues of interpretation. In section 4, I introduce
the Hamilton-Jacobi formulation of general relativity and for-
mulate a theory of classical ensembles of gravitational fields;
in section 5, I apply the exact uncertainty principle to the
gravitational field, which leads to a Wheeler-DeWitt equa-
tion. In section 6, I consider some implications of the exact
uncertainty approach for the description of space-time in the
quantized theory. Finally, some further remarks concerning
the application of the exact uncertainty approach to gravity
are given in section 7.

2 Classical ensembles of
relativistic particles

non-

To motivate the introduction of classical ensembles in con-
figuration space, consider the possibility that, due to either
practical or theoretical reasons, the position of a particle is
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not known exactly. To describe this uncertainty in position,
one has to introduce a probability density P (z, ) on config-
uration space. The description of the physical system is then
one that is given in terms of a statistical ensemble of parti-
cles. The dynamics of such an ensemble may be described
using a Hamiltonian formalism, in the following way. For
an ensemble of classical, non-relativistic particles of mass m
moving in a potential V, the correct equations of motion can
be derived from the ensemble Hamiltonian

H.P.5)= [ da ('V i +V> M)
2m
The equations of motion that follow from eq. (1),

oP _6H. 98 _ 4H.

ot~ 8S ot 6P’
take the form
oP vs
bl pP—= ) = 2
ot + V- ( ) 0, 2)
a5 |VS|
8t + o +V =0. 3)

Eq. (2) is a continuity equation for an ensemble of particles
described by the velocity field v = m~1V S, and eq. (3) is
the Hamilton-Jacobi equation for a classical particle with mo-
mentum p = VS. Note also that H is the average energy of
the classical ensemble. The formalism of ensemble Hamil-
tonians that I have used here, while very simple, turns out to
be quite general (see [5, 4] for more details on this formalism
and various applications). In particular, it can be shown that
both classical and quantum equations of motion can be de-
rived using this formalism. The difference between classical
and quantum ensembles can be characterized by a simple dif-
ference in the functional form of the corresponding ensemble
Hamiltonians, as shown in the next section.

3 Quantum equations for non-

relativistic particles

To derive quantum equations of motion, one needs to add
fluctuations to the momentum variable which satisfy an ex-
act uncertainty principle, and modify the classical ensemble
Hamiltonian to take into consideration the effect of these fluc-
tuations. There are, of course, further assumptions that need
to be made, and these are explained in this section — however,
the main conceptual ingredients are the nonclassical momen-
tum fluctuations and the exact uncertainty principle.

Consider then another type of ensemble, one for which
the assumption of a deterministic relation between position
and momentum (implicit in the classical relation p = V.5) is
no longer valid. Assume instead that the momentum is sub-
ject to stochastic perturbations, and that the relation between
p and VS takes the form

p=VS+f
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where the fluctuation field f vanishes everywhere on average.
Denoting the average over fluctuations by an overline, and us-
ing the relations f = 0 and p = VS, the classical ensemble
energy is replaced in this case by

2
/d;vP <|VS+f +V>
2m
H. +/def !

Thus the momentum fluctuations contribute to the average ki-
netic energy of this modified classical ensemble.

What conditions on the fluctuation field f lead to the
quantum equations of motion? It is sufficient to consider
four principles [1, 2, 3] (i) Action principle: The equations
of motion can be derived from an action principle based on
an ensemble Hamiltonian. Then, the strength of the fluc-
tuations is determined by some function of P and S and
their derivatives, i.e. f- f a(x,P,S,VP,VS,...). It

(B) =

ff =
will also be assumed that the equations of motion that re-
sult are partial differential equations of at most second order.
(ii) Independence: if the system consists of two independent
non-interacting sub-systems, the ensemble Hamiltonian, and
therefore o, decomposes into additive subsystem contribu-
tions. (iii) Invariance: the fluctuations transform correctly
under linear canonical transformations (i.e., f — LT f for
any invertible linear coordinate transformation x — Lz. A
sightly different principle was used in [1, 2]). (iv) Exact
uncertainty principle: the strength of the momentum fluc-
tuations is determined solely by the uncertainty in position.
Since P contains all the information on the position uncer-
tainty,  can only depend on P and its derivatives.

The first three principles are natural on physical grounds,
and therefore relatively unconstraining. The fourth principle,
however, by establishing a precise relationship between the
position uncertainty (as described by P) and the strength of
the momentum fluctuations, introduces a strongly nonclassi-
cal element. It is therefore appropriate to refer to the fluc-
tuations due to the field f as nonclassical momentum fluctu-
ations. It can be shown that these four principles define the
functional form of a uniquely and lead to a quantum ensem-
ble Hamiltonian of the form

1|vp
H, H+C/ |V|

“)
where C' is a positive universal constant. Furthermore, since
the term « is proportional to the classical Fisher informa-
tion, one can use the Cramér-Rao inequality of statistical es-
timation theory to derive an exact uncertainty relation that is
stronger than (and implies) the Heisenberg uncertainty rela-
tion (see [1, 2, 3] for derivations of these results).

It is straightforward to show that the Hamiltonian equa-
tions of motion for P and S derived from eq. (4),

or ¢H, 9S  4H,

ot 8S o9t oGP’
are identical to the Schrodinger equation for a wavefunction
1), provided one defines

h = 2\/5, P = VPe'SIh,
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As shown in [1], the wavefunction representations arises nat-
urally from seeking canonical transformations which map the
fields P and S to the “normal modes” of the system. This ob-
servation, together with a symmetry assumption, leads then to
the usual Hilbert space formulation of quantum mechanics.

4 Classical ensembles of gravitational
fields

The exact uncertainty approach can be succesfully general-
ized to derive the equations of motion for bosonic fields with
Hamiltonians quadratic in the field momenta (e.g., scalar,
electromagnetic and gravitational fields). The basic under-
laying concept, the addition of nonclassical momentum fluc-
tuations to a classical ensemble, carries through from parti-
cles to fields, although significant technical generalizations
are needed (see [3] for details). In the rest of the paper, I dis-
cuss the application of the exact uncertainty approach to the
gravitational field. However, before applying the exact uncer-
tainty approach to the gravitational field, it will be necessary
to introduce the Hamilton-Jacobi formulation of general rela-
tivity and to define a theory of classical ensembles consistent
with this Hamilton-Jacobi formulation.

A Hamilton-Jacobi formulation for the gravitational field
can be defined in terms of the functional equations

1 5S 68
H= 5 G g— Shij 6hgy

where R is the curvature scalar and D; the covariant deriv-
ative on a three-dimensional spatial hypersurface with (posi-
tive definite) metric hy;, and

—VhR =0, 5)

Gijil = % (hikhji + hithji — hijhe) -
is the DeWitt supermetric (units are chosen so that Newton’s
gravitational constant G = 1/167) [6].

As a consequence of the Hamiltonian constraint H = 0,
eq. (5), and the momentum constraints H; = 0, eq. (6),
S must satisfy an infinite set of constraints, numbering four
per three-dimensional point. S also satisfies the condition
%—f = 0 [7]. The momentum constraints are equivalent to
requiring the invariance of the Hamilton-Jacobi functional
S under spatial coordinate transformations. One may there-
fore formulate the theory in an equivalent way by keeping the
Hamiltonian constraint, ignoring the momentum constraints,
and requiring instead that S be invariant under the gauge
group of spatial coordinate transformations.

To define classical ensembles for gravitational fields, it is
necessary to introduce some additional mathematical struc-
ture: a measure Dh over the space of metrics hy; and a prob-
ability functional P [hy;]. A standard way of defining the
measure [8, 9] is to introduce an invariant norm for metric
fluctuations that depends on a parameter w,

16k / e

)] <72 H9M [h(2); w] Ghy;Shag
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where n is the number of dimensions and

1 _ o o L
5 [ @) [ BN 4 AR

Hijkl —

is a generalization of the inverse of the DeWitt supermetric
(in [8] the particular case w = 0 was considered). This norm
induces a local measure for the functional integration given

by
o

where

N2 dhis (a

>3]

/H [det H (h

det H (h(z)) (1 + ;)\n) 1 (2)]7,

and 0 = (n+1)[(1 —w)n —4] /4 (one needs to impose
the condition A # —2/n, otherwise the measure vanishes).
Therefore, up to an irrelevant multiplicative constant, the
measure takes the form

Jon= [TV

Without loss of generality, one may set Dh equal to du [h]
h (x)} may be

| Tlahs@). @

i>7

with ¢ = 0, since a term of the form {

absorbed into the definition of P [h].

It is natural to require also that [ DhP be invariant under
the gauge group of spatial coordinate transformations. Since
the family of measures defined by eq. (7) is invariant under
spatial coordinate transformations [9, 10], the invariance of
| DhP leads to a condition on P that is similar to the one
required of .S. To show this, consider an infinitesimal change
of coordinates z'% = ¥ +€* () and the corresponding trans-
formation of the metric, hy; — hg — (Dye; + Dyey). The
variation of | DhP can be expressed as

oP 0P

Therefore, §. [ DhP = 0 requires

oP
Dy, (5hkl> =0. ®)

or the gauge mvarlance of P. In addition to eq. (8), it will be
assumed that 2 Bt = 0 also holds.

Finally, it should be pointed out that one must factor out
the infinite diffeomorphism gauge group volume out of the
measure to calculate finite averages using the measure Dh
and probability functional P. This can be achieved using the
geometric approach described in [11]. This issue will not be
discussed further here, since it does not affect the derivation
of the equations of motion.

An appropriate ensemble Hamiltonian for the gravita-
tional field is given by

H,= Z / DhPH ~ / 3 / DhPH. 9)
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The equations of motion derived from eq. (9) are of the form
A,
AP

oP _AH. 05 _
ot AS’ ot

where A/AF denotes the variational derivative with respect
to the functional F'. With %—f = %—f = 0, the equations of
motion take the form

H =0,

4 0S8
3 —
/d I(Shij <Pka15h > =0

Eq. (10) is the Hamiltonian constraint, and eq. (11) may be
interpreted as a continuity equation.

It is of interest that the interpretation of eq. (11) as a con-
tinuity equation leads to a rate equation that relates dgf‘ and

5 h . This follows from the observation that such an interpre-

(10)

(11

tation is only possible if the “field velocity” % is related to
Gijkz% in a linear fashion. Indeed, the most general rate
equation for the metric h;; that is consistent with the inter-
pretation of eq. (11) as a continuity equation is of the form

6S
§h ('Yngkl Sh + 5ehij> ot

where 7y is an arbitrary function of = (I have include a term
dchiky = — (Dge; + Dyiex) which allows for gauge transfor-
mations of hy;, which is permitted because the gauge trans-
formations are assumed to leave f DhP invariant, as dis-
cussed before). Therefore, one may write the rate equation
for hy; in the standard form

Ohi; 5S
ot~V Guakg - Sha

+ D;N; + D;N;. (12)
Eq. (12) agrees with the equations derived from the ADM
canonical formalism, provided [V is identified with the lapse
function and N;, with the shift vector [12].

S Quantum equations for gravita-
tional fields

The derivation of the quantum equations of motion from the
exact uncertainty principle follows essentially the same steps
as before [3]. It is first assumed that the field momenta are
modified by a stochastic term, so that

kl
st T

where f*! vanishes on average for all configurations, R =
0. The classical ensemble Hamiltonian H. is then replaced
by a modified ensemble Hamiltonian H,

Hy=H.+ - /d3 /DhPG”sz”f’”

The form of the modified ensemble Hamiltonian is deter-
mined using the same principles as before (action principle,
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independence, invariance and exact uncertainty), leading to
the result

Hq:ﬁc+%/d3 /Dh kalap 0P

1
Shyy b )

where C' is a positive universal constant. One can derive
an exact uncertainty relation, defined in terms of generalized
covariance matrices and Fisher information matrices, which
connects the statistics of the metric field and its conjugate
momentum fields and implies in turn a Heisenberg-type in-
equality (see [3] for derivations of these results).

If one now defines

h=2VC, Wlhy]:=VPed"

and makes use of the conditions % = %—IZ = 0, it can be
shown that the Hamiltonian equations that follow from eq.

(13) lead to the Wheeler-DeWitt equation

2
o —VhR| ¥

2 oh, ¢

gkl =7 5h

Notice that the exact uncertainty approach specifies a
particular operator ordering for the Wheeler-DeWitt equa-
tion. Furthermore, the Wheeler-DeWitt equation has been
derived here using a quantization procedure based directly on
the classical Hamilton-Jacobi formulation, instead of going
through the usual canonical quantization procedure. There-
fore, the difficult issues associated with the requirement of
“Dirac consistency” (i.e., the need to find a choice of operator
ordering and regularization scheme that will permit mapping
the classical Poisson bracket algebra of constraints to an alge-
bra of operators within the context of the Dirac quantization
of canonical gravity) have been avoided. The only ambigu-
ity that remains arises from the need to introduce some sort
of regularization scheme to remove divergences arising from
the product of two functional derivatives acting at the same
point.

6 Space-time

Both the Hamilton-Jacobi theory of the classical gravitational
field and the Wheeler-DeWitt equation involve functional
equations defined on a three dimensional spatial hypersur-
face, with the group of spatial coordinate transformations as
gauge group. The question then arises of whether it is pos-
sible to relate such formulations to field theories that give a
description of space-time.

This is indeed the case for the classical theory, as is well
known: one can show that the Hamilton-Jacobi formulation
is equivalent to the usual formulation in space-time based on
the Einstein equations [13, 6]. The question becomes much
more difficult when it comes to the quantized theory.

In section 4, it was shown that the continuity equation
derived from the classical ensemble Hamiltonian, eq. (11),
implies the rate equation for the metric field, eq. (12). The
same continuity equation and corresponding rate equation are
derived from the quantum ensemble Hamiltonian, eq. (13).
This has important implications in the quantum case, since
it suggests a way of evolving away from the spatial surface
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using stochastic equations. Although the quantum ensemble
Hamiltonian leads to a rate equation that is identical in form
to the classical rate equation, the interpretation of this equa-
tion is somewhat different, because in the quantum case 6‘;;? p
represents an average over the non-classical fluctuations of
the momentum. This suggests replacing eq. (12) by a sto-

chastic rate equation
Bh, j
ot

S

— NGijpi | = + fkl + D;N; + D;N;
Oh

and considering the time-evolved spatial metric as being sub-

ject to fluctuations. Furthermore, since the field momenta are

subject to fluctuations, the extrinsic curvature tensor K;;, de-

fined by

1 S

~Gyn

2 T S hyy

will also be subject to fluctuations, and should be replaced by

a relation of the form

Kij =

1 4S
Kij = 5Gijni (MH + fkl> :

Since the extrinsic curvature tensor determines how spatial
hypersurfaces fit together, it seems reasonable to expect the
emergence of both well defined evolution equations and a
well defined space-time limit after averaging over the non-
classical fluctuations, provided the fluctuations are not too
violent.

7 Discussion

The approach to quantization of the gravitational field pre-
sented here may be described as a Hamilton-Jacobi quantiza-
tion of gravity. It differs from previous approaches that take
the classical Hamilton-Jacobi equation as their starting point
in that it incorporates some new elements, in particular the
use of the formalism of ensembles in configuration space and
the postulate of the uncertainty relation as the fundamental
element that is needed for the transition from the classical to
the quantum theory. The additional mathematical structure
required is minimal. No a priori assumptions regarding the
existence of a Hilbert space structure, linear operators, wave-
functions, etc. or the use of path integrals are needed.

The use of ensemble Hamiltonians leads to a unified ap-
proach, one in which both classical and quantum equations
are derived using the same mathematical formalism. In par-
ticular, it has been shown that the difference between classi-
cal and quantum ensembles is essentially a ‘matter of form’,
being characterized by the additional term that is added to the
classical ensemble Hamiltonian to quantize the system (i.e.,
eqgs. (4) and (13)). This is of particular interest in the case
of gravity, since a unified approach ensures that the quantum
theory has a well defined classical limit. Furthermore, for
any classical quantity that may be expressed as an average of
a functional of hj; and %, one may define a quantum coun-
terpart by adding nonclassical fluctuations to the momentum;
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if this quantity has only linear and quadratic terms in 5‘%[, it
will be possible to compute quantum corrections to the classi-
cal quantities in a straightforward way by averaging over the
fluctuations. In this way, classical observables may be carried
over into the quantum theory.

It is remarkable that already at the classical level, the the-
ory of ensembles in configuration space provides new insight
into general relativity. In particular, as pointed out in sec-
tion 4, the rate equation for the metric, eq. (12), appears as
a direct consequence of the classical ensemble formalism of
gravitational fields. In this way, it takes only a few steps to
show that all 10 Einstein equations follow from the Hamilton-
Jacobi formalism together with the assumption of a well de-
fined ensemble of gravitational fields. On the other hand, the
derivation from the Hamilton-Jacobi formalism alone [13],
requires a much more lengthy derivation. The theory of clas-
sical ensembles in configuration space, which was introduced
here as a starting point for the quantization of gravity, is inter-
esting in its own right, and should be of useful for problems
in which ensembles of gravitational fields need to be taken
into consideration.
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