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We present a path integral formulation of ’t Hooft’s derivation of quantum from classical physics. Our approach
is based on two concepts: Faddeev-Jackiw’s treatment of constrained systems and Gozzi’s path integral formu-
lation of classical mechanics. This treatment is compared with our earlier one [quant-ph/0409021] based on
Dirac-Bergmann’s method.

1 Introduction
In recent years, there has been a revival of interest in the con-
ceptual foundations of quantum mechanics. In particular, a
great deal of effort has gone into the construction of determin-
istic theories from which quantum mechanics would emerge.
Proposals in this direction are now of considerable topical in-
terest as evidenced by various recent monographs [1] and this
series of workshops [2].

The usual caution toward the idea of deriving quantum
from classical physics is mainly based on the Bell inequal-
ities. The fact that quantum mechanics at laboratory scales
obeys these inequalities is usually taken for granted to be true
at all scales. This perception persists even if such fundamen-
tal concepts as rotational symmetry or isospin — on which
the Bell inequalities are based — may simply cease to exist,
for instance at Planck scale. In fact, at present, no viable ex-
periment can rule out the possibility that quantum mechanics
is only the low-energy limit of some more fundamental un-
derlying (possibly even non–local) deterministic mechanism
that operates at very small scales.

An interesting deterministic route to quantum physics
was recently proposed by ’t Hooft [3-5], motivated by black-
hole thermodynamics and the so-called holographic princi-
ple [6, 7]. The main concept of ’t Hooft’s approach re-
sides in information loss, which, when inflicted upon a de-
terministic system, can reduce the physical degrees of free-
dom so that quantum mechanics emerges. The information
loss together with certain accompanying non-trivial geomet-
ric phases may explain the observed non-locality in quantum
mechanics. This idea has been further developed by several
authors [4,5,8-12], and it forms the basis also of this paper.

Our aim is to study ’t Hooft’s quantization procedure by
means of path integrals, as done in our previous work [8].
However, in contrast to Ref. [8] we treat the constrained dy-
namics — the key element in ’t Hooft’s method — by means
of the Faddeev-Jackiw technique [13]. The constrained dy-
namics enters into ’t Hooft’s scheme twice: first, in the clas-
sical starting Hamiltonian which is of first order in the mo-
menta and thus singular in the Dirac-Bergmann sense [14].
Second, in the information loss condition that we impose to

achieve quantization [8]. It is thus clear that a better under-
standing of ’t Hooft’s quantization scheme is closely related
to a proper treatment of the involved constrained dynamics.
In our previous paper [8] this has been done by means of the
customary Dirac-Bergmann technique, which is often cum-
bersome. Here we want to point out the simplifications aris-
ing from the alternative Faddeev-Jackiw method, which al-
lows a clearer exposition of the basic concepts.

The paper is organized as follows: In Section 2 we briefly
discuss the main features of ’t Hooft’s scheme. By utilizing
the Faddeev-Jackiw procedure we present in Section 3 a La-
grangian formulation of ’t Hooft’s system, which allows us
to quantize it via path integrals in configuration space. It is
shown that the fluctuating system produces a classical parti-
tion function. In Section 4 we make contact with Gozzi’s su-
perspace path integral formulation of classical mechanics. In
Section 5 we introduce ’t Hooft’s constraint which accounts
for information loss. This is again handled by means of
Faddeev-Jackiw analysis. Central to this analysis is the fact
that ’t Hooft’s condition breaks the BRST symmetry and al-
lows to recast the classical generating functional into a form
representing a genuine quantum-mechanical partition func-
tion. A final discussion is given in Section 6.

2 ’t Hooft’s quantization procedure
We begin with a brief review of the main aspects of ’t Hooft’s
quantization procedure [5, 4] to be used in this work. The
general idea is that a simple class of classical systems can
be described by means of Hilbert space techniques, although
they are fully deterministic. After imposing certain con-
straints expressing information loss (or dissipation), one ob-
tains quantum systems. Several simple models were given by
’t Hooft to illustrate his idea, both with discrete and continu-
ous time.

2.1 Discrete-time version
The simplest example [4] is a three-state clock universe with
a cyclic deterministic evolution pictured in Fig. 1.
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Figure 1. Three-state universe.

A Hilbert space is associated with this system consisting
of the vectors [4]:

|ψ〉 = α|1〉+ β|2〉+ γ|3〉 . (1)

At each discrete time point t = 1, 2, 3, 4, . . . , the system
jumps cyclically. The time evolution may be represented by
the unitary operator

|ψ〉t+1 =




0 0 1
1 0 0
0 1 0


 |ψ〉t = U(t + 1, t)|ψ〉t . (2)

The probabilities for being in a given state are:

P (1) = |α|2; P (2) = |β|2; P (3) = |γ|2 . (3)

In a basis in which U is diagonal, it has for a single time step
∆t = 1 the form:

U(t + 1, t) = exp(−iH∆t); H =




0
−2π/3

2π/3


. (4)

A quantum theory can be said to be deterministic if, in the
Heisenberg picture, a complete set of operators Oi(t) (i =
1, .., N ) exist, such that:

[Oi(t), Oj(t′)] = 0, ∀t, t′; i, j = 1, .., N . (5)

These operators are called “be-ables” [4]. The above three-
state system is obviously deterministic in this sense.

4321

Figure 2. Four-state universe with non-unitary evolution.

It is also possible to have systems for which the evolution
is not unitary, at least for a certain number of time steps [4].
An example is given by the system in Fig. 2 for which the
time evolution generator is given by

Ud(t + 1, t) =




0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 0


 . (6)

An important concept which arises here is that of equivalence
classes [4]. In our case, the states |1) and |4) are equivalent,
in the sense that they end up in the same state after a finite
time.

Quantum states are thus identified with equivalence
classes:

|1〉 ≡ {|1), |4)}, |2〉 ≡ {|2)}, |3〉 ≡ {|3)} , (7)

in terms of which the time evolution becomes unitary again.

2.2 Continuous-time version

Classical systems of the form

H = pa fa(q) , (8)

with repeated indices summed, evolve deterministically even
after quantization [4]. This happens since in the Hamiltonian
equations of motion

q̇a = {qa,H} = fa(q) ,

ṗa = {pa,H} = −pa
∂fa(q)

∂qa
, (9)

the equation for the qa does not contain pa, making the qa

be-ables. The basic physical problem with these systems is
that the Hamiltonian is not bounded from below. This defect
can be repaired in the following way [4]: Let ρ(q) be some
positive function of qa with [ρ,H] = 0. Then we split

H = H+ −H−,

H+ =
1
4ρ

(ρ + H)2 , H− =
1
4ρ

(ρ−H)2 , (10)

where H+ and H− are positive definite operators satisfying

[H+,H−] = [ρ,H] = 0 . (11)

We may now enforce a lower bound upon the Hamiltonian by
imposing the constraint

H−|ψ〉 = 0 . (12)

Then the eigenvalues of H in

H|ψ〉 = H+|ψ〉 = ρ|ψ〉, (13)

are trivially positive, and the equation of motion

d

dt
|ψ〉 = −iH|ψ〉 , (14)

has only positive frequencies. If there are stable orbits with
period T (ρ), then |ψ〉 satisfies

e−iHT |ψ〉 = |ψ〉 ; ρ T (ρ) = 2πn , n ∈ Z , (15)

so that the associated eigenvalues are discrete. The constraint
(12) was motivated by ’t Hooft by information loss [4]. We
shall therefore refer to it as information loss condition. Ap-
plications of the the above quantization procedure were given
in Refs. [12].
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3 Path integral quantization of
’t Hooft’s system

Consider the class of systems described by Hamiltonians of
the type (8), and let us try to quantize them using path inte-
grals [15]. Because of the absence of a leading kinetic term
quadratic in the momenta pa, the system can be viewed as sin-
gular and the ensuing quantization can be achieved through
some standard technique for quantization of constrained sys-
tems.

Particularly convenient technique is the one proposed by
Faddeev and Jackiw [13]. There one starts by observing that
a Lagrangian for ’t Hooft’s equations of motion (9) can be
simply taken as

L(q, q̇, p, ṗ) = p · q̇ −H(p, q) , (16)

with q and p being Lagrangian variables (in contrast to phase
space variables). Note that L does not depend on ṗ. It is
easily verified that the Euler-Lagrange equations for the La-
grangian (16) indeed coincide with the Hamiltonian equa-
tions (9). Thus given ’t Hooft’s Hamiltonian (8) one can al-
ways construct a first-order Lagrangian (16) whose configu-
ration space coincides with the Hamiltonian phase space. By
defining 2N configuration-space coordinates as

ξa = pa, a = 1, . . . , N ,

ξa = qa, a = N + 1, . . . , 2N , (17)

the Lagrangian (16) can be cast into the more expedient form,
namely

L(ξ, ξ̇) = 1
2ξaωabξ̇

b −H(ξ) . (18)

Here ω is the 2N × 2N symplectic matrix

ωab =
(

0 I
−I 0

)

ab

, (19)

which has an inverse ω−1
ab ≡ ωab. The equations of motion

read

ξ̇a = ωab ∂H(ξ)
∂ξb

, (20)

indicating that there are no constraints on ξ. Thus the
Faddeev-Jackiw procedure makes the system unconstrained,
so that the path integral quantization may proceeds in a stan-
dard way. The time evolution amplitude is simply [15]

〈ξ2, t2|ξ1, t1〉=N
∫ ξ(t2)=ξ2

ξ(t1)=ξ1

Dξ exp
[

i

~

∫ t2

t1

dt L(ξ, ξ̇)
]

,

(21)

where N is some normalization factor, and the measure can
be rewritten as

N
∫ ξ(t2)=ξ2

ξ(t1)=ξ1

Dξ = N
∫ q(t2)=q2

q(t1)=q1

DqDp . (22)

Since the Lagrangian (16) is linear in p, we may integrate
these variables out and obtain

〈q2, t2|q1, t1〉 = N
∫ q(t2)=q2

q(t1)=q1

Dq
∏
a

δ[q̇a − fa(q)] ,(23)

where δ[f ] ≡ ∏
t δ(f(t)) is the functional version of Dirac’s

δ-function. Hence the system described by the Hamiltonian
(8) retains its deterministic character even after quantization.
The paths are squeezed onto the classical trajectories deter-
mined by the differential equations q̇ = f(q). The time evo-
lution amplitude (23) contains a sum over only the classical
trajectories — there are no quantum fluctuations driving the
system away from the classical paths, which is precisely what
should be expected from a deterministic dynamics.

The amplitude (23) can be brought into more intuitive
form by utilizing the identity

δ [f(q)− q̇] = δ[q − qcl] (det M)−1 , (24)

where M is a functional matrix formed by the second func-
tional derivatives of the action A[ξ] ≡ ∫

dtL(ξ, ξ̇) :

Mab(t, t′) =
δ2A

δξa(t) δξb(t′)

∣∣∣∣
q=qcl

. (25)

The Morse index theorem ensures that for sufficiently short
time intervals t2 − t1 (before the system reaches its first fo-
cal point), the classical solution with the initial condition
q(t1) = q1 is unique. In such a case Eq. (23) can be brought
to the form

〈q2, t2|q1, t1〉 = Ñ
∫ q(t2)=q2

q(t1)=q1

Dq δ [q − qcl] , (26)

with Ñ ≡ N/(detM). Remarkably, the Faddeev-
Jackiw treatment bypasses completely the discussion of con-
straints, in contrast with the conventional Dirac-Bergmann
method [14, 16] where 2N (spurious) second-class primary
constraints must be introduced to deal with ’t Hooft’s system,
as done in [8].

4 Emergent SUSY — signature of
classicality

We now turn to an interesting implication of the result (26).
If we had started in Eq.(23) with an external current

L̃(ξ, ξ̇) = L(ξ, ξ̇) + i~J · q , (27)

integrated again over p, and took the trace over q, we would
end up with a generating functional

ZCM[J ] = Ñ
∫
Dq δ[q − qcl] exp

[∫ t2

t1

dt J · q
]

. (28)

This coincides with the path integral formulation of classical
mechanics postulated by Gozzi et al. [17, 18]. The same rep-
resentation can be derived from the classical limit of a closed-
time path integral for the transition probabilities of a quantum
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particle in a heat bath [15, 8], The path integral (28) has an
interesting mathematical structure. We may rewrite it as

ZCM[J ] = Ñ
∫
Dq δ

[
δA
δq

]
det

∣∣∣∣
δ2A

δqa(t) qb(t′)

∣∣∣∣

× exp
[∫ t2

t1

dt J · q
]

. (29)

By representing the delta functional in the usual way as a
functional Fourier integral

δ

[
δA
δq

]
=

∫
Dλ exp

(
i

∫ t2

t1

dt λ(t)
δA

δq(t)

)
,

and the functional determinant as a functional integral over
two real time-dependent Grassmannian ghost variables ca(t)
and c̄a(t),

det
∣∣∣∣

δ2A
δqa(t) δqb(t′)

∣∣∣∣

=
∫
DcDc̄ exp

[∫ t2

t1

dtdt′ c̄a(t)
δ2A

δqa(t) δqb(t′)
cb(t′)

]
,

we obtain

ZCM[J ] =
∫
DqDλDcDc̄ exp

[
iS +

∫ t2

t1

dt J · q
]
, (30)

with the new action

S[q, c̄, c, λ] ≡
∫ t2

t1

dt λ(t)
δA

δq(t)

− i

∫ t2

t1

dt

∫ t2

t1

dt′ c̄a(t)
δ2A

δqa(t) δqb(t′)
cb(t′) . (31)

Since ZCM[J ] can be derived from the classical limit of
a closed-time path integral for the transition probability, it
comes to no surprise that S exhibits BRST (and anti-BRST)
symmetry. It is simple to check [8] that S does not change
under the symmetry transformations

δBRST q = ε̄c , δBRST c̄ = −iε̄λ , δBRST c = 0 ,

δBRST λ = 0 , (32)

where ε̄ is a Grassmann-valued parameter (the correspond-
ing anti-BRST transformations are related to (32) by charge
conjugation). As noted in [18], the ghost fields c̄ and c are
mandatory at the classical level as their rôle is to cut off
the fluctuations perpendicular to the classical trajectories.
On the formal side, c̄ and c may be identified with Jacobi
fields [18, 19]. The corresponding BRST charges are related
to Poincaré-Cartan integral invariants [20].

By analogy with the stochastic quantization the path inte-
gral (30) can be rewritten in a compact form with the help of
a superfield [17, 21, 15]

Φa(t, θ, θ̄) = qa(t) + iθca(t)− iθ̄c̄a(t) + iθ̄θλa(t) , (33)

in which θ and θ̄ are anticommuting coordinates extending
the configuration space of q variables to a superspace. The

latter is nothing but the degenerate case of supersymmetric
field theory in d = 1 in the superspace formalism of Salam
and Strathdee [22]. In terms of superspace variables we see
that
∫

dθ̄dθ A[Φ] (34)

=
∫

dtdθ̄dθ L(q(t) + iθc(t)− iθ̄c̄(t) + iθ̄θλ(t)) = −iS

To obtain the last line we Taylor expanded L and used the
standard integration rules for Grassmann variables. Together
with the identity DΦ = DqDcDc̄Dλ we may therefore ex-
press the classical partition functions (28) and (29) as a su-
persymmetric path integral with fully fluctuating paths in su-
perspace

ZCM[J ] =
∫
DΦ exp

{
−

∫
dθdθ̄ A[Φ](θ, θ̄)

}

× exp
{∫

dtdθdθ̄ Γ(t, θ, θ̄)Φ(t, θ, θ̄)
}

.

Here we have introduced the supercurrent Γ(t, θ, θ̄) =
θ̄θJ(t).

Let us finally add that under rather general assumptions
it is possible to prove [8] that ’t Hooft’s deterministic sys-
tems are the only systems with the peculiar property that
their full quantum properties are classical in the Gozzi et
al. sense. Among others, the latter also indicates that the
Koopman-von Neumann operator formulation of classical
mechanics [23] when applied to ’t Hooft systems must agree
with their canonically quantized counterparts.

5 Inclusion of information loss
As observed in Section 2.2, the Hamiltonian (8) is not
bounded from below, and this is clearly true for any func-
tion fa(q). Hence, no deterministic system with dynamical
equations q̇a = fa(q) can describe a stable quantum world.
To deal with this situation we now employ ’t Hooft’s proce-
dure of Section 2.2. We assume that the system (8) has n
conserved irreducible charges Ci, i.e.,

{Ci,H} = 0 , i = 1, . . . , n . (35)

Then we enforce a lower bound upon H , by imposing the
condition that H− is zero on the physically accessible part of
phase space.

The splitting of H into H− and H+ is conserved in time
provided that {H−,H} = {H+,H} = 0, which is ensured
if {H+,H−} = 0. Since the charges Ci in (35) form an
irreducible set, the Hamiltonians H+ and H− must be func-
tions of the charges and H itself. There is a certain amount of
flexibility in finding H− and H+. For convenience take the
following choice

H+ =
(H + aiC

i)2

4aiCi
, H− =

(H − aiC
i)2

4aiCi
, (36)

where ai(t) are q and p independent. The lower bound is
reached by choosing ai(t)Ci to be non-negative. We shall
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select a combination of Ci which is p-independent [this con-
dition may not necessarily be achievable for general fa(q)].

In the Dirac-Bergmann quantization approach used in our
previous paper [8], the information loss condition (12) was a
first-class primary constraint. In the Dirac-Bergmann analy-
sis, this signals the presence of a gauge freedom — the as-
sociated Lagrange multipliers cannot be determined from dy-
namical equations alone [14]. The time evolution of observ-
able quantities, however, should not be affected by the arbi-
trariness of Lagrange multipliers. To remove this superfluous
freedom one must choose a gauge. For details of this more
complicated procedure see [8].

In the Faddeev-Jackiw approach, Dirac’s elaborate classi-
fication of constraints to first or second class, primary or sec-
ondary is avoided. It is therefore worthwhile to rephrase the
entire development of Ref. [8] once more in this approach.
The information loss condition may now be introduced by
simply adding to the Lagrangian (18) a term enforcing

H−(ξ) = 0 , (37)

by means of a Lagrange multiplier:

L(ξ, ξ̇) = 1
2ξaωabξ̇

b −H(ξ)− ηH−(ξ) , (38)

Alternatively, we shall eliminate one of ξa, say ξ1, in terms of
the remaining coordinates ones, thus reducing the dynamical
variables to 2N −1. Apart from an irrelevant total derivative,
this changes the derivative term ξaωabξ̇

b to ξif ij(ξ̂)ξ̇j , with

f ij(ξ̂) = ωij −
[
ω1i

∂ξ1

∂ξj
− (i ↔ j)

]
. (39)

Eliminating ξ1 also in the Hamiltonian H we obtain a re-
duced Hamiltonian HR(ξ), so that we are left with a reduced
Lagrangian

LR(ξ̂,
˙̂
ξ) = 1

2ξif ij(ξ̂)ξ̇j −HR(ξ̂) . (40)

At this point one must worry about the notorious operator-
ordering problem, not knowing in which temporal order ξ̂ and
˙̂
ξ must be taken in the kinetic term. A path integral in which
the kinetic term is coordinate-dependent can in general only
be defined perturbatively, in which all anharmonic terms are
treated as interactions. The partition function is expanded in
powers of expectation values of products of these interactions
which, in turn, are expanded into integrals over all Wick con-
tractions, the Feynman integrals. Each contraction represents
a Green function. For a Lagrangian of the form (40), the con-
tractions of two ξi’s contain a Heaviside step function, those
of one ξi and one ξ̇i contain a Dirac δ-function, and those
of two ξ̇i’s contain a function δ̇(t − t′). Thus, the Feynman
integrals run over products of distributions and are mathemat-
ically undefined. Fortunately, a unique definition has recently
been found. It is enforced by the necessary physical require-
ment that path integrals must be invariant under coordinate
transformations [24].

The Lagrangian is processed further with the help of
Darboux’s theorem [25]. This allows us to perform a non-
canonical transformation ξi 7→ (ζs, zr) which brings LR to
the canonical form

LR(ζ, ζ̇, z) = 1
2ζsωstζ̇

t −H ′
R(ζ, z) , (41)

where ωst is the canonical symplectic matrix in the reduced
s-dimensional space. Darboux’s theorem ensures that such
a transformation exists at least locally. The variables zr are
related to zero modes of the matrix f ij(ξ̂) which makes it
non-invertible. Each zero mode corresponds to a constraint
of the system. In Dirac’s language these would correspond
to the secondary constraints. Since there is no żr in the La-
grangian, the variable zr do not play any dynamical rôle and
can be eliminated using the equations of motion

∂H ′
R(ζ, z)
∂zr

= 0 . (42)

In general, H ′
R(ζ,z) is a nonlinear function of zr1 . One

now solves as many zr1 as possible in terms of remaining
z’s, which we label by zr2 , i.e.,

zr1 = ϕr1(ζ, zr2) . (43)

If H ′
R(ζ, z) happens to be linear in zr2 , we obtain the con-

straints

ϕr2(ζ) = 0 . (44)

Inserting the constraints (43) into (41) we obtain

LR(ζ, ζ̇,z) = 1
2ζsωstζ̇

t −H ′′
R(ζ)− zr2ϕr2(ζ) , (45)

with zr2 playing the rôle of Lagrange multipliers. We now
repeat the elimination procedure until there are no more z-
variables. The surviving variables represent the true physical
degrees of freedom. In the Dirac-Bergmann approach, these
would span the reduced phase space Γ∗. Use of the path in-
tegral may now proceed along the same lines as in Ref.[8].
In fact, when Darboux’s transformation is global it is possi-
ble to show [31] that the resultant path integral representation
coincides with the one in [8].

6 Summary
In this paper we have presented a path-integral formulation of
’t Hooft’s quantization procedure, in the line of what has been
done recently in Ref.[8]. With respect to our previous work,
we have here utilized the Faddeev-Jackiw treatment of singu-
lar Lagrangians [13] which present several advantages with
respect to the usual Dirac-Bergmann method for constrained
systems.

In particular, one does not require the Dirac-Bergmann
distinction of first and second class, primary and secondary
constraints used in [8]. The Faddeev-Jackiw method is also
convenient in imposing ’t Hooft’s information loss condition.

Although it appears that the Faddeev-Jackiw method al-
lows for considerable formal simplifications of the treatment,
more analysis is needed in order to compare with our pre-
vious results of Ref.[8]. This is object of work in progress
[31].

Note finally that according to analysis in Section 5, when
we start with the N -dimensional classical system (q vari-
ables) then the emergent quantum dynamics has N−1 dimen-
sions (ζ variables). This reduction of dimensionality reflects
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the information loss. Our result supports the strong version
of the holographic principle [7], namely that the deterministic
degrees of freedom of a system scale with the bulk, while the
emergent quantum degrees of freedom (i.e., truly observed
degrees of freedom) scale with the surface.

Acknowledgments
The authors acknowledge an instigating communication

with R. Jackiw and very helpful discussions with E. Gozzi,
J.M. Pons, and F. Scardigli. P.J. was financed by of the Min-
istry of Education of the Czech Republic under the research
plan MSM210000018. M.B. thanks MURST, INFN, INFM
for financial support. All of us acknowledge partial support
from the ESF Program COSLAB.

References
[1] S.L. Adler, Quantum Mechanics As an Emergent Phenom-

enon: The Statistical Dynamics of Global Unitary Invariant
Matrix Models As the Precursors of Quantum Field Theory
(Cambridge University Press, Cambridge, 2005).

[2] Decoherence and Entropy in Complex Systems, ed. by H.-
T. Elze, Lecture Notes in Physics, Vol. 633 (Springer-Verlag,
Berlin, 2004).

[3] G. ’t Hooft, J. Stat. Phys. 53, 323 (1988); Class. Quant. Grav.
13, 1023 (1996); Class. Quant. Grav. 16, 3263 (1999).

[4] G. ’t Hooft, in: 37th International School of Subnuclear
Physics, Erice, ed. by A. Zichichi (World Scientific, London,
1999), hep-th/0003005.

[5] G. ’t Hooft, Int. J. Theor. Phys. 42, 355 (2003); [hep-
th/0105105].

[6] G. ’t Hooft, gr-qc/9310026; Black holes and the dimensional-
ity of space-time, in: Proceedings of the Symposium The Os-
car Klein Centenary, 19–21 Sept. 1994, Stockholm, Sweden,
ed. by U. Lindström (World Scientific, London, 1995), p.122;
L. Susskind, L. Thorlacius, and J. Uglom, Phys. Rev. D 48,
3743 (1993).

[7] R. Bousso, Rev. Mod. Phys. 74, 825 (2002).

[8] M. Blasone, P. Jizba and H. Kleinert, accepted to Phys. Rev.
A, quant-ph/0409021.

[9] M. Blasone, P. Jizba and G. Vitiello, J. Phys. Soc. Jap. Suppl.
72, 50 (2003).

[10] H.-T. Elze, Phys. Lett. A 335, 258 (2005), hep-th/0411176;
Physica A 344, 478 (2004); Phys. Lett. A 310, 110
(2003); gr-qc/0307014; see also article in these proceedings,
Braz. J. Phys. (2005), in press. H.-T. Elze and O. Schipper,
Phys. Rev. D 66, 044020 (2002).

[11] J.J. Halliwell, Phys. Rev. D63, 085013 (2001).

[12] M. Blasone, P. Jizba and G. Vitiello, Phys. Lett. A 287,
205 (2001); quant-ph/0301031; M. Blasone and P. Jizba,
Can. J. Phys. 80, 645 (2002); M. Blasone, E. Celeghini,
P. Jizba and G. Vitiello, Phys. Lett. A 310, 393 (2003).

[13] L.D. Faddeev and R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988);
R. Jackiw, Diverse Topics in Theoretical and Mathematical
Physics (World Scientific, Singapore, 1995).

[14] P. A. M. Dirac, Can. J. Math. 2, 129 (1950); Proc. R. Soc.
London A 246, 326 (1958); Lectures in Quantum Mechanics
(Yeshiva University, New York, 1965); P. G. Bergmann, Phys.
Rev. 75, 680 (1949); P. G. Bergmann and J. H. M. Brunings,
Rev. Mod. Phys. 21, 480 (1949); J. L. Anderson and P. G.
Bergmann, Phys. Rev. 83, 1018 (1951).

[15] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics,
Polymer Physics, and Financial Markets, World Scientific,
Singapore, 2004, 4th extended edition, (http://www.physik.fu-
berlin.de/˜kleinert/b5).

[16] K. Sundermeyer, Constrained Dynamics with Applications to
Yang-Mills theory, General Relativity, Classical Spin, Dual
String Model (Springer-Verlag, Berlin, 1982).

[17] E. Gozzi, Phys. Lett. B 201, 525 (1988).

[18] E. Gozzi, M. Reuter, and W.D. Thacker, Phys. Rev. D 40, 3363
(1989). See also the discussion in Chapter 18 of the textbook
[15].

[19] C. DeWitt-Morette, A. Maheshwari, and B. Nelson, Phys. Rep.
50, 255 (1979).

[20] We are grateful to Prof E. Gozzi for bringing this point to our
attention.

[21] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena
(Oxford Univerity Press, Oxford, 2002).

[22] A. Salam and J. Strathdee, Nucl. Phys. B 76, 477 (1974).

[23] B.O. Koopman, Proc. Natl. Acad. Sci. (USA) 17, 315 (1931);
J. von Neumann, Ann. Math. 33, 587 (1932); 33, 789 (1932).

[24] H. Kleinert and A. Chervyakov, Phys. Lett. N 464, 257
(1999), hep-th/9906156; Phys. Lett. B 477, 373 (2000), quant-
ph/9912056; Phys. Lett. A 273, 1 (2000), quant-ph/0003095.
See also Chapter 10 of the textbook [15].

[25] A. Cannas da Silva, Lectures on symplectic geometry
(Springer-Verlag, Berlin, Heidelberg, 2001); V. Guillemin and
S. Sternberg, Symplectic techniques in physics (Cambridge
University Press, New York, 1993).

[26] See, e.g.: M. Lutzky, J. Phys. A 11, 249 (1978).
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