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We evaluate the quantum electromagnetic field correlators associated with the electromagnetic vacuum dis-
torted by the presence of two plane parallel conducting walls and in the presence of a conducting wall parallel
to a perfectly magnetically permeable one. Regularization is performed through the generalized zeta funtion
technique. Results are applied to rederive the atractive and repulsive Casimir effect through Maxwell stress
tensor. Surface divergences are shown to cancel out when stresses on both sides of the material surface are taken
into account.

I. INTRODUCTION

According to Casimir [1], the (macroscopically) observable
vacuum energy of a quantum field is the regularized difference
between the zero point energies with and without the external
conditions demanded by the particular physical situation at
hand. In the case of the quantized electromagnetic field con-
fined between two infinite parallel conducting walls separated
by a distancea, Casimir’s conception of the vacuum energy
leads to a force per unit area between the walls given by

F
A

=− π~c
240a4 . (1)

Until 1997 only one experiment involving Casimir’s original
setup had been performed [2]. Lately, however, the exper-
imental observation of this tiny force with metallic surfaces
was significantly improved by a series of new experiments
due to Lamoreaux, Mohideen and Roy, and Mohideen [3].
The concept of an observable vacuum energy can be extended
to all quantum fields and several types of boundary condi-
tions and/or applied external fields. An updated review of all
these Casimir effects can be found in the monograph by Bor-
dag, Mohideen, and Mostepananko [4], but see also, Mostepa-
nenko and Trunov, and Plunienet al. [5].

The local approach to the electromagnetic Casimir effect
was initiated by Brown and Maclay who calculated the renor-
malized stress energy tensor between two parallel perfectly
conducting plates by means of Green functions techniques
[6]. An interesting approach to the standard Casimir effect
is the one due to Gonzales [7]. Analyzing the vacuum oscil-
lations of the electromagnetic field confined by two parallel
slabs separated by a gap of sizea, Gonzales pointed out that
the apparently non-objectionable definition of the vacuum en-
ergy given above could easily lead to conceptual errors and
stressed the fact that in any Casimir interaction calculation,
contributions frombothsides of the material surfaces involved
must be taken into account. This is so because the vacuum
pressure always pushes the material surfaces involved, there-
fore, the repulsiveness or atractiveness of the Casimir force
depends on the discontinuity of the relevant component of the
quantized Maxwell stress tensor at the location of the surface.

The purpose of this paper is to pursue this line of reason-
ing by analyzing the stresses on parallel plane walls due to

the vacuum distortions caused by the presence of these walls
through the quantized version of the Maxwell stress tensor.
Though the approach chosen here has many points in common
with Ref. [7] cited above and Green functions techniques [8],
it is a different alternative in the sense that it relies on objects
known as correlators, which are regularized vacuum expec-
tation values of products of the electromagnetic field compo-
nents taken at the same point of space and for equal times.
These correlators contain all the information we need about
the local behavior of the vacuum expectation values of ele-
ments of Maxwell stress tensor, in particular, their behavior
near both sides of the material surface in question, a feature
crucial to the obtention of the correct result. The local behav-
ior of the Maxwell tensor, or of the relativistic symmetrical
stress-energy tensor, is extremely important because as shown
by, for example, Deutsch and Candelas [9] with the help of
Green functions techniques, as we approach the boundaries
we find strong divergencies that cannot be simply removed by
usual renormalization procedures. Besides reviewing the ob-
tention of the electromagnetic Casimir for the standard case of
two perfectly conducting parallel walls, we will also consider
a pair of parallel walls, one of them perfectly permeable. This
setup was first proposed by Boyer [10] who analyzed them
from the viewpoint of random electrodymanics and it is the
simplest example of a repulsive Casimir force. For both cases,
the conducting plate and Boyer’s setup we also construct the
symmetrical stress tensor. We will employ Gaussian units and
setc = ~= 1.

II. MAXWELL STRESS TENSOR AND THE
ELECTROMAGNETIC FIELD CORRELATORS

Our aim in this section is to obtain an expression for the
quantum version of the electromagnetic force per unit area
that acts on plane material wall. Material wall here means a
perfectly conducting square surface(ε→∞) or a perfectly per-
meable one (µ→∞) whose linear dimensionL is much larger
than others relevant dimensions envolved such as the distance
between two of those walls. The physical interaction between
any of the two types of walls considered here and the vac-
uum electromagnetic field is mimicked by the imposition of
appropriate boundary conditions on the electromagnetic field
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on the location of the walls. The Cartesian components of the
Maxwell stress tensor (in Gaussian units) are given by [11]

Ti j =
1
4π

(
Ei E j − 1

2
δi j E2 +Bi B j − 1

2
δi j B2

)
(2)

wherei, j = x,y,z. Suppose that the material surface is placed
perpendicularly to theOZ axis. Upon quantizing the electro-
magnetic field we can write the quantum version of (2). For
instance,

〈
T̂zz

〉
0 =

1
8π

[〈
Ê2

z

〉
0−

〈
Ê2
‖
〉

0
+

〈
B̂2

z

〉
0−

〈
B̂2
‖
〉

0

]
, (3)

whereÊ2
‖ = Ê2

x + Ê2
y andB̂2

‖ = B̂2
x + B̂2

y;
〈
Ô

〉
0 ≡ 〈0|Ô|0〉 de-

notes a vacuum expectation value. The other Cartesian com-
ponents of this tensor can be obtained in an analogous way.
The quantum macroscopic force

〈
F̂
〉

0 on the wall can be eval-
uated by integrating the quantum version of the classical result
[11]

F =
Z

∂R
T̃ · n̂da, (4)

weren̂ is the outward normal at the boundary∂R andR is any
region containing all or part of the wall. Classically, (4) can
be obtained by integrating the Lorentz force per unit volume
acting on charge and current distributions and eliminating the
sources in favor of the fields. From a quantum point of view,
we see that the problem of evaluating the pressure the material
surface due to the distorted zero point oscillations of the elec-
tromagnetic field is reduced to the evaluation of the vacuum
expectation value of the quantum operatorsÊi (r , t) Ê j (r , t),
B̂i (r , t) B̂ j (r , t) , andÊi (r , t) B̂ j (r , t). The evaluation of these
correlators depends on the specific choice of the boundary
conditions. A regularization recipe will also be necessary, for
these objects are mathematically ill-defined. For the setup en-
volving conducting plates these correlators were evaluated by
Lütken and Ravndal [16], see also [12]. They can be also ob-
tained from the coincidence limit of the photon propagator be-
tween conducting plates evaluated by Bordaget al [17]. In the
next section we will evaluate and regularize these correlators
by means of analitycal continuation techniques [13] similar,

though not equal, to the ones employed by Lütken e Ravn-
dal [16]. We will also show how to obtain the corresponding
results for another unusual but intersting setup [13].

III. CORRELATORS FOR CASIMIR’S SETUP

Consider an experimental setup consisting in two infinite
perfectly conducting parallel plates (ε → ∞) kept at a fixed
distancea from each other. We will choose the coordinates
axis in such a way that theOZ direction is perpendicular to
the plates. One of the plates will be placed atz= 0 and the
other one atz= a. The field must satisfy the following bound-
ary conditions on the plates: the tangential componentsEx e
Ey of the electric field and the normal componentBz of the
magnetic field must be zero on the plates. Since there are
no real charges or currents it will be convenient to work in
the Coulomb gauge in which∇ ·A(r , t) = 0, andΦ = 0, thus
E(r , t) =−∂A(r , t)/∂t andB(r , t) = ∇×A (r , t). These phys-
ical boundary conditions combined with the choice of gauge
allow us to rewrite the boundary conditions in terms of the
components of the vector potentialA(r , t) in the following
way: at z= 0 we will have,

Ax(x,y,0, t) = 0; Ay(x,y,0, t) = 0;

∂
∂z

Az(x,y,0, t) = 0, (5)

and atz= a ,

Ax(x,y,a, t) = 0; Ay(x,y,a, t) = 0;

∂
∂z

Az(x,y,a, t) = 0 . (6)

The vector potential operator̂A(r , t) that satisfies the wave
equation, the Coulmb gauge and the boundary conditions can
be written as

Â(r , t) =
1
π

(π
a

) 1
2

∞ ′′
∑
n=0

Z
d2κ√

ω

{
â(1)(κ,n)κ̂× ẑsin

(nπz
a

)

+ â(2)(κ,n)
[

κ̂
in
ωa

sin
(nπz

a

)
− ẑ

κ
ω

cos
(nπz

a

)]}
ei(κ·ρ−ωt) +h.c, (7)

whereκ = (kx,ky) andρ is the position arrow on theX Y plane. The normal frquencies are given by

ω = ω(κ,n) =

√
κ2 +n2 π2

a2 , (8)

with kx,ky ∈ R e n ∈ N−1. The symbol∑” indicates that the term corresponding ton = 0 for normaliztion reasons must be
multiplied by 1/2 . The Fourier coefficientŝa(λ)(κ,n) whereλ = 1,2 is the polarization index, are operators in the photon
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ocupation number space and satisfy
[
â(λ)(κ,n), â†(λ′)(κ′,n′)

]
= δλλ′δnn′δ

(
κ−κ′

)
. (9)

It is convenient to write the vector potential in the general form

Â(r , t) =
∞ ′′
∑
n=0

Z
d2κ

2

∑
λ=1

â(λ)(κ,n)A(λ)
κn (r)e−iω(κ,n)t +h.c, (10)

whereA(λ)
κn (r) are the modal functions. The modal functions for each polarization state must obey Helmholtz equation and the

boundary conditions given above. In our case the modal functions are

A(1)
κn(r) =

1
π

(π
a

) 1
2 1√

ω
sin

(nπz
a

)
e−iκ·ρ κ̂× ẑ, (11)

and

A(2)
κn(r) =

1
π

(π
a

) 1
2 1√

ω

[
κ̂

inπ
aω

sin
(nπz

a

)
− ẑ

κ
ω

cos
(nπz

a

)]
e−iκ·ρ . (12)

The next step is to evaluate the electric field operatorÊ(r , t). Recalling thatâ(λ)(κ,n)|0〉 = 0, we first write the correlators
< Êi(r , t)Ê j(r , t)〉0 in the general form

< Êi(r , t)Ê j(r , t)〉0 = ∑
α

Eiα(r)E∗jα(r) , (13)

where we have introduced the modal functionsEiα(r) for the electric field. In our case (11) and (12) yield

E(1)
i κn(r) =

i
π

(
ω(κ,n)π

a

) 1
2

sin
(nπz

a

)
e−iκ·ρ (κ̂× ẑ)i , (14)

and,

E(2)
i κn(r) =

i
π

(
ω(κ,n)π

a

) 1
2

[
κi

inπ
aω(κ,n)

sin
(nπz

a

)
− ẑi

κ
ω(κ,n)

cos
(nπz

a

)]
e−iκ·ρ , (15)

respectively. Taking (14) and (15) into (13), we writeκ̂i = cosφδix +sinφδiy, ẑi = δiz e (ẑ× κ̂)i = sinφδix−cosφδiy, whereφ is
the azimuthal angle on theX Y plane and we have performed all angular integrals. In this way we end up with

〈Êi(r , t)Ê j(r , t)〉0 =
(

2
π

)(π
a

) δ‖i j
2

∞ ′′
∑
n=0

sin2
(nπz

a

)Z ∞

0
dκκω(κ,n)

+
(

2
π

)(π
a

)(π
a

)2 δ‖i j
2

∞ ′′
∑
n=0

n2sin2
(nπz

a

)Z ∞

0
dκκω−1(κ,n)

+
(

2
π

)(π
a

)
δ⊥i j

∞ ′′
∑
n=0

cos2
(nπz

a

)Z ∞

0
dκκ3 ω−1(κ,n) , (16)

whereδ‖i j := δixδ jx + δiyδ jy e δ⊥i j := δizδ jz. Equation (16) is a formal expression for the correlator〈Ei(r , t)E j(r , t)〉0, since it is
mathematically ill-defined unless a regularization recipe is prescribed. We will regularize the integrals in (16) with the help of
analytical continuation methods.

Consider, for instance, the first integral on the r.h.s. of (16) and let us rewrite it as follows

Z ∞

0
dκκ

(
κ2 +

n2π2

a2

)1/2

→
Z ∞

0
dκκ

(
κ2 +

n2π2

a2

)1/2−s

.

The first term in (16) can be rewritten as

T1 =
(

2
π

)(π
a

) δ‖i j
2

∞”

∑
n=0

sin2
(nπz

a

)Z ∞

0
dκκ

(
κ2 +

n2π2

a2

) 1
2−s

, (17)
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the second as

T2 =
(

2
π

)(π
a

)(π
a

)2 δ‖i j
2

∞”

∑
n=0

n2sin2
(nπz

a

)Z ∞

0
dκκ

(
κ2 +

n2π2

a2

)− 1
2−s

, (18)

and the third one as

T3 =
(

2
π

)(π
a

)
δ⊥i j

∞”

∑
n=0

cos2
(nπz

a

)Z ∞

0
dκκ3

(
κ2 +

n2π2

a2

)− 1
2−s

. (19)

Let us assume thatℜs is large enough to give precise mathematical meaning to these integrals. After evaluating them and make
use of the analytical continuation of the results we will take the limits→ 0. Let us see, for instance, what happens withT1.
Making use of the following representation of Euler beta function [19]

Z ∞

0
dxxµ−1(

x2 +c2)ν−1
=

B
2

(µ
2
,1−ν− µ

2

)
cµ+2ν−2 , (20)

whereB(x,y) = Γ(x)Γ(y)/Γ(x+y), and that holds forℜ
(
ν+ µ

2

)
< 1 andℜµ> 0, we obtain

Z ∞

0
dκκ

(
κ2 +

n2π2

a2

)1/2−s

=
1
2

(nπ
a

)3−2s Γ(s−3/2)
Γ(s−1/2)

=
1

(2s−3)

(nπ
a

)3−2s
. (21)

Taking this result intoT1 we obtain

T1 =
(

1
2s−3

)(π
a

)3−2s δ‖i j
2a

[
ζR(2s−3)−

∞

∑
n=0

n3−2scos

(
2nπz

a

)]
, (22)

whereζR(z) is the well-known Riemann zeta function. Taking the limits→ 0, we have

T1 =− 1
3π

(π
a

)4 δ‖i j
2

[
1

120
+

1
8

∞

∑
n=1

d3

dξ3 sin(2nξ)

]
, (23)

where we made use of the fact thatζR(−3) = 1/120, definedξ := πz/a, and wrote

n3cos(2nξ) =−1
8
× d3

dξ3 sin(2nξ) . (24)

The sum on the R.H.S. of (23) can be regularized in many ways. A quick though non-rigorous way is to write

T1 =− 1
3π

(π
a

)4 δ‖i j
2

[
1

120
+

1
8

d3

dξ3

∞

∑
n=1

sin(2nξ)

]
, (25)

and express the summand in terms of exponential functions of imaginary argument thereby transforming each one of the sums
into the euclidean space. In this way we obtain

∞

∑
n=1

sin(2nξ) =
1
2i

(
∞

∑
n=1

exp(i2nξ)−
∞

∑
n=1

exp(−i2nξ)

)

=
1
2i

(
∞

∑
n=1

exp(2nξE)−
∞

∑
n=1

exp
(−2nξ′E

)
)

(26)

where we have made the substitutioniξ → −ξE in the first
sum andiξ → ξ′E in the second. Each one of the sums above

can be easily performed and the result is

∞

∑
n=1

sin(2nξ) =
1
2

cot(ξ) (27)
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It follows that

T1 =− 1
3π

(π
a

)4 δ‖i j
2

[
1

120
+

1
8

d3

dξ3

1
2

cot(ξ)
]
. (28)

Treating the two other terms in (16) in a similar manner we
obtain

T2 =−1
π

(π
a

)4 δ‖i j
2

[
1

120
+

1
8

d3

dξ3

1
2

cot(ξ)
]
, (29)

and

T3 =
4
3π

(π
a

)4 δ⊥i j
2

[
1

120
− 1

8
d3

dξ3

1
2

cot(ξ)
]
. (30)

Notice that some care must be taken when we aply this pro-
cedure to the third term. This is so because the term corre-
sponding ton = 0 in T3 is not zero. In fact its contribution
is:

T3(n = 0) =
(

2
π

)(π
a

)
δ⊥i j
Z ∞

0
dκκ−2−2s, (31)

which diverges when the regularization is removed. However
this term is non-physical and can be safely ignored. Finally,
collecting all partial results we have

〈Ei(r , t)E j(r , t)〉0 = T1 +T2 +T3

=
(π

a

)4 2
3π

[(
−δ‖+δ⊥

)
i j

1
120

+δi j F(ξ)
]

. (32)

The functionF (ξ) is defined by

F (ξ) :=−1
8

d3

dξ3

1
2

cot(ξ) , (33)

and its expansion aboutξ = 0 is given by

F (ξ)≈ 3
8

ξ−4 +
1

120
+O

(
ξ2) . (34)

Nearξ = π (which corresponds toz= a) we make the replacementξ → ξ−π. Notice that due to the behavior ofF (ξ) near
ξ = 0,a, strong divergences predominate in the behavior of the correlators near the plates.

By applying the exactly the same procedure we obtain the magnetic field correlators

〈Bi(r , t)B j(r , t)〉0 =
(π

a

)4 2
3π

[(
−δ‖+δ⊥

)
i j

1
120

−δi j F(ξ)
]

. (35)

A direct evaluation also shows that the correlators<
Ei(r , t)B j(r , t)〉0 are zero.

IV. CORRELATORS FOR BOYER’S SETUP

The other setup we are interested in is that one in which a
perfectly conducting plate is placed atz= 0 and perfectly per-
meable plate is placed atz= a. This setup was analyzed for
the first time by Boyer in the contetxt of stochastic electrody-

namic [10] and it is the simplest case of a repulsive Casimir
effect that can be found in the literature. The boundary condi-
tions now are:(a) the tangential componentsEx andEy of the
electric field as well as the normal componentBz of the mag-
netic field must vanish on the surface of the plate atz= 0; (b)
the tangential components ofBx e By of the magnetic field as
well as normal conponentEz of the electric field must vanish
on the surface of the plate atz= a. These boundary conditions
translated in terms of the components of the vector potential
read

Ax(x,y,0, t) = 0; Ay(x,y,0, t) = 0;
∂
∂z

Az(x,y,0, t) = 0, (36)
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at z= 0, and atz= a

∂
∂z

Ax(x,y,a, t) = 0;
∂
∂z

Ay(x,y,a, t) = 0; Az(x,y,a, t) = 0. (37)

The appropriate vector potential operatorÂ(r , t) is given by [13]

Â(r , t) =
1
π

(π
a

) 1
2

∞

∑
n=0

Z
d2κ√

ω

{
â(1)(κ,n)κ̂× ẑsin

[(
n+

1
2

)
πz
a

]

+ â(2)(κ,n)

[
κ̂

i(n+ 1
2)

ωa
sin

[(
n+

1
2

)
πz
a

]
− ẑ

κ
ω

cos

[(
n+

1
2

)
πz
a

]]}

×ei(κ·ρ−ωt) + h.c., (38)

where as beforeκ = (kx,ky) andρ is the position vector on theX Y plane. The normal frequencies are given

ω(κ,n) =

√
κ2 +

(
n+

1
2

)2 π2

a2 , (39)

with kx,ky ∈ R andn∈ N−1. Notice that contrary to the case of two conducting plates normalization does not require the we
multiply the term corresponding ton = 0 by 1/2. The electric and magnetic field correlators for Boyer’s setup can be evaluated
with the same technique employed before [13]. In fact, it is not hard to convince ourselves that it is sufficient to perform the
substitutionn→ n+1/2 and follow the same steps as before to obtain

〈Ei(r , t)E j(r , t)〉0 = T1 +T2 +T3, (40)

where, for example

T1 =
Γ

(
s− 3

2

)

Γ
(
s− 1

2

)
(π

a

)3−2s δ‖i j
2a

{
∞

∑
n=0

(
n+

1
2

)3−2s 1
2

[
1−cos

(
2(n+1/2)

πz
a

)]}
, (41)

The termsT2 e T1 show a similar structure. The main difference with respect to the two conducting plate case is that now we
have to deal with the Hurwitz zeta functionζH(z,q) which has a series representation given by [19]

ζH(z,q) =
∞

∑
n=0

1
(n+q)z , (42)

with ℜz> 1, andq 6= 0,−1,−2, ..... In our case we must set

ζH(2s−3,
1
2
) =

∞

∑
n=0

(
n+

1
2

)3−2s

. (43)

It follows that in the limits→ 0 we have

T1 =−
(π

a

)4 1
3π

δ‖i j
2

{
ζH

(
−3,

1
2

)
+

∞

∑
n=0

(
n+

1
2

)3

cos

(
2

(
n+

1
2

)
πz
a

)}
. (44)

In the same way we obtain forT2 eT1 the results

T2 =−
(π

a

)4 1
π

δ‖i j
2

{
ζH

(
−3,

1
2

)
−

∞

∑
n=0

(
n+

1
2

)3

cos

(
2

(
n+

1
2

)
πz
a

)}
. (45)

and

T3 =
(π

a

)4 2
3π

δ⊥i j
2

{
ζH

(
−3,

1
2

)
+

∞

∑
n=0

(
n+

1
2

)3

cos

(
2

(
n+

1
2

)
πz
a

)}
. (46)



Brazilian Journal of Physics, vol. 35, no. 3A, September, 2005 663

Notice that this time we do not have the divergent contribution corresponding ton = 0 as in the case of the conducting plates.
Adding the three terms we have

〈
Êi (r , t) Ê j (r , t)

〉
0 =

(π
a

)4 2
3π

{
(−δ‖i j +δ⊥i j )ζH

(
−3,

1
2

)

+
∞

∑
n=0

(
n+

1
2

)3

cos

(
2

(
n+

1
2

)
πz
a

)}
. (47)

The numerical valueζH
(−3, 1

2

)
can be obtained from [19]

ζH (−n,q) =−Bn+1(q)
n+1

, (48)

wheren ∈ N andBn+1(q) is a Bernoulli polynomial defined
by [19]

Bn(x) =
n

∑
p=0

n!
p!(n− p)!

Bpxn−k, (49)

whereBp is a Bernoulli number. The relevant polynomial here
is:

B4(x) = x4−2x3 +x2− 1
30

. (50)

With B4(1/2) = (7/8)× (1/30), it follows thatζH
(−3, 1

2

)
=

−(7/8)(1/120). The sum can be regularized with the same
technique employed before. In fact, we can define the function
G(ξ) by

G(ξ) : =
∞

∑
n=0

(
n+

1
2

)3

cos

[
2

(
n+

1
2

)
ξ
]

=
1
8

∞

∑
n=0

(2n+1)3cos[(2n+1)ξ] , (51)

where as beforeξ := zπ/a. We can write

(2n+1)3cos[(2n+1)ξ] =− d3

dξ3 sin[(2n+1)ξ] (52)

and formally we have

G(ξ) =−1
8

d3

dξ3

∞

∑
n=0

sin[(2n+1)ξ] . (53)

Writing sin[(2n+1)ξ] in terms of exponentials of imaginary
argument and passing to the euclidean space we obtain after
some simple manipulations

G(ξ) =−1
8

d3

dξ3

1
2sin(ξ)

. (54)

Collecting all partial results we finally obtain for〈
Êi (r , t) Ê j (r , t)

〉
0 the result

〈
Êi (r , t) Ê j (r , t)

〉
0 =

(π
a

)4 2
3π

[(
−7

8

) (−δ‖+δ⊥
)

i j

120
+δi j G(ξ)

]
. (55)

Proceeding in the same way in the evaluation of
〈
B̂i (r , t) B̂ j (r , t)

〉
0 we obtain

〈
B̂i (r , t) B̂ j (r , t)

〉
0 =

(π
a

)4 2
3π

[(
−7

8

) (−δ‖+δ⊥
)

i j

120
−δi j G(ξ)

]
. (56)

Observe that nearξ = 0 the functionG(ξ) behaves as

G(ξ) =
3
8

ξ−4− 7
8

1
120

+O
(
ξ2) , (57)

But nearξ = π its behavior is slightly different

G(ξ) =−3
8

(ξ−π)−4 +
7
8

1
120

+O
[
(ξ−π)2

]
. (58)

Again, a direct calculation shows that
〈
Êi (r , t) B̂ j (r , t)

〉
0 = 0

for this case.
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Z'
z=0 z=a

ε

z=l

ε,µ
ε,µ

Z

n'=-z
n=z^ ^ ^ ^

FIG. 1: Three-plate setup for the obtention of the Casimir force per
unit area. The plate atz= ` is auxiliary.

As before the divergent behavior of the correlators near the
plates we are interested in is an effect of the distortions of the
electromagnetic oscillations with respect to a situation where
the plates are not present. This fact has received the attention
of several authors, see for example [9, 16].

V. THE CASIMIR EFFECT FOR CONDUCTING PLATES

In order to apply the above results to Casimir’s original
setup we consider for convenience three parallel perfectly
conducting plates perpendicular to theOZ axis atz= 0, z= a
andz= `.

The quantum version of Maxwell tensor is

4π
〈
T̂i j

〉
0 =

〈
Êi Ê j

〉
0−

1
2

δi j
〈
Ê2〉

0 +
〈
B̂i B̂ j

〉
0−

1
2

δi j
〈
B̂2〉

0 (59)

Making use of the correlator given by (32) we obtain the following partial results

〈
Ê2

x (z, t)
〉

0 =
〈
Ê2

y (z, t
〉

0
=

(π
a

)4 2
3π

[
− 1

120
+F (ξ)

]
, (60)

〈
Ê2

z (z, t
〉

0 =
(π

a

)4 2
3π

[
1

120
+F (ξ)

]
, (61)

also
〈
Êx(z, t)Êy(z, t)

〉
0 =

〈
Êx(z, t)Êz(z, t)

〉
0 =

〈
Êy(z, t)Êz(z, t)

〉
0 = 0. In the same way, making use of (35) we obtain

〈
B̂2

x(z, t)
〉

0 =
〈
B̂2

y(z, t
〉

0
=

(π
a

)4 2
3π

[
− 1

120
−F (ξ)

]
, (62)

〈
B̂2

z(z, t
〉

0 =
(π

a

)4 2
3π

[
1

120
−F (ξ)

]
, (63)

and also
〈
B̂x(z, t)B̂y(z, t)

〉
0 =

〈
B̂x(z, t)B̂z(z, t)

〉
0 =

〈
B̂y(z, t)B̂z(z, t)

〉
0 = 0. The components of the quantum version of Maxwell

tensor can be easily evaluated. For instance

8π
〈
T̂zz(z, t)

〉
0 =

〈
Ê2

z (z, t)
〉

0−
〈
Ê2

x (z, t)
〉

0−
〈
Ê2

y (z, t)
〉

0

+
〈
B̂2

z(z, t)
〉

0−
〈
B̂2

x(z, t)
〉

0−
〈
B̂2

y(z, t)
〉

0
. (64)

performing the necessary substitutions we have

〈
T̂zz

〉
0 =

π2

240a4 . (65)

In the same way

〈
T̂xx

〉
0 =

〈
T̂yy

〉
0 =− 1

8π
(〈

Ê2
z (z, t)

〉
0 +

〈
B̂2

z(z, t)
〉

0

)

= − π2

720a4 (66)

Notice how conveniently the divergent parts near the plates cancel out yielding finite results.
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Let us obtain now the Casimir force per unit area between
the conducting plates. Consider Figure (V) and the plate at
z= a. The Casimir force per unit area on this plate is

Fz

A
= −Tzz(z→ aL)+Tzz(z→ aR)

= − π2

240a4 +
π2

240(`−a)4 , (67)

wherez→ aL,R means thatz tends toa from the left/right.
Taking the limit`→ ∞ we obtain the expected result for the
Casimir force per unit area

Fz

A
=− π2

240a4 . (68)

The minus sign shows that the resulting pressure pushes to-
wards the region between the plates. If simultaneously we
take the limits`,a→ ∞ keeping the distancè− a constant.
The pressure changes its sign but it still pushes the plate at
z= a towards the one atz= `.

In order to calculate the renormalized symmetrical stress-
energy tensor〈Θ̂µν (z)〉ren

0 we evaluate the energy density
ρ(z) ≡ 〈Θ̂00(z)〉ren

0 in the region between the plates as
well as the saptial components〈Θ̂xx(z)〉ren

0 , 〈Θ̂yy(z)〉ren
0 , and

〈Θ̂zz(z)〉ren
0 . The energy density is given by

ρ(r , t) =
1
8π

(〈
Ê2 (r , t)

〉
0 +

〈
B̂2 (r , t)

〉
0

)
(69)

making use of the correlators given by (32) and (35) we obtain

ρ(a) =− π2

720a4 . (70)

This result is due to the fact that the divergent pieces in (32)
and (35) cancel out yielding a finite result for the vacuum en-
ergy density. Recalling thatΘi j (z) = −Ti j (z), see [11], with
help of (2), (32) and (35) the remanescent components of the
symmetrical stress-energy tensor are easily obtained. The fi-
nal result is

〈Θ̂µν(z)〉ren
0 =

π2

720a4 diag(−1,1,1,−3) , (71)

which is in perfect agreement with Brown and Maclay’s re-
sults [6]. Notice also that〈Θ̂µ

µ(z)〉ren
0 = gµν〈Θ̂µν(z)〉ren

0 = 0,
with gµν = diag(1,−1,−1,−1).

VI. THE CASIMIR EFFECT FOR ONE CONDUCTING
PLATE AND AN INFINITELY PERMEABLE ONE

Let us consider now the setup proposed by Boyer [10]
which consists of a perfectly conducting plate placed perpen-
dicularly to theOZ axis atz = 0 and another infinitely per-
meable one parallel to the first placed atz= a. The boundary
conditions on the conducting plate are as beforeEx = Ey = 0
andBz = 0, and for the infinitely permeable plate:Bx = By = 0

andEz = 0. Making use of the correlator given by (55) the fol-
lowing partial results:

〈
Ê2

x (z, t)
〉

0 =
〈
Ê2

y (z, t
〉

0
=

(π
a

)4 2
3π

[
7
8
× 1

120
+G(ξ)

]
,

(72)

〈
Ê2

z (z, t
〉

0 =
(π

a

)4 2
3π

[(
−7

8

)
× 1

120
+G(ξ)

]
, (73)

and
〈
Êx(z, t)Êy(z, t)

〉
0 =

〈
Êx(z, t)Êz(z, t)

〉
0 =〈

Êy(z, t)Êz(z, t)
〉

0 = 0. By the same token making use
of the correlator given by (56) we obtain

〈
B̂2

x(z, t)
〉

0 =
〈
B̂2

y(z, t
〉

0
=

(π
a

)4 2
3π

[
7
8
× 1

120
−G(ξ)

]
,

(74)

〈
B̂2

z(z, t
〉

0 =
(π

a

)4 2
3π

[(
−7

8

)
× 1

120
−G(ξ)

]
, (75)

and also

〈
B̂x(z, t)B̂y(z, t)

〉
0 =

〈
B̂x(z, t)B̂z(z, t)

〉
0 =

〈
B̂y(z, t)B̂z(z, t)

〉
0 = 0
(76)

Proceeding as in the case of the conducting plates we obtain
the following results for the componenets of the quantum ver-
sion of Maxwell tensor

〈
T̂xx

〉
0 =

〈
T̂yy

〉
0 =

7
8
× π2

720a4 , (77)

and

〈
T̂zz

〉
0 =

(
−7

8

)
× π2

240a4 . (78)

Notice that it is sufficient to multiply the results obtained for
Casimir’s setup by the factor(−7/8) in order to obtain the
results corresponding to Boyer’s setup.

In order to obtain the Casimir force per unit area for this
setup it is convenient to place a third conducting plate atz= `.
Then the Casimir force per unit area on the plate atz= a will
be given by

Fz

A
= −Tzz(z→ aL)+Tzz(z→ aR)

= −
(
−7

8

)
× π2

240a4 +
(
−7

8

)
× π2

240(`−a)4 . (79)

Taking the limit ` → ∞ we obtain a Casimir force which
pushes the plate atz= a towards the regionz> a given by

Fz

A
=

7
8
× π2

240a4 (80)

This is the result obtained by Boyer [10] for this setup using
stochastic electrodynamic methods and it is one of the sim-
plest example of a repulsive Casimir force.
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In order to evaluate the symmetrical stress-energy tensor we
first evaluate the Casimir energy density. Making use of (55)
e (56) we have

ρ =
7
8
× π2

240a4 . (81)

As in the case of the conducting plates a simple calculation
shows that the stress energy tensor for Boyer’s setup is given
by

〈Θ̂µν(z)〉ren
0 =

7
8
× π2

720a4 diag(1,−1,−1,3) . (82)

As before〈Θ̂µ
µ(z)〉ren

0 = gµν〈Θ̂µν(z)〉ren
0 = 0.

VII. CONCLUSIONS

In this paper we have shown how to employ the equal
time and space electromagnetic field correlators evaluated be-
tween parallel material surfaces to rederive results concernig

the Casimir energy and pressure and the symmetrical trace-
less stress energy tensor. We have shown that for the cases
we had in mind here finite results are obtained only when we
consider what happens on both sides of the surface boundary.
This consideration provided the mechanism by which precise
cancellations occurred and finite results were obtained. These
cancellations occur only for the simple geometry considered
in this paper. This is in agreement with, for example, Ref. [9]
and should be considered as a concrete example of the behav-
ior of quantized fields near and on boundary surfaces. This
behavior depends on the geometry of the boundaries and can
become quite complicated. It can depend on the local curva-
ture of the boundary, for instance. Finally, it must be men-
tioned that the equal time and space electromagnetic field cor-
relators calculated here were can be also employed to rederive
the atractive and the repulsive Casimir effect by means of a
quantum version of the Lorentz force [20]. They can be also
applied to the Casimir-Polder interaction between an atom and
material surfaces [21]
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