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We present theoretical aspects concerning the thermodynamics of an ideal bosonic gas trapped by a harmonic
potential. Working in the Grand Canonical ensemble we are able to properly identify the extensive thermody-
namic variable equivalent to the volume and the intensive thermodynamic variable equivalent to the pressure.
These are called the “harmonic volume” and the “harmonic pressure” and their physical meaning is discussed.
With these variables, the problem of Bose-Einstein condensation is studied in terms of the behavior of the corre-
sponding equation of state and in terms of measurable susceptibilities such as the heat capacities, the isothermal
compressibility and the coefficient of thermal expansion. From the analysis, an interesting analogy with Black-
Body radiation emerges, showing that at and below the critical temperature, the non-condensate fraction of
atoms behaves thermodynamically like a gas of massless particles.

I. INTRODUCTION from the mixed cloud of atoms are obtained from the analysis
of the images containing the density profiles.

An aspect that has not been fully explored concerns the
ﬁhermodynamics of the BEC in a harmonic trap. ldentifi-

The achievement of Bose-Einstein condensation (BEC) in . ; . ) . ; )
&tion ofextensiveandintensivemacroscopic variables (like

dilute atomic gases represents the establishment of seve I d tvel d their int tion i
new possibilities. A coherent sample of atoms occupying the/0'UME and pressure respective y) and their interconnection in

same quantum state has promoted the realization of coherefif equation of state ha_s not been_fully ap_premated. Here we
beams of matter waves[1]. The investigation of degenerat ISCUSS how th? extensive mechanical varlab_le, usually played
quantum gases provides a good testing ground for innume )y the volume, is replaced by the c_ube of the inverse ofthg fre-
able many-body theories developed along the last few decad@&ency .Of the trap. At the same “”?e’ there appears an inten-
within the context of explaining properties tfle and®He[2]. Sive variable, conjugate to the previous one, that replaces the

The field of BEC in trapped particles has evolved very rapidlyPr¢ssure- The latter variable we call the *harmonic pressure”,
exceeding the original expectations. BEC is indeed a ne nd we shall show that it is not only the formal analog of the

window into the quantum world and new topics related to ydrostatic pressure but also has the same physical meaning.

- - : That is, we shall see that this variable is the one responsible
BEC seem to be a constant in many important journals [3] ’ . o .
When an ideal gas is considered, BEC looks to be a paradig rthe mechamca_l equ|l|br!um (?f the flu!d, see R‘?fs-[ll' 12]
or further discussion on this point. The identification of such

of quantum statistical mechanics offering profound insights ™" . . ;
variables allows an easy analysis for a large variety of proper-

into macroscopic manifestations of quantum phenomena. .~ € . o A
Ctles including heat capacities, and other susceptibilities, and a

Many recently published theoretical papers deal with BE - . . .
. . more traditional view of BEC in a gas trapped by an inhomo-
for a harmonic trapped gas[4—6]. Normally, the main con- T .
geneous potential in terms of isothermal curves.

cern of those publications is with respect to the condensat
fraction of atoms, in which properties associated with zero- In this paper we consider an ideal bosonic gas trapped by
temperature BEC have been extensively explored. In this casg,harmonic potential. Using the traditional Grand Canonical
the condensate wave function is the solution of the non-linea@nsemble, the main thermodynamic properties are obtained.
Gross-Pitaevskii equation, and elementary excitations,[7] vorExtensive and intensive variables are properly identified al-
tex states[8] and coherence associated properties[9] are orl§wing for an analysis of the problem in terms of equations of
a few of the effects studied using different approaches. Howstate and susceptibilities. Investigating the properties of the
ever, little concern has been devoted to the non-condensaf@n-condensate fraction at and bel@\(critical temperature)
fraction present at f|n|te tempera‘[ures_ an intriguing behaVior iS Obtaine.d: the non-COHdensate C|0ud
In the case of finite temperature condensates we have tHfPeys the same thermodynamics of the well known Black-
situation where only part of the atomic cloud is participat-B0dy Radiation (BBR) problem. In other words, the non-
ing in the macroscopic occupation of the ground state, angondensate fraction of the harmonic trapped cloud behaves
its properties are the subject of current theoretical and evefi@rmodynamically as a gas of massless particles. This in-
experimental scrutiny. The main attention has been toward§iguing coincidence may reveal a more fundamental relation
the evaluation of density distributions[10]. In fact, the correctP€tween BEC and BBR, which certainly demands more con-
assignment of the two components of the bimodal distributiorsideration and experimental exploration.
to the condensate and non-condensate parts is a main experi-We start the paper providing a textbook-like treatment for a
mental advantage of the present alkalies condensates over tigas of bosons confined in a harmonic trap, with details given
ditional liquid-helium systems. All the extracted propertiesin Section Il to IV. Although there are already in the literature
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many discussions on the thermodynamics of these systemBpllowing the standard procedure, the average number of par-
see Ref.[13] for instance, the approach through the proper méicles N, the average internal eneryand the entropys, as
chanical variables here discussed and used has not been fuflynctions ofy, T, w, can be obtained:

done before. This article fills such a gap. The analysis is

then followed in Section V by the establishment of an anal- N — KT\ 3 -
ogy between the non-condensate atoms at and b&jawth “\hw 93(2), ™
the Black-Body radiation system. Finally, conclusions and
possible applications of these results are given. 5
KT
E=3KT | —
T () 92 ©
Il. THERMODYNAMICS OF AN IDEAL GAS OF BOSONS
IN A HARMONIC TRAP and
. . . . kT ®
An important feature associated with available traps of S=k 7o [404(2) — 0g3(2)] . 9)

atoms is that the confining potential can be safely approx-

imated by a harmonic-type dependence. Thus, taking hafrhese are the same formulae found by using a different ap-
monic traps as a good approach to reality, we start by comyroach. [4] The interesting aspect we want to point out is
sideringN bosons of massiin a 3D isotropic harmonic trap, - that, following standard thermodynamics, the right-hand-side

characterized by the Hamiltonian of Q in Eq.(6), must be equal to (minus) the product ofran
N , tensivethermodynamic variable times amtensivehermody-
Ay = <I§i + 1mcu2F’2) 1) namic variable. The former being the analog of the pressure,
.Zi 2m 2 while the latter equivalent to the volume. The physical in-

terpretation of those variable must be done with special care,
or, in terms of the number operatdis since the inhomogeneous potential does not allow for an sim-
ple characterization of pressure and volume.

v First, its clear that the frequenay of the trap is a ther-
hax(AY + A + A7) (2)  modynamic variable. Imagine an adiabatic “compression” or
“expansion” of the trap at constait, namely, a change of
the frequency of the trap without allowing for change of par-
ticles. From Eqgs.(7) and (9) we see that the system will heat
up or cool down. Further, also from Eqgs.(7)-(9), we find that
w3 mustbe anextensivevariable: N is by definition exten-
sive; therefore, ilN is changed ta\N with A > 0O, for T and
. u fixed, then, in order foE andSto be extensive they must
QW T,w) =kT Z In (1— efshw““%)w) (3)  also change tdE andAS. This can only be true if and only

1] if w3 — Aw 3. Thus,w 2 is extensive. Let us call it the
“harmonic volume™¥/,

Fin =

™M=

with the zero-point energy equal to zero.
It is straightforward to show[14] that in this case the Grand
Potential in the Grand Canonical ensemble is givendy=(

H/KT)

wherei, j,k are integers that run frofito co. By noticing that
the energy i€ = iw(i + j = k), we can perform the sums by 1

introducing a continuous density of stajg&)de. For a 3D V= o3 (10)
harmonic oscillator the density of statespi€) = £2/(hw)°.

Thus, the Grand Potential can be written as an integration re3ince the Grand Potenti@l must also be extensive, then, the
sulting in conjugate variable t8’ must be,

z

kT 1 i x3 _rp:_<aQ> , (11)
Q(H’T’w)iif(ﬁhw)?’ 0 dXe"*"‘—l “) oV TH

where, as usual, the zero-point energy contribution arisin

@nd from the expression for the Grand potential (6), this man-
fromi = j = k= 0has been excluded.

estly intensivevariable is

Introducing the Bose function, KT 3
P=KT(— ) (2. (12)
1 z 0 Xn—l FL
On(2) = m dxﬁ (5) . ) .
(N o zle- We shall call this quantity the “harmonic pressure”. Note that
i ) ) in full analogy with the usual hydrostatic pressure and usual
wherez = exp(a) is the fugacity, we can therefore write, volume[14] thatQ = —P% and, therefore the First Law of

- Thermodynamics for these systems is

3
QW T,0) = —kT (m) %(2). © dE = TdS— £dV + pdN. (13)
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That the quantitied’ and? do not have the units of volume Combining Egs.(17), (19) and (20), we obtain,

and pressure is irrelevant. Their product, however, has the 7
correct units of energy, as with any pair of conjugate variables. P — _}ws d3r (D ) |5(r)) P
The harmonic volume/ is certainly related to the spatial
extension of the system as we now discuss. First, we recall 3 31 <
that the particle density of the gas in the trap is given by[4] = wod éTrP(r) (1)

where in the second line an integration by parts was per-
formed. The physical meaning of the harmonic pressire
is clearer now. The first line of Eq.(21) tell us that the har-

1 _
P(r) = 30s72(ze =21, (14)
T

pressure tensor. But these are precisely the “definitions” of
A — h (15) “pressure”, see Ref.[16], in other wordB,is proportional to
= (2rmkT)1/2° the force (per area) that the fluid exerts on itself and against

the trap in order to maintain mechanical equilibrium. Notice

It is easy to see from Eq.(14) that the spatial extension of thighat if the gas were confined by rigid walls of voluie the

cloud is contained within a volum@&T /muw?)%2. Thatis, the  hydrostatic pressure is given = (1/3)TrP, obeying,

actual volume of the gas scales@s®. Notice that since this 7

spatial volume also depends on the temperature, it cannot be vl g3 }Trlf’ 22)

an independent thermodynamic variable. P= 3 7

Let us now analyze the physical meaning of the harmonic _ )

pressure?. By writing the Grand Potential in the form, in full analogy with Eq.(21). Thus, save for units, the hydro-

static pressure and the harmonic pressure have the same phys-

O — _KTInTre"N-BHn (16) ical meaning. From the point of view of Thermodynamics,
those are the intensive variables responsible for mechanical
with Hy given by Eq.(1), and making use of the definition of equilibrium in the fluid.
the harmonic pressure, Eq.(11), it follows straightforwardly Once we have all thermodynamic variabl83N, 7 and

that their conjugatesT, u, 2, we can proceed to find the rest of
the thermodynamic properties. In this article, we have cho-
P — gwg N Virap (1) sen to calculate the equations of state, the isotherms in the
3 i; trapi’i P — 9/ plane and the susceptibilities since those quantities can
> z 1 be measured in current experimental setups.
= 2w d¥p(r) Zmuw?r?, (17)

3 2

where in the first line the average is taken in the Grand Canon- IIl.  EQUATION OF STATE

ical Ensemble, and in the second line we used Eq.(14). Of

course, explicit evaluation of EQ.(17) yields the expression From the expressions for the harmonic pressti@nd the
Eq.(12). We now stress out the fact that, because the forceumber of particleN, Egs.(24) and (7) respectively, we can
exerted by the trap is felt everywhere by the gas, the lattecalculate the equation of stae= P(N/%/,T) and provide

is no longer uniform. That is, the particle densfiy(r) is  the isotherm® — 9 and the isochore® — T at constant num-

not constant everywhere. This has as a consequence that ther of particles. These are shown in Figs. 1 and 2. Note that
pressure is neither uniform. Instead, the stresses that the flutde qualitative structure of the equation of state is equal to
exerts on itself is given by a pressure tenB(r) that is nei-  the usual case of free bosons discussed in many textbook[14].
ther constant nor isotropic. Since the fluid is in mechanicalThat is, for large volumes (i.e. low densities), the isotherms

equilibrium, it must therefore be obeyed that[16] approach those of an ideal classical gas; as the volume is
. . lowered Bose-Einstein condensation sets in at a critical value
0-P(r) = £(r), (18)  given by the curveP?”’*® = constas shown in Fig. 1. Be-

o . ) low the critical value, only the non-condensate fraction of
where[]- P(r) is (minus) the force per unit volume that the a1oms exert pressure but this remains constant all the way to
fluid exerts on the volume?r aroundr and (r) is the force  zero harmonic volume at constant temperature. On the other
per unit volume exerted by the trap on the same spatial pointhand, for fixed density, the harmonic pressure is reduced as

o the temperature is lowered until it reaches the transition line

f(r) = —p(r)mwz?. 19)  p7-4=- const where all the isochores merge, and the pres-
sure vanishes as the temperatures tends to zero, see Fig. 2.
The explanation is the same as in usual free-BEC: below the
transition, as the harmonic volume is reduced (density in-
creased) the harmonic pressure is only temperature depen-
dent and the excess number of particles condensate into the

By taking the scalar product of Eq.(18) witland integrating
over all space, we obtain
Z Z
& (0-P(r)) = & f(r)r, (20)
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FIG. 1: Isotherms of theP(N/¥, T equation of state. Below the
transition line, the harmonic pressure remains constant. We use uni

h=k=1.
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FIG. 2: Isochores of the?(N/V, T equation of state. All the iso-
chores merge at the transition line. We use uhitsk = 1.
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Combination of these two yields
E =377 (25)

Since for high temperatures (i.e. in the classical limit) all the
Bose functions become equal, namgiyz) ~ exp(a), we find

that the equations of state approach those of a classical gas,
but of massless or ultrarrelativistic particles. This point will
also be left for the next section.

IV. SUSCEPTIBILITIES

Having identified the harmonic volume and pressure we can
now calculate the heat capacities at constant harmonic volume
and pressureC,, andCyp; the isothermal compressibility at
constant number of particlegy; and the coefficient of ther-
fgal expansiorat. One must be careful, however, to recall
that the formulas given by Egs.(7)-(9) and (12) are expressed
as functions ofl andp and the susceptibilities are defined at
constant number of particldd. Moreover, for temperatures
equal and lower to the critical temperatufeg Te, with

the chemical potential equals zefo= 0, and, therefore, the
number of particles is no longer a thermodynamic variable.
This is the phenomenon of BEC in which the thermal proper-
ties of the gas are determined by the particiesin the con-
densateNyc and its number cannot be arbitrarily prescribed
because it is already fixed by the temperature and the fre-
guency of the trap, see Eq.(7),

3
Nnc(T) = (ﬁ?) gs(1). (27)

Therefore, for temperatures abolg the susceptibilities can
be calculated directly from Egs.(7)-(9) and (12) setting O.
For temperatures beloW, the entropy depends only o3
andT and the harmonic pressure only dependsToand is

i = j = k= 0ground state. The main difference of our analy-jngependent of’ andN:
sis with respect to the free-BEC case is that the in the latter

the critical line scale apV®/3 = constand pT—>/2.

S=k k—T 34 (1) forT <T, (28)
= o 04 < le

and

From the expressions given in Egs.(7),(8) and (12) we can

deduce further relationships among the harmonic variables
and the internal energy. First, we find that the internal energy

may be written as

E — ankT %@
93(2)

and the pressure as

(23)

(24)

kT\?
P=kT - 04(1) for T < Te. (29)
With the above procedure, we find

94(2) 30(93(2)} for T>T;} (30)

03(2) 02(2)

cv—stP

and

Cp =12V (kT)3ga(1) for T < T, (32)
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FIG. 3: Heat capacity at constant harmonic volu@eg, as a func-
tion of temperaturd /T;. Note the discontinuity a; and the classi-
cal equipartition valu€,, — 3NK at high temperature.

FIG. 4: Heat capacity at constant harmonic presstye,as a func-
tion of temperaturd /T.. Note the discontinuity af; and the clas-
sical valueCp — 4NK at high temperature BeloW;, C, diverges
since the harmonic pressure only depends on temperature.

whereT; andT; are the values of; approached from above
and below. The discontinuity af;, Cy(Tg ) — Co(TSH),
agrees with the previous calculation of Ref.[4]. The behav-

ior of C,, as a function of temperature is shown in Fig. 3. 124
Similarly,
KT
CfP — 4ng4(22)gz(z) |:4g4(z) _3a gB(Z) fOr T 2 TC+. 0.8 -
952 [ 92 %(2)
(32)

Curie Law ~ 1/T

For T < T, , one finds thaCp = . This is not surprising
since, as we indicate above, beldwthe pressurenly de-
pends on temperature, and therefore,

0S .
(aT>1>°° forT <T. (33) 0

That is, if the pressure is kept constant, the temperature can- o _

not be raised no matter how much heat one puts into the Syng 5: Isothermal cqmpreSSIk_)lllty,T, asa fUnCt.lon of temperature
tem. Note that the ratiﬁ?/C(V — 4/3 for high temperatures; T/Tc. Below T, KT dlverge§ since the harmonic pressure becomes
again, this result is the same of an ultrarrelativistic gas. Fig. A"dependent of the harmonic volume, at constant temperature.
showsCyp.

For the thermal expansion coefficient,atr =
(1/9)(0V/dT )N , ONe gets

The isothermal compressibility, defined agt =

—(1/9)(3V/0P) 1, is given by g — 120 {494(2) _393(2)} or T>TH (35
T w0 (e 2T (39)
_ V9@ g 34 :
Kt = NKT ga(2) or I =~1¢. (B4  ForT < T;, ar = o, because at fixed pressure, the tem-

perature cannot be changed. Also, for high temperatures
ForT < T, , one finds again thatr = . The reason for this 0T ~ 1/T, which is the result of an ideal classical case[15].
value comes from the fact that the pressure is independent &f9. 6 showsor.
the volume for this interval of temperatures (see Fig. 1). For
high temperature one finds, as expected, the Curie law-like The fact that the susceptibilities, excepp, become infi-
behavior of an ideal classical gas. Fig. 5 shaws nite belowT are an indication that the gastin the conden-
sate behaves in a peculiar way. In the next section, we shall
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some thermodynamic properties in the classical limit resem-

204 ble those of a gas of ultrarrelativistic particles.
An important reason for this similarity, of course, is the fact
aT ] that zero chemical potential means that the number of particles
15 is no longer a conserved thermodynamic variable. However,

this also happens in the usual free-BEC problem without any
: identity with BBR. Another reason may be due to the fact that
IEE I the bosons in the harmonic trap as well as the photons in a cav-

: ity can be thought of as harmonic oscillators (and expressed as
such in a second-quantization scheme). These two points to-
gether may suffice to account for the analogy for temperatures
at and below the critical temperature. Although we believe
there may be a deeper meaning in the analogy here pointed
out, we have only mentioned several interesting aspects about
it and we shall leave further analysis to future work. A conve-
nience that comes out from such an analogy is the simple way
to obtain all the thermodynamic properties.

classical behavior ~ 1/T

0.5

0.0

FIG. 6: Coefficient of thermal expansioay, as a function of tem-
peratureT /Tc. Below T¢, at diverges since temperature becomes
independent of the harmonic volume, at constant harmonic pressure.

VI. CONCLUSIONS

discuss how these peculiarities are related to the deep analogywe have provided a textbook-like approach to evaluate the
of this gas with a gas of photons. thermodynamics for a confined boson gas in a harmonic trap.
The identification of an extensive variable (“harmonic vol-
ume”) and an intensive variable (“harmonic pressure”) allow
V. THERMODYNAMIC ANALOGY OF A GAS OF to view the problem of BEC in a harmonic potential through
PHOTONS WITH THE NON-CONDENSATE FRACTION OF the corresponding equation of stae,= ?(N/¥.,T). The
ATOMS corresponding plots (Fig. 1) give a very intuitive general pic-
ture of the problem. Important properties such as the suscep-
In this section we briefly explore the very close and intrigu-tibilities and the heat capacities can also be easily evaluated.
ing analogy between the Black-Body radiation problem andSince in most of the current experiments what is measured
the BEC case in a harmonic potential. We shall see that, a¢ the the particle density(F), we see from Eq.(17) that the
and belowT, the gas of massive bosons in the non-condensatgarmonic pressure can readily be measured, opening the way
fraction behaves thermodynamicaligentically to a gas of  for an additional type of measurements, and another source of

photons in thermal equilibrium inside a cavity. information, of cold gases of alkaline atoms. As a matter of
We begin by recalling that the Grand Potential in the Black-fact, recently this approach was exploited by Magakhet al.
Body radiation problem can be cast as,[14] in their achievement of BEC in Brazil[11].

An interesting point not usually mentioned in the current
literature is that at and beloW the remaining atoms not in
the condensate behave likeresslesparticle gas presenting
all the thermodynamic functions equal to those of Black-Body
whereV is the actual volume of the cavity. Compare this ex-radiation. One may think as if the non-condensate fraction
pression with equation (6) fa? of the gas of bosons in the were a photon-like gas that @t its particles acquire mass
harmonic trap. The latter expression, dpitrarily multiply-  (i.e. when the chemical potential becomes non-zero). Besides
ing and dividing byc®, becomes being an interesting analogy, this behavior may carry with it a

o3 /T 2 more fundamental explanation.

. TIC Finally, it is of interest to mention that, even though, the de-
Q. T, 0) = —kT ( ) (hc) %(2)- (37) pendence on temperature and other variables is different in the
present problem from the case of a gas of particles contained

The quantity(2mc/w)® now does have units of volume and, by in a volumeV, ans this will reflect on quantitative measur-

comparing Eq.(37) with Eq.(36) of the free case, we see thatble differences, from another perspective, the physics is es-

indeed it takes the role of the volume. The rest of the terms irsentially very similar if the proper thermodynamic variables
Eq.(37) now have units of pressure, and its dependence withre elucidated and used. On one hand, we showed in this pa-
T is that of a radiation pressure. Since at and below the BE@er that the physical origin of the harmonic pressure and the
transition the chemical potential becomes zeres 0, it fol- “usual” hydrostatic pressure is essentially the same. Here, we
lows from the above two equations that the thermodynamicsvould like to discuss another important aspect regarding the

of the photon gas and of the non-condensate fraction of atomele of the de Broglie wavelength: we can see from Eqgs.(6),

are identical. And as we saw in the previous Section, eveli7)-(9), that the thermal de Broglie wavelength does not ap-

kT\?
QBB(T,V) = —-16rkTV (hC) g4(1) (36)

w
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pear naturally. The thermodynamic quantity that determinesis T3/2 while in the harmonic trap goes &°. However,
whether the system is in the quantum or in the classical regimby introducing the effective volume of the gas in the trap as

is now, see Eq.(7), Vetf = (2rkT /mw?)®/2, as discussed in Section 2, we can re-
. cast the condition of the harmonic trap as
hw
Nl—=] . (38) 3
<kT) RS VRS (40)
kT Vet

If this quantity is much less than one, the system is classical;
quantum effects appear when this quantity is smaller or of thgys while the dependence on the temperature is different,
order of one. This form_ula is to be contrasted with the usuajpe physical meaning remains: quantum effects are important
one of a gas of bosons in a vessel of volwhe when the de Broglie wavelength is comparable withaker-
23 agedistance among particlé¥er/N)Y3.

3

N
V&

(39)
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