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We evaluate the quantum electromagnetic field correlators associated with the electromagnetic vacuum dis-
torted by the presence of two plane parallel conducting walls and in the presence of a conducting wall parallel
to a perfectly magnetically permeable one. Regularization is performed through the generalized zeta funtion
technique. Results are applied to rederive the atractive and repulsive Casimir effect through Maxwell stress
tensor. Surface divergences are shown to cancel out when stresses on both sides of the material surface are taken
into account.

I. INTRODUCTION the vacuum distortions caused by the presence of these walls
through the quantized version of the Maxwell stress tensor.

According to Casimir [1], the (macroscopically) observable Though the approach chosen here has many points in common
vacuum energy of a quantum field is the regularized differencaith Ref. [7] cited above and Green functions techniques [8],
between the zero point energies with and without the externa} IS & different alternative in the sense the}t it relies on objects
conditions demanded by the particular physical situation aknown as correlators, which are regularized vacuum expec-
hand. In the case of the quantized electromagnetic field corfation values of products of the electromagnetic field compo-
fined between two infinite parallel conducting walls separatedi€nts taken at the same point of space and for equal times.
by a distances, Casimir's conception of the vacuum energy These correlato.rs contain all the information we need about
leads to a force per unit area between the walls given by~ the local behavior of the vacuum expectation values of ele-

ments of Maxwell stress tensor, in particular, their behavior
F_ mc 1 near both sides of the material surface in question, a feature
A 240a% @ crucial to the obtention of the correct result. The local behav-

_ _ _ , ... .. iorof the Maxwell tensor, or of the relativistic symmetrical
Until 1997 only one experiment involving Casimir's original syress-energy tensor, is extremely important because as shown
setup had been performed [2]. Lately, however, the experpy for example, Deutsch and Candelas [9] with the help of
imental observation of this tiny force with metallic surfaces Green functions techniques, as we approach the boundaries
was significantly improved by a series of new experimentSye find strong divergencies that cannot be simply removed by
due to Lamoreaux, Mohideen and Roy, and Mohideen [3]y,a] renormalization procedures. Besides reviewing the ob-
The concept of an observable vacuum energy can be extendgghtion of the electromagnetic Casimir for the standard case of
to all quantum fields and several types of boundary condiyyq perfectly conducting parallel walls, we will also consider
tions and/or applied external fields. An updated review of all, pair of parallel walls, one of them perfectly permeable. This
these Ca;imir effects can be found in the monograph by Boréetup was first proposed by Boyer [10] who analyzed them
dag, Mohideen, and Mostepananko [4], but see also, Mostepgom the viewpoint of random electrodymanics and it is the
nenko and Trunov, and Pluniet al. [S]. , o simplest example of a repulsive Casimir force. For both cases,

The local approach to the electromagnetic Casimir effecthe conducting plate and Boyer's setup we also construct the

was initiated by Brown and Maclay who calculated the renor-ymmetrical stress tensor. We will employ Gaussian units and
malized stress energy tensor between two parallel perfectlygic — 4 — 1.

conducting plates by means of Green functions techniques

[6]. An interesting approach to the standard Casimir effect

is the one due to Gonzales [7]. Analyzing the vacuum oscil-

lations of the electromagnetic field confined by two parallel Il. MAXWELL STRESS TENSOR AND THE

slabs separated by a gap of sgeGonzales pointed out that ELECTROMAGNETIC FIELD CORRELATORS

the apparently non-objectionable definition of the vacuum en-

ergy given above could easily lead to conceptual errors and Our aim in this section is to obtain an expression for the

stressed the fact that in any Casimir interaction calculationguantum version of the electromagnetic force per unit area

contributions fronbothsides of the material surfaces involved that acts on plane material wall. Material wall here means a

must be taken into account. This is so because the vacuuperfectly conducting square surfage¢ ) or a perfectly per-

pressure always pushes the material surfaces involved, thensmeable onel(— «) whose linear dimensiohis much larger

fore, the repulsiveness or atractiveness of the Casimir forcthan others relevant dimensions envolved such as the distance

depends on the discontinuity of the relevant component of thbetween two of those walls. The physical interaction between

guantized Maxwell stress tensor at the location of the surfaceany of the two types of walls considered here and the vac-
The purpose of this paper is to pursue this line of reasonuum electromagnetic field is mimicked by the imposition of

ing by analyzing the stresses on parallel plane walls due tappropriate boundary conditions on the electromagnetic field



658 F. C. Santos et al.

on the location of the walls. The Cartesian components of théhough not equal, to the ones employed Liytken e Ravn-
Maxwell stress tensor (in Gaussian units) are given by [11] dal [16]. We will also show how to obtain the corresponding
results for another unusual but intersting setup [13].
1

Tij:E[

(Ei Ej fééijEerBi B; ;6”-82) )
lll. CORRELATORS FOR CASIMIR'S SETUP

wherei, | = X,y,z. Suppose that the material surface is placed

perpendicularly to th&@Z axis. Upon quantizing the electro-

magnetic field we can write the quantum version of (2). For

instance,

Consider an experimental setup consisting in two infinite
perfectly conducting parallel plates {~ «) kept at a fixed
distancea from each other. We will choose the coordinates

. 11, . . ~ axis in such a way that the@z direction is perpendicular to
(Tzz)o = a {(E Yo <EH> +(BZ),— <Bﬁ> } ., (3) the plates. One of the plates will be placedzat 0 and the
T 0 other one azr = a. The field must satisfy the following bound-
whereEHZ —E2+ é& and éﬁ = B2+ I§$,; <é>o = (0/0|0) de-  ary conditions on the plates: the tangential componEpts
notes a vacuum expectation value. The other Cartesian corfy Of the electric field and the normal compondtof the
ponents of this tensor can be obtained in an analogous way. agnetic field must be zero on the plates. Since there are
The quantum macroscopic foréé)o on the wall can be eval- o real charges or currents it will be convenient to work in

; ina th ion of the classical ipe Coulomb gauge in whichi- A(r,t) = 0, and® = 0, thus
Flalt]ed by integrating the quantum version of the classical resu[1 £.0) = —0A(r.t)/3t andB(r.t) — ' x A (r.t). These phys-

|caI boundary conditions combined with the choice of gauge

F_ f.Ada ) allow us to rewrite the boundary .conditic_)ns in terms.of the
R components of the vector potenti&(r,t) in the following
way: at z= 0 we will have,

werefi is the outward normal at the bound@®_andR®_ is any

region containing all or part of the wall. Classically, (4) can

be obtained by integrating the Lorentz force per unit volume Ax(x,y,0,t) =0; Ay(x,y,0,t) =0;

acting on charge and current distributions and eliminating the

sources in favor of the fields. From a quantum point of view,

we see that the problem of evaluating the pressure the material 9 (xy,0,t) =0, (5)

surface due to the distorted zero point oscillations of the elec- 0z

tromagnetic field is reduced to the evaluation of the vacuuny, 4 oo a,

expectation value of the quantum operatrér,t)E; (r,t),

Bi (r,t)B; (r,t), andE (r,t) Bj (r,t). The evaluation of these

correlators depends on the specific choice of the boundary Adxy,at)=0; Ay(xy,at)=0;

conditions. A regularization recipe will also be necessary, for

these objects are mathematically ill-defined. For the setup en-

volving conducting plates these correlators were evaluated by

Lutken and Ravndal [16], see also [12]. They can be also ob- 0z

tained from the coincidence limit of the photon propagator be-

tween conducting plates evaluated by Bordagl[17]. Inthe  The vector potential operatdk(r t) that satisfies the wave

next section we will evaluate and regularize these correlatorsquation, the Coulmb gauge and the boundary conditions can

by means of analitycal continuation techniques [13] similar,be written as

A(xy,a,t)=0. (6)

A(r,t) = %(g)% :Z:Z (\1/2(; {é(l)(K,n)R X 2sin(%lz)
+ a?(k,n) {K;;SIn(nZZ) —22)003(2'2)} }e‘("""“’) +he, @

wherek = (ky,ky) andp is the position arrow on th&9” plane. The normal frquencies are given by

T[2
w=w(K,n) = K2+n2?, (8)

with ke, ky, € Rene N-1. The symbolz" indicates that the term correspondingrte- O for normaliztion reasons must be
multiplied by 1/2 . The Fourier coefficientd® (k,n) whereA = 1,2 is the polarization index, are operators in the photon
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ocupation number space and satisfy

|8 1,0), &) (<) | = B BB (kK - )
It is convenient to write the vector potential in the general form
R w nl 2 2z .
A(r,t) = Zo d?k Y & (k,mAGR (r)e kMt 4 h, (10)
n= A=1

whereA,(Z;])(r) are the modal functions. The modal functions for each polarization state must obey Helmholtz equation and th
boundary conditions given above. In our case the modal functions are

NI % (g)% %sin(%) e KPR %2, (11)
and
AG(r) = %(g)% \%0 {stm(rzlz) —2Z)cos<n;lz>} g kP, (12)

The next step is to evaluate the electric field oper#tgrt). Recalling thatd® (k,n)|0) = 0, we first write the correlators
< Ei(r,t)Ej(r,t))o in the general form

<E(rDEj(r,t)o= Y Ea(r)Ejq(r), (13)

where we have introduced the modal functi@ig(r ) for the electric field. In our case (11) and (12) yield

and,
E? (1) = ln (w<Ka’1n) n>% {Kiauir(llzmsin(r:z) ~2 (o(;n) cos(n;lz)] e P, (15)

respectively. Taking (14) and (15) into (13), we wiite= cospdix + Sin@diy, Zi = diz € (Z x K)j = Sin@djx — cosPdyy, where@is
the azimuthal angle on th&9” plane and we have performed all angular integrals. In this way we end up with

L a

(Ei(r,DEj(r,t)o = <2> (n){ilj Ooz;/sinz <n%12) ZodeKw(K,n)
+ (i) ( ) (2)26; oi/)/nzsinz (%‘z) Zodele(K,n)
0 11 Z

+ (i) (g) &F Z)cos2 (%‘Z) . dkk3wt(k,n), (16)

n=

old

WhereESiHj = OixOjx + diyOjy € 6%» := &;20j;. Equation (16) is a formal expression for the correlg&(r,t)E;(r,t))o, since it is
mathematically ill-defined unIJess a regularization recipe is prescribed. We will regularize the integrals in (16) with the help o
analytical continuation methods.

Consider, for instance, the first integral on the r.h.s. of (16) and let us rewrite it as follows

Z 2 1/2 Z 2 1/2—s
n°me n’me
dKkK <K2+ 2) — dkK (K2+ 2) .
0 a 0 a

The first term in (16) can be rewritten as

T = (i) (g) ijnisinz (%12) Ow dK K (K2+ n:f) %_S, (17)
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the second as

e (2) (D) (2735 i (T2)” e ) 1®)

and the third one as

Ta= (f{) (2) 6ﬁnicosz (%‘Z) ZodeK3 <K2+n:2.[2>%5. (19)

Let us assume that sis large enough to give precise mathematical meaning to these integrals. After evaluating them and mak
use of the analytical continuation of the results we will take the Isnit 0. Let us see, for instance, what happens With
Making use of the following representation of Euler beta function [19]

whereB(x,y) = I'(X)[ (y) /I (x+Y), and that holds fof] (v+ ) < 1andOu> 0, we obtain

0 N2 1/2-s _2s -~ _
() (D) e me (3) @

z

Taking this result intd; we obtain

= (231_3>( )3 = 2&1 [Z (2s—3)— in‘gzscos(zr::z)] , (22)

wherelr(2) is the well-known Riemann zeta function. Taking the lis¥t- 0, we have

1 m4d) 12 o
Tl:_37r( ) 2 [120 82 dgs sm(2nE)] (23)

where we made use of the fact tifg{ —3) = 1/120, definedf, := 1z/a, and wrote
n°cos(2nf) = L o sin(2ng). (24)
8 dE3

The sum on the R.H.S. of (23) can be regularized in many ways. A quick though non-rigorous way is to write

6” 1 d3 o0
Ti=—- 31_[( ) > [1204- 8dE3 ZSIn 2nE)] , (25)

and express the summand in terms of exponential functions of imaginary argument thereby transforming each one of the su
into the euclidean space. In this way we obtain

g sin(2n§) = % <§ exp(i2ng) — i exp(—i2nE)>
n=1 n=1 n=1
= % <§ exp(2nég) — g exp(—ZnE’E)> (26)
n=1 n=1

(

where we have made the substitutign— —&g in the first  can be easily performed and the result is
sum and§ — &g in the second. Each one of the sums above

i n(2ng) = Ecot(E) (27)
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It follows that Notice that some care must be taken when we aply this pro-
cedure to the third term. This is so because the term corre-

[ ; ; : ; .
1/ m4%;[ 1 1d31 sponding ton = 0 in Tz is not zero. In fact its contribution
Ti=—— (=) 2|42 . 2 ey
1=-3:(3) 2 [120+8dé3200t(z)} @8) is:
Treating the two other terms in (16) in a similar manner we
obtain N\ e L
Tan=0)=(=)(=)d  dkk 2%, 31
1 1 1 d3 1 3( ) (T[) <a) " 0 ( )

i 46iHj
()3 [0t suga®] @

and which diverges when the regularization is removed. However

4 <n)4 5# [ 1 1431 this term is non-physical and can be safely ignored. Finally,

120 8dei2 cot(E)} . (30) collecting all partial results we have

2
|

<Ei(r’t)Ej(rat)>0 = T1+T2+T3

4 2 1
= (= _Slast)y = a5
- (a) 3n{( 3+ )ij 120+6.,F(E)}. (32)
The functionF (§) is defined by
1d®1
(&)= —nggéCOt(EL (33)
and its expansion abogt= 0 is given by
3 1
F (&)~ §5_4+ EOJFO (EZ) . (34)

Nearg = 1 (which corresponds ta= a) we make the replacemeft— & — . Notice that due to the behavior Bf(§) near
& =0, a, strong divergences predominate in the behavior of the correlators near the plates.
By applying the exactly the same procedure we obtain the magnetic field correlators

BB = (5) 2| (-81+8%), T3-aiF(®)] . (35

A direct evaluation also shows that the correlators namic [10] and it is the simplest case of a repulsive Casimir
Ei(r,t)Bj(r,t))o are zero. effect that can be found in the literature. The boundary condi-
tions now are{a) the tangential componeni andEy of the
electric field as well as the normal compon8atbof the mag-
IV. CORRELATORS FOR BOYER'S SETUP netic field must vanish on the surface of the plate-at0; (b)
the tangential components Bf e By of the magnetic field as
well as normal conponetti; of the electric field must vanish
The other setup we are interested in is that one in which &n the surface of the plateat- a. These boundary conditions
perfectly conducting plate is placedzt 0 and perfectly per-  translated in terms of the components of the vector potential
meable plate is placed at= a. This setup was analyzed for read
the first time by Boyer in the contetxt of stochastic electrody-

AX(X7 yv Ovt) = 0! Ay(Xa Y; Oat) = 0' ;ZAZ(X7 yv Ovt) = 03 (36)
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at z=0,andaz=a

A(xy,at) =0; (%Ay(x,y,a,t)zo: Az(x,y,at) =0. (37)

8

0z

The appropriate vector potential opera@c(nr,t) is given by [13]
1 oo z

Alr,t) = 111(’;)?”2] ‘j;':{a<1>(|<,n)|zx2sin[<n+;) T:]
n+3

xeKP=@) | hc (38)

where as before = (ky, ky) andp is the position vector on th&9” plane. The normal frequencies are given

2
w(K,Nn) = \/K2+ <n+ ;) 2—2, (39)

with ky,ky € R andn € N—1. Notice that contrary to the case of two conducting plates normalization does not require the we
multiply the term corresponding to= 0 by 1/2. The electric and magnetic field correlators for Boyer’s setup can be evaluated
with the same technique employed before [13]. In fact, it is not hard to convince ourselves that it is sufficient to perform th
substitutiorn — n+1/2 and follow the same steps as before to obtain

(Bi(r,OE|(r,t)o=Ta+To+Ts, (40)

where, for example

asdl (o -2
R @B ) bt B “

The termsT, e T; show a similar structure. The main difference with respect to the two conducting plate case is that now we
have to deal with the Hurwitz zeta functidn (z, ) which has a series representation given by [19]

b 1
H(zQ) = nZOW7 (42)

withOz> 1, andg#0,—-1,—-2,..... In our case we must set

00 3-2s
{H(2s— 3 Zo( ) . (43)

It follows that in the limits — 0 we have

6“ © 3
Ti=— (5)4 311 5 {ZH (—3, ;) +n: (n+ ;) cos<2 <n+ ;) T:) } . (44)

In the same way we obtain fdp e T; the results

Tz=—(a>4]1T62 {ZH (—3,;) 2 (n+;)3cos(2 (n+;> T:)} (45)
Ts= (2)4:;651 {ZH <—3,;) +r: <n+;>3cos<2 (n+;> T:) } (46)

8

and
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Notice that this time we do not have the divergent contribution corresponding-t0 as in the case of the conducting plates.
Adding the three terms we have

(B (0B (1,1), = (2)42{(—5!'j+6ﬁ)<.4 (—3,2)

3n
+ni) (n+;)scos<2 <n+;) T:)} 47
(

The numerical valuéy (—3, %) can be obtained from [19] where as beforé := zit/a. We can write

B
ZH (_n7 q) = ;+_i(f)7 (48) d3

(2n+1)%cos|(2n+1)&] = —gasnl@+ g (52

wheren € N andBy;1(q) is a Bernoulli polynomial defined

by [19]

n nl and formally we have
Bn(X) = — " B )(n*k7 49
"= 2 Bin—p (49) 3
1d° 2 .
whereB,, is a Bernoulli number. The relevant polynomial here G(§) = “BdE nZosm[(zm— 1)§). (53)
is: =

Ba(X) B N

30" (50)  writing sin[(2n+ 1) ] in terms of exponentials of imaginary

argument and passing to the euclidean space we obtain after
With B4(1/2) = (7/8) x (1/30), it follows that{y (—3,3) =  Some simple manipulations
—(7/8)(1/120). The sum can be regularized with the same

technique employed before. In fact, we can define the function 1P 1

G(&) by __ -9
) 8d&3 2sin(g)’ (54)
GE) : = S n+} 3cos 2 n+} 13
' _nZo 2 2
1 ® Collecting all partial results we finally obtain for
=3 %(Zm- 1)3cos|(2n+1)E], (51)  (Ei(r,t)Ej(r,t)), the result
n=
|
R ~ m4 2 7 (*5”+6L)ij
ErDE D)= (3) %[(_8> 35 t8IGE)|. (55)
Proceeding in the same way in the evaluatioré@f(r,t) Bj (r,t)>0 we obtain
. - m4 2 7 (_6|I+6l)ij
(
Observe that nedr = 0 the functionG (&) behaves as But near = 1tits behavior is slightly different
_ S e r L _ 2
GE)=-5(E-1 45 +0[E-17]. 9
3 71 Again, a direct calculation shows thé; (r,t)Bj (r,t)), =0

G(&)=284— 8125 ° (&%), (57)  for this case.
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en As before the divergent behavior of the correlators near the

ﬁ‘@f” N plates we are interested in is an effect of the distortions of the
Lt electromagnetic oscillations with respect to a situation where

the plates are not present. This fact has received the attention

Z > 7' of several authors, see for example [9, 16].
z=0 z=a z=|

V. THE CASIMIR EFFECT FOR CONDUCTING PLATES

FIG. 1: Three-plate setup for the obtention of the Casimir force per [N Order to apply the above results to Casimir's original

unit area. The plate at= / is auxiliary. setup we consider for convenience three parallel perfectly
conducting plates perpendicular to the axis atz=0,z=a
andz=/¢.

The quantum version of Maxwell tensor is

= = 1 £2 W5 1 ;2
Aan(Tij)o = (BiBj)o— 5 i (E%)o + (BiBj)o — 5 3i (B%)g (59)
Making use of the correlator given by (32) we obtain the following partial results

(B2(z1)), = (E2(zt), = (2)43% {éo*F (z)} , (60)

E2200= (3) x| 1257 @) 1

also(Ex(z,1)Ey(z 1)), = (Ex(z1)Ex(z,1) )y = (Ey(z1)E-(z 1)), = 0. In the same way, making use of (35) we obtain

(B(20)0= (Bt~ (3) o |~ 130- F O (62

(B2(zt), = (2)43% {120_ F (z)} : (63)

and also{By(z,1)By(zt)), = (Bx(z1)B.(zt)), = (By(z1)B,(z1)), = 0. The components of the quantum version of Maxwell
tensor can be easily evaluated. For instance

8n(Tolzt))y = (EZ(z1)),— (EZ(z1)),— (Ei(21)),
+(B2(z 1))y — (Bi(z 1))y — (BY(z 1)), (64)

performing the necessary substitutions we have

(Tzz)p = . (65)

In the same way

(Todo = (Tydo=— g (B2} + (BE(20)o)
T[2
T 720 (69)

Notice how conveniently the divergent parts near the plates  cancel out yielding finite results.
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Let us obtain now the Casimir force per unit area betweerandE, = 0. Making use of the correlator given by (55) the fol-
the conducting plates. Consider Figure (V) and the plate aibwing partial results:
z=a. The Casimir force per unit area on this plate is

(B2(z1)), = (EX(zt), = (g)‘lgzn {; x 1;04—6(2)} :

2 _ L R
e e
= - + , (67) . T4 2 7 1
240% © 240(¢ —a)* 2 () 2 (-L)x =
(t-a) Ezt)o=(3) 2= |(—5) *T35+C®|. 3
wherez — a-R means that tends toa from the left/right. R R R R
Taking the limit¢ — o we obtain the expected result for the @nd (ExzVE(z1), = (E&(@hE(zt), =
Casimir force per unit area <Ey(zt)Ez(zt)> 0. By the same token making use
of the correlator given by (56) we obtain
F, ™
A~ 22 (68) 4277 1
A 240 52 — (B2 (M=, 2 _
. . _ (B(z))g = (By(2t), = (a) 3n {8 " 120 G(E)} '
The minus sign shows that the resulting pressure pushes to- (74)

wards the region between the plates. If simultaneously we
take the limits¢,a — o« keeping the distancé— a constant. ao m4 2 7 1
The pressure changes its sign but it still pushes the plate at <Bz(z’t>o = (5) I K‘g) 120_6(2)} ’ (79)
z= atowards the one &= /.
In order to calculate the renormalized symmetrical stressand also
energy tensor OW ( 7)o" we evaluate the energy density

p(2) = (6%(2))g" in the region between the plates as (Bx(z,1)By(z,1)) = (Bx(2,1)B2(z,1) ), = (By(z1)By(2)),=0

well as the saptial component®™ (2))£", (O (2))i", and _ . _ (76) _
<ézz(z)>6en_ The energy density is given by Proceeding as in the case of the conducting plates we obtain

the following results for the componenets of the quantum ver-
sion of Maxwell tensor

p(r.t) (<E2 )+ (B2(0)) (69
(o= (o= 2 X 7 )
making use of the correlators given by (32) and (35) we obtain 0 0 8" 720*
2 and
p(a) = 7ol (70) ) ; 2
| | | - (Tur)y = <_> x =T, 78)
This result is due to the fact that the divergent pieces in (32) 8/ 24(m
and (35) cancel out yielding a finite result for the vacuum en-
ergy density. Recalling th@'i (z) = —Tij(2), see [11], with Notice that it is sufficient to multiply the results obtained for

help of (2), (32) and (35) the remanescent components of thg@Simir's setup by the factdr—7/8) in order to obtain the

symmetrical stress-energy tensor are easily obtained. The fieSults corresponding to Boyer's setup. _ _
nal result is In order to obtain the Casimir force per unit area for this

setup it is convenient to place a third conducting plate-at.

N . ™ Then the Casimir force per unit area on the plate-ata will
<GW (Z)>O 72m4d|ag( 1,11, _3) ) (71) be given by
which is in perfect agreement with Brown and Maclay'’s re- Fo L R
sults [6]. Notice also that®li(z))e" = g (O™ (2))5" = 0, A= Tz a) ez an
with g,y = diag(1,—-1,-1,-1). 7 2 7 ®
- (8> " 2408 (8> 2400 —a)*’ (79)

VI. THE CASIMIR EFFECT FOR ONE CONDUCTING

PLATE AND AN INFINITELY PERMEABLE ONE Taking the limit¢ — c we obtain a Casimir force which

pushes the plate at= a towards the regioz > a given by

Let us consider now the setup proposed by Boyer [10] F, 7 A
which consists of a perfectly conducting plate placed perpen- A~ 8" 2207 (80)
dicularly to theOZz axis atz = 0 and another infinitely per-
meable one parallel to the first placedzat a. The boundary This is the result obtained by Boyer [10] for this setup using
conditions on the conducting plate are as beteye=- E, =0  stochastic electrodynamic methods and it is one of the sim-
andB; = 0, and for the infinitely permeable platBy =By, =0  plest example of a repulsive Casimir force.
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In order to evaluate the symmetrical stress-energy tensor wihe Casimir energy and pressure and the symmetrical trace-
first evaluate the Casimir energy density. Making use of (55)ess stress energy tensor. We have shown that for the cases

e (56) we have we had in mind here finite results are obtained only when we
consider what happens on both sides of the surface boundary.

0= 7 v ™ (81) This consideration provided the mechanism by which precise
8 240a% cancellations occurred and finite results were obtained. These

. . . ._cancellations occur only for the simple geometry considered
As in the case of the conducting plates a simple caIcuIatloq1

) ~“~M1n this paper. This is in agreement with, for example, Ref. [9]
shows that the stress energy tensor for Boyer's setup is 9V€Shd should be considered as a concrete example of the behav-

by ior of quantized fields near and on boundary surfaces. This
behavior depends on the geometry of the boundaries and can
X so-——diag(1,-1,-1,3). (82)  become quite complicated. It can depend on the local curva-
720 ture of the boundary, for instance. Finally, it must be men-
A \ren AW (S \ren _ tioned that the equal time and space electromagnetic field cor-
As before(94(2))5" = gw (O%(2))5" = 0. relators calculated here were can be also employed to rederive
VIl. CONCLUSIONS the atractive and the repulsive Casimir effect by means of a
guantum version of the Lorentz force [20]. They can be also
In this paper we have shown how to employ the equa|applled to the Casimir-Polder interaction between an atom and

time and space electromagnetic field correlators evaluated baterial surfaces [21]
tween parallel material surfaces to rederive results concernig
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