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We present theoretical aspects concerning the thermodynamics of an ideal bosonic gas trapped by a harmonic
potential. Working in the Grand Canonical ensemble we are able to properly identify the extensive thermody-
namic variable equivalent to the volume and the intensive thermodynamic variable equivalent to the pressure.
These are called the “harmonic volume” and the “harmonic pressure” and their physical meaning is discussed.
With these variables, the problem of Bose-Einstein condensation is studied in terms of the behavior of the corre-
sponding equation of state and in terms of measurable susceptibilities such as the heat capacities, the isothermal
compressibility and the coefficient of thermal expansion. From the analysis, an interesting analogy with Black-
Body radiation emerges, showing that at and below the critical temperature, the non-condensate fraction of
atoms behaves thermodynamically like a gas of massless particles.

I. INTRODUCTION

The achievement of Bose-Einstein condensation (BEC) in
dilute atomic gases represents the establishment of several
new possibilities. A coherent sample of atoms occupying the
same quantum state has promoted the realization of coherent
beams of matter waves[1]. The investigation of degenerate
quantum gases provides a good testing ground for innumer-
able many-body theories developed along the last few decades
within the context of explaining properties of4He and3He[2].
The field of BEC in trapped particles has evolved very rapidly
exceeding the original expectations. BEC is indeed a new
window into the quantum world and new topics related to
BEC seem to be a constant in many important journals [3].
When an ideal gas is considered, BEC looks to be a paradigm
of quantum statistical mechanics offering profound insights
into macroscopic manifestations of quantum phenomena.

Many recently published theoretical papers deal with BEC
for a harmonic trapped gas[4–6]. Normally, the main con-
cern of those publications is with respect to the condensate
fraction of atoms, in which properties associated with zero-
temperature BEC have been extensively explored. In this case,
the condensate wave function is the solution of the non-linear
Gross-Pitaevskii equation, and elementary excitations,[7] vor-
tex states[8] and coherence associated properties[9] are only
a few of the effects studied using different approaches. How-
ever, little concern has been devoted to the non-condensate
fraction present at finite temperatures.

In the case of finite temperature condensates we have the
situation where only part of the atomic cloud is participat-
ing in the macroscopic occupation of the ground state, and
its properties are the subject of current theoretical and even
experimental scrutiny. The main attention has been towards
the evaluation of density distributions[10]. In fact, the correct
assignment of the two components of the bimodal distribution
to the condensate and non-condensate parts is a main experi-
mental advantage of the present alkalies condensates over tra-
ditional liquid-helium systems. All the extracted properties

from the mixed cloud of atoms are obtained from the analysis
of the images containing the density profiles.

An aspect that has not been fully explored concerns the
thermodynamics of the BEC in a harmonic trap. Identifi-
cation ofextensiveand intensivemacroscopic variables (like
volume and pressure respectively) and their interconnection in
an equation of state has not been fully appreciated. Here we
discuss how the extensive mechanical variable, usually played
by the volume, is replaced by the cube of the inverse of the fre-
quency of the trap. At the same time, there appears an inten-
sive variable, conjugate to the previous one, that replaces the
pressure. The latter variable we call the “harmonic pressure”,
and we shall show that it is not only the formal analog of the
hydrostatic pressure but also has the same physical meaning.
That is, we shall see that this variable is the one responsible
for the mechanical equilibrium of the fluid; see Refs.[11, 12]
for further discussion on this point. The identification of such
variables allows an easy analysis for a large variety of proper-
ties including heat capacities, and other susceptibilities, and a
more traditional view of BEC in a gas trapped by an inhomo-
geneous potential in terms of isothermal curves.

In this paper we consider an ideal bosonic gas trapped by
a harmonic potential. Using the traditional Grand Canonical
ensemble, the main thermodynamic properties are obtained.
Extensive and intensive variables are properly identified al-
lowing for an analysis of the problem in terms of equations of
state and susceptibilities. Investigating the properties of the
non-condensate fraction at and belowTc (critical temperature)
an intriguing behavior is obtained: the non-condensate cloud
obeys the same thermodynamics of the well known Black-
Body Radiation (BBR) problem. In other words, the non-
condensate fraction of the harmonic trapped cloud behaves
thermodynamically as a gas of massless particles. This in-
triguing coincidence may reveal a more fundamental relation
between BEC and BBR, which certainly demands more con-
sideration and experimental exploration.

We start the paper providing a textbook-like treatment for a
gas of bosons confined in a harmonic trap, with details given
in Section II to IV. Although there are already in the literature
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many discussions on the thermodynamics of these systems,
see Ref.[13] for instance, the approach through the proper me-
chanical variables here discussed and used has not been fully
done before. This article fills such a gap. The analysis is
then followed in Section V by the establishment of an anal-
ogy between the non-condensate atoms at and belowTc with
the Black-Body radiation system. Finally, conclusions and
possible applications of these results are given.

II. THERMODYNAMICS OF AN IDEAL GAS OF BOSONS
IN A HARMONIC TRAP

An important feature associated with available traps of
atoms is that the confining potential can be safely approx-
imated by a harmonic-type dependence. Thus, taking har-
monic traps as a good approach to reality, we start by con-
sideringN bosons of massm in a 3D isotropic harmonic trap,
characterized by the Hamiltonian

ĤN =
N

∑
i=1

(
~p2

i

2m
+

1
2

mω2~r2
)

(1)

or, in terms of the number operatorsn̂,

ĤN =
N

∑
i=1

~ω(n̂x
i + n̂y

i + n̂z
i ) (2)

with the zero-point energy equal to zero.
It is straightforward to show[14] that in this case the Grand

Potential in the Grand Canonical ensemble is given by (α =
µ/kT)

Ω(µ,T,ω) = kT∑
i jk

ln
(

1−e−β~ω(i+ j+k)+α
)

(3)

wherei, j,k are integers that run from0 to ∞. By noticing that
the energy isε = ~ω(i + j = k), we can perform the sums by
introducing a continuous density of statesρ(ε)dε. For a 3D
harmonic oscillator the density of states isρ(ε) = ε2/(~ω)3.
Thus, the Grand Potential can be written as an integration re-
sulting in

Ω(µ,T,ω) =−kT
6

1
(β~ω)3

Z ∞

0
dx

x3

ex−α−1
(4)

where, as usual, the zero-point energy contribution arising
from i = j = k = 0 has been excluded.

Introducing the Bose function,

gn(z) =
1

Γ(n)

Z ∞

0
dx

xn−1

z−1ex−1
(5)

wherez= exp(α) is the fugacity, we can therefore write,

Ω(µ,T,ω) =−kT

(
kT
~ω

)3

g4(z). (6)

Following the standard procedure, the average number of par-
ticles N, the average internal energyE and the entropyS, as
functions ofµ,T,ω, can be obtained:

N =
(

kT
~ω

)3

g3(z), (7)

E = 3kT

(
kT
~ω

)3

g4(z) (8)

and

S= k

(
kT
~ω

)3

[4g4(z)−αg3(z)] . (9)

These are the same formulae found by using a different ap-
proach. [4] The interesting aspect we want to point out is
that, following standard thermodynamics, the right-hand-side
of Ω in Eq.(6), must be equal to (minus) the product of anin-
tensivethermodynamic variable times anextensivethermody-
namic variable. The former being the analog of the pressure,
while the latter equivalent to the volume. The physical in-
terpretation of those variable must be done with special care,
since the inhomogeneous potential does not allow for an sim-
ple characterization of pressure and volume.

First, its clear that the frequencyω of the trap is a ther-
modynamic variable. Imagine an adiabatic “compression” or
“expansion” of the trap at constantN, namely, a change of
the frequency of the trap without allowing for change of par-
ticles. From Eqs.(7) and (9) we see that the system will heat
up or cool down. Further, also from Eqs.(7)-(9), we find that
ω−3 mustbe anextensivevariable: N is by definition exten-
sive; therefore, ifN is changed toλN with λ > 0, for T and
µ fixed, then, in order forE andS to be extensive they must
also change toλE andλS. This can only be true if and only
if ω−3 → λω−3. Thus,ω−3 is extensive. Let us call it the
“harmonic volume”V ,

V =
1

ω3 . (10)

Since the Grand PotentialΩ must also be extensive, then, the
conjugate variable toV must be,

P =−
(

∂Ω
∂V

)

T,µ
, (11)

and from the expression for the Grand potential (6), this man-
ifestly intensivevariable is

P = kT

(
kT
~

)3

g4(z). (12)

We shall call this quantity the “harmonic pressure”. Note that
in full analogy with the usual hydrostatic pressure and usual
volume[14] thatΩ = −P V and, therefore the First Law of
Thermodynamics for these systems is

dE = TdS−P dV +µdN. (13)
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That the quantitiesV andP do not have the units of volume
and pressure is irrelevant. Their product, however, has the
correct units of energy, as with any pair of conjugate variables.

The harmonic volumeV is certainly related to the spatial
extension of the system as we now discuss. First, we recall
that the particle density of the gas in the trap is given by[4]

ρ(r) =
1

λ3/2
T

g3/2(ze−βVtrap(r)), (14)

whereVtrap(r) = (1/2)mω2r2 is the potential energy of the
trap andλT is the thermal de Broglie wavelength,

λT =
h

(2πmkT)1/2
. (15)

It is easy to see from Eq.(14) that the spatial extension of this
cloud is contained within a volume(kT/mω2)3/2. That is, the
actual volume of the gas scales asω−3. Notice that since this
spatial volume also depends on the temperature, it cannot be
an independent thermodynamic variable.

Let us now analyze the physical meaning of the harmonic
pressureP . By writing the Grand Potential in the form,

Ω =−kT lnTreαN̂−βĤN (16)

with HN given by Eq.(1), and making use of the definition of
the harmonic pressure, Eq.(11), it follows straightforwardly
that

P =
2
3

ω3

〈
N

∑
i=1

Vtrap(r i)

〉

=
2
3

ω3
Z

d3r ρ(r)
1
2

mω2r2, (17)

where in the first line the average is taken in the Grand Canon-
ical Ensemble, and in the second line we used Eq.(14). Of
course, explicit evaluation of Eq.(17) yields the expression
Eq.(12). We now stress out the fact that, because the force
exerted by the trap is felt everywhere by the gas, the latter
is no longer uniform. That is, the particle densityρth(r) is
not constant everywhere. This has as a consequence that the
pressure is neither uniform. Instead, the stresses that the fluid
exerts on itself is given by a pressure tensorP̃(r) that is nei-
ther constant nor isotropic. Since the fluid is in mechanical
equilibrium, it must therefore be obeyed that[16]

∇ · P̃(r) = ~f (~r), (18)

where∇ · P̃(r) is (minus) the force per unit volume that the
fluid exerts on the volumed3r around~r and~f (r) is the force
per unit volume exerted by the trap on the same spatial point,

~f (~r) =−ρ(r)mω2~r. (19)

By taking the scalar product of Eq.(18) with~r and integrating
over all space, we obtain

Z
d3r

(
∇ · P̃(r)

) ·~r =
Z

d3r ~f (r) ·~r, (20)

Combining Eqs.(17), (19) and (20), we obtain,

P = −1
3

ω3
Z

d3r
(
∇ · P̃(r)

) ·~r

= ω3
Z

d3r
1
3

TrP̃(r) (21)

where in the second line an integration by parts was per-
formed. The physical meaning of the harmonic pressureP
is clearer now. The first line of Eq.(21) tell us that the har-
monic pressure is the total virial of the internal force and from
the second line we find that it is the (invariant) trace of the
pressure tensor. But these are precisely the “definitions” of
“pressure”, see Ref.[16], in other words,P is proportional to
the force (per area) that the fluid exerts on itself and against
the trap in order to maintain mechanical equilibrium. Notice
that if the gas were confined by rigid walls of volumeV, the
hydrostatic pressure is given byp = (1/3)TrP̃, obeying,

p = V−1
Z

d3r
1
3

TrP̃, (22)

in full analogy with Eq.(21). Thus, save for units, the hydro-
static pressure and the harmonic pressure have the same phys-
ical meaning. From the point of view of Thermodynamics,
those are the intensive variables responsible for mechanical
equilibrium in the fluid.

Once we have all thermodynamic variablesS,N,V and
their conjugatesT,µ,P , we can proceed to find the rest of
the thermodynamic properties. In this article, we have cho-
sen to calculate the equations of state, the isotherms in the
P −V plane and the susceptibilities since those quantities can
be measured in current experimental setups.

III. EQUATION OF STATE

From the expressions for the harmonic pressureP and the
number of particlesN, Eqs.(24) and (7) respectively, we can
calculate the equation of stateP = P (N/V ,T) and provide
the isothermsP −V and the isochoresP−T at constant num-
ber of particles. These are shown in Figs. 1 and 2. Note that
the qualitative structure of the equation of state is equal to
the usual case of free bosons discussed in many textbook[14].
That is, for large volumes (i.e. low densities), the isotherms
approach those of an ideal classical gas; as the volume is
lowered Bose-Einstein condensation sets in at a critical value
given by the curveP V 4/3 = constas shown in Fig. 1. Be-
low the critical value, only the non-condensate fraction of
atoms exert pressure but this remains constant all the way to
zero harmonic volume at constant temperature. On the other
hand, for fixed density, the harmonic pressure is reduced as
the temperature is lowered until it reaches the transition line
P T−4 = const, where all the isochores merge, and the pres-
sure vanishes as the temperatures tends to zero, see Fig. 2.
The explanation is the same as in usual free-BEC: below the
transition, as the harmonic volume is reduced (density in-
creased) the harmonic pressure is only temperature depen-
dent and the excess number of particles condensate into the
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FIG. 1: Isotherms of theP (N/V ,T equation of state. Below the
transition line, the harmonic pressure remains constant. We use units
~= k = 1.
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FIG. 2: Isochores of theP (N/V ,T equation of state. All the iso-
chores merge at the transition line. We use units~= k = 1.

i = j = k = 0 ground state. The main difference of our analy-
sis with respect to the free-BEC case is that the in the latter
the critical line scale aspV5/3 = constandpT−5/2.

From the expressions given in Eqs.(7),(8) and (12) we can
deduce further relationships among the harmonic variables
and the internal energy. First, we find that the internal energy
may be written as

E = 3NkT
g4(z)
g3(z)

(23)

and the pressure as

P =
NkT
V

g4(z)
g3(z)

. (24)

Combination of these two yields

E = 3P V (25)

Since for high temperatures (i.e. in the classical limit) all the
Bose functions become equal, namelygn(z)≈ exp(α), we find
that the equations of state approach those of a classical gas,
but of massless or ultrarrelativistic particles. This point will
also be left for the next section.

IV. SUSCEPTIBILITIES

Having identified the harmonic volume and pressure we can
now calculate the heat capacities at constant harmonic volume
and pressure,CV andCP ; the isothermal compressibility at
constant number of particles,κT ; and the coefficient of ther-
mal expansionαT . One must be careful, however, to recall
that the formulas given by Eqs.(7)-(9) and (12) are expressed
as functions ofT andµ and the susceptibilities are defined at
constant number of particlesN. Moreover, for temperatures
equal and lower to the critical temperature,T ≤ Tc, with

Tc =
~ω
k

(
N

g3(1)

)1/3

, (26)

the chemical potential equals zero,µ = 0, and, therefore, the
number of particles is no longer a thermodynamic variable.
This is the phenomenon of BEC in which the thermal proper-
ties of the gas are determined by the particlesnot in the con-
densateNNC and its number cannot be arbitrarily prescribed
because it is already fixed by the temperature and the fre-
quency of the trap, see Eq.(7),

NNC(T) =
(
~ω
kT

)3

g3(1). (27)

Therefore, for temperatures aboveTc, the susceptibilities can
be calculated directly from Eqs.(7)-(9) and (12) settingα 6= 0.
For temperatures belowTc, the entropy depends only onω−3

andT and the harmonic pressure only depends onT and is
independent ofV andN:

S= k

(
kT
~ω

)3

4g4(1) forT ≤ Tc (28)

and

P = kT

(
kT
~

)3

g4(1) for T ≤ Tc. (29)

With the above procedure, we find

CV = 3Nk

[
4

g4(z)
g3(z)

−3α
g3(z)
g2(z)

]
for T ≥ T+

c (30)

and

CV = 12kV (kT)3g4(1) for T ≤ T−c , (31)
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FIG. 3: Heat capacity at constant harmonic volume,CV , as a func-
tion of temperatureT/Tc. Note the discontinuity atTc and the classi-
cal equipartition valueCV → 3NK at high temperature.

whereT+
c andT−c are the values ofTc approached from above

and below. The discontinuity atTc, CV (T−c )−CV (T+
c ),

agrees with the previous calculation of Ref.[4]. The behav-
ior of CV as a function of temperature is shown in Fig. 3.
Similarly,

CP = 4Nk
g4(z)g2(z)

g2
3(z)

[
4

g4(z)
g3(z)

−3α
g3(z)
g2(z)

]
for T ≥ T+

c .

(32)
For T ≤ T−c , one finds thatCP = ∞. This is not surprising
since, as we indicate above, belowTc the pressureonly de-
pends on temperature, and therefore,

(
∂S
∂T

)

P
= ∞ forT ≤ Tc. (33)

That is, if the pressure is kept constant, the temperature can-
not be raised no matter how much heat one puts into the sys-
tem. Note that the ratioCP /CV → 4/3 for high temperatures;
again, this result is the same of an ultrarrelativistic gas. Fig. 4
showsCP .

The isothermal compressibility, defined asκT =
−(1/V )(∂V /∂P )T,N, is given by

κT =
V

NkT
g2(z)
g3(z)

for T ≥ T+
c . (34)

For T ≤ T−c , one finds again thatκT = ∞. The reason for this
value comes from the fact that the pressure is independent of
the volume for this interval of temperatures (see Fig. 1). For
high temperature one finds, as expected, the Curie law-like
behavior of an ideal classical gas. Fig. 5 showsκT .
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FIG. 4: Heat capacity at constant harmonic pressure,CP , as a func-
tion of temperatureT/Tc. Note the discontinuity atTc and the clas-
sical valueCP → 4NK at high temperature BelowTc, CP diverges
since the harmonic pressure only depends on temperature.
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FIG. 5: Isothermal compressibility,κT , as a function of temperature
T/Tc. Below Tc, κT diverges since the harmonic pressure becomes
independent of the harmonic volume, at constant temperature.

For the thermal expansion coefficient, αT =
(1/V )(∂V /∂T)P ,N , one gets

αT =
1
T

g2(z)
g3(z)

[
4

g4(z)
g3(z)

−3
g3(z)
g2(z)

]
for T ≥ T+

c . (35)

For T ≤ T−c , αT = ∞, because at fixed pressure, the tem-
perature cannot be changed. Also, for high temperatures
αT ≈ 1/T, which is the result of an ideal classical case[15].
Fig. 6 showsαT .

The fact that the susceptibilities, exceptCV , become infi-
nite belowTc are an indication that the gasnot in the conden-
sate behaves in a peculiar way. In the next section, we shall
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FIG. 6: Coefficient of thermal expansion,αT , as a function of tem-
peratureT/Tc. Below Tc, αT diverges since temperature becomes
independent of the harmonic volume, at constant harmonic pressure.

discuss how these peculiarities are related to the deep analogy
of this gas with a gas of photons.

V. THERMODYNAMIC ANALOGY OF A GAS OF
PHOTONS WITH THE NON-CONDENSATE FRACTION OF

ATOMS

In this section we briefly explore the very close and intrigu-
ing analogy between the Black-Body radiation problem and
the BEC case in a harmonic potential. We shall see that, at
and belowTc, the gas of massive bosons in the non-condensate
fraction behaves thermodynamicallyidentically to a gas of
photons in thermal equilibrium inside a cavity.

We begin by recalling that the Grand Potential in the Black-
Body radiation problem can be cast as,[14]

ΩBB(T,V) =−16πkTV

(
kT
hc

)3

g4(1) (36)

whereV is the actual volume of the cavity. Compare this ex-
pression with equation (6) forΩ of the gas of bosons in the
harmonic trap. The latter expression, byarbitrarily multiply-
ing and dividing byc3, becomes

Ω(µ,T,ω) =−kT

(
2πc
ω

)3(
kT
hc

)3

g4(z). (37)

The quantity(2πc/ω)3 now does have units of volume and, by
comparing Eq.(37) with Eq.(36) of the free case, we see that
indeed it takes the role of the volume. The rest of the terms in
Eq.(37) now have units of pressure, and its dependence with
T is that of a radiation pressure. Since at and below the BEC
transition the chemical potential becomes zero,α = 0, it fol-
lows from the above two equations that the thermodynamics
of the photon gas and of the non-condensate fraction of atoms
are identical. And as we saw in the previous Section, even

some thermodynamic properties in the classical limit resem-
ble those of a gas of ultrarrelativistic particles.

An important reason for this similarity, of course, is the fact
that zero chemical potential means that the number of particles
is no longer a conserved thermodynamic variable. However,
this also happens in the usual free-BEC problem without any
identity with BBR. Another reason may be due to the fact that
the bosons in the harmonic trap as well as the photons in a cav-
ity can be thought of as harmonic oscillators (and expressed as
such in a second-quantization scheme). These two points to-
gether may suffice to account for the analogy for temperatures
at and below the critical temperature. Although we believe
there may be a deeper meaning in the analogy here pointed
out, we have only mentioned several interesting aspects about
it and we shall leave further analysis to future work. A conve-
nience that comes out from such an analogy is the simple way
to obtain all the thermodynamic properties.

VI. CONCLUSIONS

We have provided a textbook-like approach to evaluate the
thermodynamics for a confined boson gas in a harmonic trap.
The identification of an extensive variable (“harmonic vol-
ume”) and an intensive variable (“harmonic pressure”) allow
to view the problem of BEC in a harmonic potential through
the corresponding equation of state,P = P (N/V ,T). The
corresponding plots (Fig. 1) give a very intuitive general pic-
ture of the problem. Important properties such as the suscep-
tibilities and the heat capacities can also be easily evaluated.
Since in most of the current experiments what is measured
is the the particle densityρ(~r), we see from Eq.(17) that the
harmonic pressure can readily be measured, opening the way
for an additional type of measurements, and another source of
information, of cold gases of alkaline atoms. As a matter of
fact, recently this approach was exploited by Magalhães et al.
in their achievement of BEC in Brazil[11].

An interesting point not usually mentioned in the current
literature is that at and belowTc the remaining atoms not in
the condensate behave like amasslessparticle gas presenting
all the thermodynamic functions equal to those of Black-Body
radiation. One may think as if the non-condensate fraction
were a photon-like gas that atTc its particles acquire mass
(i.e. when the chemical potential becomes non-zero). Besides
being an interesting analogy, this behavior may carry with it a
more fundamental explanation.

Finally, it is of interest to mention that, even though, the de-
pendence on temperature and other variables is different in the
present problem from the case of a gas of particles contained
in a volumeV, ans this will reflect on quantitative measur-
able differences, from another perspective, the physics is es-
sentially very similar if the proper thermodynamic variables
are elucidated and used. On one hand, we showed in this pa-
per that the physical origin of the harmonic pressure and the
“usual” hydrostatic pressure is essentially the same. Here, we
would like to discuss another important aspect regarding the
role of the de Broglie wavelength: we can see from Eqs.(6),
(7)-(9), that the thermal de Broglie wavelength does not ap-
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pear naturally. The thermodynamic quantity that determines
whether the system is in the quantum or in the classical regime
is now, see Eq.(7),

N

(
~ω
kT

)3

. (38)

If this quantity is much less than one, the system is classical;
quantum effects appear when this quantity is smaller or of the
order of one. This formula is to be contrasted with the usual
one of a gas of bosons in a vessel of volumeV,

N
λ3

T

V
, (39)

with λT the thermal de Broglie wavelength, Eq.(15). From
here, we see the very well known fact that the “usual” de-
pendence of the number of particles on the temperature goes

as T3/2 while in the harmonic trap goes asT3. However,
by introducing the effective volume of the gas in the trap as
Ve f f = (2πkT/mω2)3/2, as discussed in Section 2, we can re-
cast the condition of the harmonic trap as

N

(
~ω
kT

)3

= N
λ3

T

Ve f f
. (40)

Thus, while the dependence on the temperature is different,
the physical meaning remains: quantum effects are important
when the de Broglie wavelength is comparable with theaver-
agedistance among particles(Ve f f/N)1/3.
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