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It is reviewed what can be considered as the present research trends in what regards to the construction of an
ensemble formalism — Gibbs’ style — for the case of far-from-equilibrium systems. The main questions involved
are presented accompanied with brief discussions. The construction of a nonequilibrium statistical operator
is described and its applications commented, and, particularly, it is presented the derivation of an Irreversible
Thermodynamics based on the statistical foundations that the nonequilibrium ensemble formalism provides.

I. INTRODUCTION civilization. lIts application to the case of systems in equilib-
rium proceeded rapidly and with exceptional success: equi-

It is generally considered that the aim of Statistical Me-librium statistical mechanics gave - starting from the micro-
chanics of many-body systems away from equilibrium is toSCOPIC level - foun_d:_:tpons to Thermostatlcs, its orlglnal objec-
determine their thermodynamic properties, and the evolutio#iVe, and the possibility to build a Response Function Theory.
in time of their macroscopic observables, in terms of the dyApplications to nonequilibrium systems began, mainly, with
namical laws which govern the motion of their constitutive the case of local equilibrium in the linear regime following
elements. This implies, first, in the construction of an irre-the pioneering work of Lars Onsager (see, for example, [5]).
versible thermodynamics and a thermo-hydrodynamics (the For systems arbitrarily deviated from equilibrium and
latter meaning the particle and energy motion in fluids, rhegoverned by nonlinear kinetic laws, the derivation of an
ological properties, etc., with the transport coefficients de€nsemble-like formalism proceeded at a slower pace than in
pending on the macroscopic thermodynamic state of the sydhe case of equilibrium, and somewhat cautiously. A long list
tem). Second, we need to face the all-important derivatior®f distinguished scientists contributed to such development,
of a generalized nonlinear quantum kinetic theory and a re@nd among them we can mention Nicolai Bogoliubov, John
sponse function theory, which are of fundamental relevanc&irkwood, Sergei Krylov, Melvin Green, Robert Zwanzig,
to connect theory with observation and experiment, basic foHazimi Mori, llya Prigogine, Dimitri Zubarev. It must be
the corroboration of any theory [1], that is, the synthesis le@dded the name of Edwin Jaynes, who systematized, or better
in the scientific method born in the seventeenth century. to say codified, the matter on the basis of a variational princi-

Oliver Penrose [2] has noted that Statistical Mechanics i®le in the context of Wh_at is_ referred to as Predictive Statis_tical
notorious for conceptual problems to which is difficult to give Mechanics [6-13], which is based on a framework provided
a convincing answer, mainly: by Information Theory.

What is the physical significance of a Gibbs’ ensemble?; It can be noticed that the subject involves a number of ques-

How can we justify the standard ensembles used in equilibions to which it is necessary to give an answer, namely
rium theory?; . ' . .

What are the right ensembles for nonequilibrium prob- 1. The question of the choice of the basic variables
lems?;

How can we reconcile the reversibility of microscopic me-

2. The question of irreversibility
chanics with the irreversibility of macroscopic behavior? 3
4

. The question of the initial value condition
Moreover, related to the case of many-body systems out

of equilibrium, the late Ryogo Kubo, in the opening address
in the Oji Seminar [3], told us that statistical mechanics of
nonlinear nonequilibrium phenomena is justin its infancy and 5. The question of providing the statistical operator
further progress can only be hoped by closed cooperation with

experiment. Some progress has been achieved since then, and6. The question of building a non-equilibrium grand-

. The question of historicity

we try in this review to describe, in a simple manner, some canonical ensemble
attempts in the direction to provide a path for one particular . _
initial programme to face the questions posited above. - The question of the truncation procedure

Statistical Mechanics is a grandiose theoretical construc-
tion whose founding fathers include the great names of James
C. Maxwell, Ludwig Boltzmann and J. Willard Gibbs [4].
We may recall that it is fundamental for the study of con-
densed matter, which could be said to be statistical mechanics
by antonomasia. Therefore statistical mechanics can be con-10. The question of validation (experiment and theory)
sidered the science mother of the present day advanced tech-
nology, which is the base of our sophisticated contemporary 11. The question of the approach to equilibrium

8. The question of the equations of evolution (nonlinear
quantum kinetic theory)

9. The question of a response function theory
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12. The question of a hon-equilibrium statistical thermody- stated that the formalism “has by far the most appealing struc-
namics ture, and may yet become the most effective method for deal-
ing with nonlinear transport processes” [15]. Later devel-
13. The question of a thermo-statistical approach to com-opments have confirmed Zwanzig’s prediction. The present
plex systems structure of the formalism consists in a vast extension and gen-
eralization of earlier pioneering approaches, among which we
14. The question of a nonlinear higher-order thermo- can pinpoint the works of Kirkwood [16], Green [17], Mori-
hydrodynamics Oppenheim-Ross [18], Mori [19], and Zwanzig [20]. NESEF
has been approached from different points of view: some are
15. The question of statistical mechanics for complex struchased on heuristic arguments [18, 21-24], others on projection

tured systems operator techniques [25-27] (the former following Kirkwood
and Green and the latter following Zwanzig and Mori). The
which are addressed in [13, 14]. formalism has been particularly systematized and largely im-

proved by the Russian School of statistical physics, which can
tems we face greater difficulties than those present in the th e c?n_5|d_err1eg to r:_a\:)e begg |n|t|e(1jted by the rlenowned IZ‘.'COIa'
ory of equilibrium systems. This is mainly due to the fact IColaievich Bogoliubov [28], and we may also hame NICo-
that a more detailed analysis is necessary to determine tgﬁ' Sergeivich Krylov [29], and more recently mainly through

In the study of the macroscopic state of nonequilibrium sys

temporal dependence of measurable properties, and to ¢ 1e relevant contributions by Dimitrii Zubarev [24, 30], Sergei

culate transport coefficients which are time-dependent (that &/ €tmMinskii [22, 23], and others.
is, depending on the evolution in time of the nonequilibrium These different approaches to NESEF can be brought to-
macrostate of the system where dissipative processes are wgether under a unique variational principle. This has been
folding), and which are also space dependent. That depemriginally done by Zubarev and Kalashnikov [31], and later
dence is nonlocal in space and non-instantaneous in time, & reconsidered in Ref. [32] (see also Refs. [33] and [34]).
it encompasses space and time correlations. Robert Zwanziticonsists on the maximization, in the context of Information
[15] has summarized the basic goals of nonequilibrium statisTheory, of Gibbs statistical entropy (to be called fine-grained
tical mechanics as consisting of: (i) To derive transport equainformational-statistical entropy), subjected to certain con-
tions and to grasp their structure; (i) To understand how thetraints, and including non-locality in space, retro-effects, and
approach to equilibrium occurs in natural isolated systemsifreversibility on the macroscopic level. This is the foundation
(iii) To study the properties of steady states; and (iv) To calcuof the nonequilibrium statistical ensemble formalism that we
late the instantaneous values and the temporal evolution of tréescribe in general terms in following sections. The topic has
physical quantities which specify the macroscopic state of théurfaced in the section “Questions and Answers” of the Am.
system. Also according to Zwanzig, for the purpose to facel. Phys. [6, 35]. The question by Baierlein [35], “A central
these items, there exist several approaches which can be cla@ganizing principle for statistical and thermal physics?”, was
sified as: (a) Intuitive techniques; (b) Techniques based on th@llowed by Semura’s answer [6] that “the best central orga-
generalization of the theory of gases; (c) Techniques basegizing principle for statistical and thermal physics is that of
on the theory of stochastic processes; (d) Expansions from ahaximum [informational] entropy [...]. The principle states
initial equilibrium ensemble; (e) Generalization of Gibbs’ en- that the probability should be chosen to maximize the average
semble formalism. missing information of the system, subjected to the constraints
The last item (e) is connected with Penrose’s questions ndmposed by the [available] information. This assignment is
ticed above Concerning ifthere are, and what are, nght ensenﬁ:..onSiStent with the least biased estimation of prObab”itieS."
bles for nonequilibrium problems. In the absence of a Gibbs- The formalism may be considered as covered under the um-
style ensemble approach, for a long time different kinetic thebrella provided by the scheme of Jaynes’ Predictive Statis-
ories were used, with variable success, to deal with the greaical Mechanics [7]. This is a powerful approach based on
variety of nonequilibrium phenomena occurring in physicalthe Bayesian method in probability theory, together with the
systems in nature. We describe here a proposition for the comprinciple of maximization of informational entropy (MaxEnt),
struction of a Nonequilibrium Statistical Ensemble Formal-and the resulting statistical ensemble formalism is referred-
ism, or NESEF, for short, which appears to provide groundso asMaxEnt-NESEFJaynes’ scheme implies in a predictive
for a general prescription to choose appropriate ensembles fgtatistics that is built only on the access to the relevant infor-
nonequilibrium systems. The formalism has an accompanyingnation that there exists of the system [6—-12]. As pointed out
nonlinear quantum transport theory of a large scope (whiclyy Jaynes [8]. “How shall we best think about Nature and
encompasses as particular limiting cases Boltzmann’'s anghost efficiently predict her behavior, given only our incom-
Mori's approaches), a response function theory for arbitrarilyplete knowledge [of the microscopic details of the system]?
away-from-equilibrium systems, a statistical thermodynamicg...]. We need to see it, not as an example of the N-body equa-
(the so-called Informational Statistical Thermodynamics), andions of motion, but as an example of the logic of scientific
an accompanying Thermo-Hydrodynamics. inference, which by-passes all details dpging directly from
NESEF appears as a very powerful, concise, based oour macroscopic information to the best macroscopic predic-
sound principles, and elegant formalism of a broad scope ttions that can be made from that informatiofgmphasis is
deal with systems arbitrarily away from equilibrium. Zwanzig ours) [...]. “Predictive Statistical Mechanics is not a physical
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theory, but a method of reasoning that accomplishes this bgxists a unique function measuring the uncertainty of the prob-
finding, not the particular that the equations of motion say inability assignment. This is the already mentioned principle of
any particular case, but the general things that they say in ‘alnaximization of the informational-statistical entropy, MaxEnt
most all’ cases consisting with our information; for those arefor short. It provides the variational principle which results
the reproducible things”. in a unifying theoretical framework for NESEF, thus intro-
Again following Jaynes’ reasoning, the construction of aducing, as we have noticed, MaxEnt-NESEF as a nonequilib-
statistical approach is based on “a rather basic principle [...Jrium statistical ensemble formalism. It should be stressatl
If any macrophenomenon is found to be reproducible, then ithe maximization of§ implies in making maximum the un-
follows that all microscopic details that were not under thecertainty in the information availablgn Shannon-Brillouin’s
experimenters’ control must be irrelevant for understandingsense [40, 41]), to have in fact the least biased probability as-
and predicting it". Further, “the difficulty of prediction from signment.
microstates lies [..] in our own lack of the information needed We proceed next to describe the construction of NESEF and
to apply them. We never know the microstates; only a fewof an irreversible thermodynamics founded on its premises.
aspects of the macrostate. Nevertheless, the aforemention&tiis is done, as indicated above, in the context of the vari-
principle of [macroscopic] reproducibility convinces us that ational principle MaxEnt, but an alternative derivation along
this should be enoughhe relevant information is there, if traditional (heuristic) ways is also possible and described in
only we can see how to recognize it and usg¢dtphasis is Ref. [14].

ours].

As noticed, Predictive Statistical Mechanics is founded on
the Bayesian approach in probability theory. According to Il. ANONEQUILIBRIUM STATISTICAL ENSEMBLE
Jaynes, the question of what are theoretically valid, and prag- FORMALISM

matically useful, ways of applying probability theory in sci-
ence has been approached by Sir Harold Jeffreys [36, 37], in In the construction of nonequilibrium statistical ensem-
the sense that he stated the general philosophy of what sciebles, that is, a Nonequilibrium Statistical Ensemble Formal-
tific inference is and proceeded to carry both the mathematicaém (NESEF), basically consisting into the derivation of a
theory and its implementations. Together with Jaynes and otmonequilibrium statistical operator (probability distribution in
ers, the Nobelist Philip W. Anderson [38] maintains that whatthe classical case), first it needs be noticed that for systems
seems to be the most appropriate probability theory for the sciaway from equilibrium several important points need be care-
ences is the Bayesian approach. The Bayesian interpretatigally taken into account in each case under consideration [cf.
is that probability is the degree of belief which is consistentthe list of questions above], particularly:
to hold in considering a proposition as being true, once other (1) The choice of the basic variabléa wholly different
conditioning propositions are taken as true [39]. Or, also acchoice than in equilibrium when it suffices to take a subset
cording to Anderson: “What Bayesian does is to focus one’sf those which are constants of motion), which is to be based
attention on the question one wants to ask of the data. It saysh an analysis of what sort of macroscopic measurements and
in effect, how do these data affect my previous knowledgeprocesses are actually possible, and, moreover one is to focus
of the situation? It is sometimes calleaximum likelihood  attention not only on what can be observed but also on the
thinking, but the essence of it is to clearly identify the possicharacter and expectative concerning the equations of evolu-
ble answers, assign reasonable a priori probabilities to themtion for these variables (e.g. Refs. [15, 42]). We also notice
and then ask which answers have been done more likely by thirat even though at the initial stage we would need to intro-
data” [emphasis is ours]. duce all the observables of the system, as time elapses more
The question that arises is, as stated by Jaynes, “how shalhd more contracted descriptions can be used as enters into
we use probability theory to help us do plausible reasoning irplay Bogoliubov’s principle of correlation weakening and the
situations where, because of incomplete information we canaccompanying hierarchy of relaxation times [42].
not use deductive reasoning?” In other words, the main ques- |t can be noticed that to consider all the observables of
tion is how to obtain the probability assignment compatiblethe system is consisting with introducing the reduced one-
with the available information, while avoiding unwarranted particle, iy, and two-particlefi,, dynamical operators [13,
assumptions. This is answered by Jaynes who formulated thie4, 42, 43] in classical mechanics given by
criterion that: the least biased probability assignmgmt},
for a set of mutually exclusive even{x;}, is the one that Ay (r,p) = 26(r —rj) d(p—pj) , (2)
maximizes the quantit$ , sometimes referred to as timgor- ]
mational entropygiven by

S=-Ypjnp (1) ﬁz(r,p;r',p)z;{Mr—r,‘)é(p—pj)é(r’—rk)6(p’—pk) 7
] i
3)

conditioned by the constraints imposed by the available inforwith rj andp; being the coordinate and linear momentum of
mation. This is based on Shannon’s ideas in the mathematicttie j-th particle in phase space ancand p the continuous
theory of communications [40], who first demonstrated thatyalues of position and momentum, which are called field vari-
for an exhaustive set of mutually exclusive propositions, therables (for the quantum case see [13]). For simplicity we are
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considering a system dfl particles of massn; the case of treatment of transport problems, it is important to realize at
systems with several kinds of particles are straightforwardlywhat point the irreversibility has been incorporated. If it has
included in the treatment: it suffices to introduce a second innot been incorporated, the treatment is wrong. A description
dex to indicate them, i.esj,psj, etc. [see SubsectiolV.B of the situation that preserves the reversibility in time is bound
below]. to give the answer zero or infinity for any conductivity. If we
But it is pertinent to look for what can be termed as a gen-do not see clearly where the irreversibility is introduced, we
eralized grand-canonical ensemble, what can be done [13] yo not clearly understand what we are doing” [44].
introducing in place ofi;, andf; independent linear combi- The question is then to find the proper nonequilibrium sta-
nation of them. For simplicity consider onfif, and the new tistical operator that MaxEnt-NESEF should provide. The
variables are the densities of kinetic energy and of particles way out of the difficulties pointed out above is contained in
7 . 7 }he.ide?lz]et fﬂrwarq bdeohn rIfirkVﬁood in thef dhecade of the
3 A . A 3.5 orties . He pointed out that the state of the system at
dp 2m fu(r,p) ' ()= dphu(r,p) 'timet is strongly%ependent on all the previous evo?/ution of
4 the nonequilibrium processes that have been developing in it.
Kirkwood introduces this fact, in the context of the transport

h(r)=

and their fluxes of all order, namely,

z 2 theory he proposes, in the form of a so-calliede-smoothing
n[:] (r)= dp u! (p) %n A1 (r,p) , (5) E(rac;g\?vdure,which is generalized in MaxEnt-NESEF as shown
. After the choice of the basic dynamical variables has been
" ~ erformed, and let us call them genericallygd (&) }, where
W= cpdlpmep . © genericalii®s (¢}

¢ indicates the set of all variables on which #jemay depend
[cf. Egs. (2) and (3), and Eqs. (4) to (6) and (8)], introducing
in MaxEnt-NESEF [13, 14, 31-34] the idea that it must be
incorporated all the past history of the system lf@toricity

] p ) p effect$, all along the time interval going from the initial con-
ut(p) = mo (r—times ... m (7)  dition of preparation of the sample in the given experiment at,
say, timet, up to timet when a measurement is performed
(i.e., when we observe the macroscopic state of the system),
we proceed to maximize Gibbs’ entropy (sometimes called
fine-grained entropy)

wherer = 1 for the vectorial flux or current,> 2 for the other
higher-order fluxes; also indicates the tensorial rank, and

stands for the tensorial productmwfimes the vectop/m, ren-
dering a tensor of rank The contributions associated fig
are of the form [13]

Al A R - _
Cop (r,1) =) T5(r) , ) St =-Tr{pM®Mp®)} . )
where p and g are indexesh or m r, r = 0 (the with the normalization and constraints given at any time

e . the intervalt, <t’ <t, namel
densities)1,2,..., and]...] as above stands for tensorial prod- °o=" = y

uct. The question dfruncation of descriptionthat is to take

¢ ) Tr{p(t)} =1 ; (10)
a reduced number of the above variables (associated to Bo-
goliubov’s principle of correlation weakening and hierarchy
of relaxation times) and the question of the approach to equi- Qi (&) =Tr{F(®)p(t)} 7 (11)

librium is discussed elsewhere [13, 14] (In equilibrium, be-

cause there survive only the variables of Eqs. (8) only forwith Q;(&,t') being the nonequilibrium thermodynamic
r, ¥ =0, there follows a nonextensive description, becoming(macroscopic) variables for the description of the accompa-
approximately extensive in the thermodynamic limit [14]).  nying irreversible thermodynamics described in next section.

(2) It needs be introduced historicityhat is, the idea that Resorting to Lagrange’s procedure we find that
it must be incorporated all the past dynamics of the system

(or historicity effects), all along the time interval going from z zZt
a starting description of the macrostate of the sample in thp(t) =exp{ —W(t) - Z de¢ dt’ Y (E;t,t/) |3j (E:t —t’) ,
given experiment, say &, up to the time t when a measure- ]
ment is performed. This is a quite important point in the case

of dissipative systems as emphasized among others by Jokyhere

Kirkwood and Hazime Mori. It implies in that the history of

the system is not merely the series of events in which the sys- z Zt R
tem has been involved, but it is the series of transformation¥ (t)=InTr{exp |— Z d dt' o Et,t") Py (Et—t) | 5,
along time by which the system progressively comes into be- ] to
ing at time t (when a measurement is performed), through the

to
12)

(13)

evolution governed by the laws of mechanics [16, 18].
(3) The question of irreversibilityor Eddington’s arrow of

and theg; are the corresponding Lagrange multipliers deter-
mined in terms of the basic macrovariables by Eq. (11), and

time) on what Rudolf Peierls stated that: “In any theoreticaloperators'ﬁj are given in Heisenberg representation.
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Further an additional basic step needs now be considerethis choice is introduced in Eq. (12), in Zubarev’s approach
namely a generalization of Kirkwoodtme-smoothing pro- the nonequilibrium statistical operator, designatedpbit),
cedure This is done introducing an extra assumption on theafter integration by parts in time, can be written in the form
form of the Lagrange multiplierg;j, in such a way, we stress,
that (i) irreversible behavior in the evolution of the macro- Zt d
scopic state of the system is satisfied; (ii) the instantaneousp; (t) = exp{ —S(t,0)+ dt' (- )ﬁé(tﬂt’ —t)
state of the system is given by Eq. (11); (iii) it is introduced Cw dt
the set of quantitie§F; (¢,t)} as intensive variables thermo- (16)
dynamically conjugated to basic macrovariab{@j (E,t)}, where
what allowsa posteriorito generate satisfactory Thermody- z
namic and Thermo-Hydrodynamic theories. This is accom- é(t,O) =—Inp(t,0)=d(t) 1+Z d& Fj (&,1) ﬁ(g) , (A7)
plished introducing the definition

o (Ett) =w(tt)FEH (14) with 1 being the unit operator, and

is introduced the auxiliary operator
wherew (t,t’) is an auxiliary weight function, which, to satisfy ro (t,0) = exp{ St 0) } referred-to as an instantaneous
the four points just listed immediately above, must have wel uase equilibrium statlsncal operator, moreover
defined properties which are discussed elsewhere [32], andqt
is verified that

~ 1 ~
7t Iyl _ T+
S(t',t' —t) exp{ = (t t)H}

Wit)= dtw(tt)et) . (15)

—o00

The functionw(t,t") introduces thetime-smoothing proce-
dure and, becat(Jse)of the properties it must have to accomplish S(t O) exp (t _t) H (18)

its purposes, it is acceptable any kernel that the mathematicihe operatorS(t,0) is deS|gnated as thénformational-
theory of convergence of trigonometrical series and transfornentropy operator whose relevance and properties are dis-
integrals provides. Kirkwood, Green, Mori and others havecussed in [45].

chosen what in mathematical parlance isefFépr Cearo-1) In the framework of the nonequilibrium grand-canonical
kernel, while Zubarev introduced the one consisting in Abel'sensemble, namely, when the basic variables are those of Egs.
kernel forw in Eqg. (15) - which apparently appears to be the(4) to (8), we do have that

best choice, either mathematically but mainly physically - that R

is, takingw (t,t’) = eexp{e(t' —t)}, whereg is a positive in- p(t,0) = exp{—S(t,0) } , (19)
finitesimal that goes to zero after the calculation of averages

has been performed, and withgoing to minus infinite. Once where

Z
S(t,0) = o(t) + Z d’r {Fh](r el t[] (r )_|_|:n['](r t)®|[r]( |+
rr>0
Z Z
B ; Alr+r] .
(33 e by 0 @)

where® stands for fully contracted product of tensors, we re-what implies in a kind of initialStosszahlanzatn the sense
call thatr andr equal to0 stands for the densities, and this  that the initial state is defined by the instantaneous general-
are the nonequilibrium thermodynamic variables associated t@ed canonical-like distributiop, thus ignoring correlations
the corresponding observable [13, 46]. among the basic variables prior to tirge Second g (t) can

Several important points can be stressed in connection witR® Separated into two parts [13, 24, 30-33], see also [18],

the nonequilibrium statistical operator of Eq. (16). Fitkg hamely,

initial condition at timety, — —oo, is —
° Pe(t) =p(t,0)+pL(t) (22)

Pe (to) = p (to,0) , (21) wherep(t,0) is the instantaneous distribution of Eq. (19).
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The first one,p, defines an instantaneous, at timedistri-  tal measure, is given by
bution, which describes a “frozen” equilibrium providing at

such given time the macroscopic state of the system, and for Al = sinlo r {Apa (t)}
that reason is sometimes dubbed ashasi-equilibrium sta- _ A~ . A/
tistical operator.This distribution describes the macrostate of =T {Ap (t,O)} +allrﬂo T {Aps (t>} » (24

the system in a time interval, arouhdnuch smaller than the
relaxation times of the basic variables (implying in a “frozen’
equilibrium or quasi-equilibrium in such interval). But, of
course, for larger time intervals the effect of the dissipationa
processes comes into action. The dynamics that has led t
system to that state at tintefrom the initial condition of
preparation at timé, [cf. Eq. (21)], as well as its continuing
dissipative evolution from that state at tirhéo eventually a
final full equilibrium, is contained in the fundamental contri-
butionpy (t) . Furthermore, there exists a time-dependent pro
jection operator? (t) with the property that [32, 33]

_the last equality following after the separation given by Eq.
(21) is introduced. This is the said generalization of Kirkwood
ime-smoothing averaging [16], and we can see that the aver-
e value is composed of two contributions: one is the average
th the quasi-equilibrium distribution (meaning the contri-
bution of the state at the tin¢, plus the contribution arising
out of the dynamical behavior of the system (the one that ac-
counts for the past history and future dissipational evolution).
Moreover, this operation introduces in the formalism the so-
calledBogoliubov’'s method of quasi-averagd®, 48]. Bo-
goliubov’s procedure involves a symmetry-breaking process,
which is introduced in order to remove degeneracies con-
P(t)Inpe (t) =Inp(t,0) ) (23) nected with one or several groups of transformations in the
description of the system. According to Eq. (24) the regu-
lar average wittpg (t) is followed by the limit of cancelling
This projection procedure, a generalization of those ofthead hocsymmetry-breaking introduced by the presence of
Zwanzig (apparently the first to introduce projection tech-the weight functiorw in Eq. (14) (which is Abel’'s kernel in
niques in statistical physics [20]), Mori [19], Zubarev and Zubarev approach, cf. Eq. (16), and follows fogoing to
Kalashnikov [27], and Robertson [25], has interesting char-1-0), which imposes dreaking of the time-reversal symme-
acteristics. We recall that the formalism involves the macro+ry in the dynamical description of the system. This is mir-
scopic description of the system in terms of the set ofrored in the Liouville equation fope (t): Zubarev's nonequi-
macrovariables{Q; (§,t)}, which are the average over the |ibrium statistical operataoessatisfy Liouville equation, but
nonequilibrium ensemble of the set of dynamical quantitiest must be reckoned the fact that the group of its solutions is
{Pj (E)} The latter are called the “relevant” variables, andcomposed of two subsets, the one corresponding to the re-
we denote the subspace they define asrtfemational sub-  tarded solutions and the one corresponding to the advanced
spaceof the space of states of the system. The remainingolutions. The presence of the weight functiefAbel’s ker-
quantities in the dynamical description of the system, namelyhel in Zubarev’s approach) in théme-smoothing or quasi-
those absent from the informational space associated to thg/erage procedurthat has been introduceelects the subset
constraints in MaxEnt, are called “irrelevant” variables. Theof retarded solutiongrom the total group of solutions of Li-
role of the projection operation is to introduce what can be reouville equation. We call the attention (as Zubarev had; see
ferred to as aoarse-graining proceduren the sense that it Appendix in the book of reference [24]) that this has a cer-
projects the logarithm of the “fine-grained” statistical operatortain analogy with Gell-Mann and Goldberger [49] procedure
P (t) onto the subspace of the “relevant” (informational) vari- in scattering theory, where these authors promote a symmetry-
ables, this projected part being the logarithm of the auxiliarybreaking in Bogoliubov’s sense in Schroedinger equation, in
(or quasi-equilibrium, or “instantaneous frozen”, or “coarse-order to represent the way in which the quantum mechanical
grained”) distributionp (t,0), and, consequently, the proce- state has been prepared during times < t’ <t, adopting for
dure eliminates the “irrelevant” variables, quite in the spirit of the wave function a weighted time-smoothing as the one used
the Bayesian-based approach and MaxEnt. The “irrelevantin Zubarev's approach to NESEF. More precisely(t) satis-
variables are “hidden” in the contributiqu (t) to the full dis-  fies a Liouville equation of a form that automatically, via Bo-

tribution pe (t) of Eq. (22), since it depends on the last term ingoliubov’s procedure, selects the retarded solutions, namely
the exponential of Eg. (16), where the differentiation in time

drivesinp outside the subspace of “relevant” (informational) 9 Inpe () +iAe (1) Inpe () =0 , (25)

variables. We stress that the projection operation is time de- ot

pendent, such dependence corresponding to the fact that thgereA, is the modified Liouville operator

projection? (t) is determined by the macroscopic state of the

system at the time the projection is performed. Further consid- iAg (1) =i 7 [1—P(t)] ’ (26)

erations of this projection procedure will appear in the kinetic

and thermodynamics theories based on this informational aggith 2 being the regular Liouville operator ar{(t) the pro-

progch. Morgover, geqmetriqal—topolpgical implications ar€ection operator of Eq. (23). Equation (25) is of the form

derived and discussed in detail by Balian et al. [47]. proposed by llya Prigogine [50], withs being composed of
Two further comments are of relevance. First, for a giveneven and odd parts under time-reversal. Therefore, the time-

dynamical quantityh, its average value in MaxEnt-NESOM, smoothing procedure introduces a kindRafgogine’s dynam-

that is, the expected value to be compared with the experimeneal condition for dissipativityf50, 51].
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Using Eq. (23) we can rewrite Eq. (25) in the form teresting alternative approach to the derivation of Zubarev's
form of MaxEnt-NESEF, which however differs from ours
0 1 N _ in the interpretation of the time-smoothing procedure, which
5t MPe () + 1 [Inpe (t),H] = —€[Inpe (t) - Inp(t,0)] , they take as implying the connection of an adiabatic pertur-
(27)  bation fort’ > t, (we think that these authors mean adiabatic
viz., a regular Liouville equation but with an infinitesimal switch on of the interactions i’ responsible for the dissipa-
source, which introduces Bogoliubov's symmetry breaking oftive processes), instead of implying in a fading-memory inter-
time reversal, and is responsible for disregarding the advancestetation. We need notice that both are interpretations which
solutions. Equation (27) is then said to have Boltzmannwe feel are equally satisfactory and may be equivalent, but
Bogoliubov-Prigogine symmetry. Following Zubarev [24], we side with the point of view of irreversible behavior follow-
Eq. (27) is interpreted as the logarithm of the statistical operaing from - in Boltzmann-Bogoliubov-Prigogine’s sense - adia-

tor evolving freely under Liouville operattﬁ, from an initial  atic decorrelation of processes in the past. This is the fading-
condition at timeto, and with the system undergoing random Memory phenomenon, introduced in Zubarev's approach as
transitions, under the influence of the interaction with the sur& result of the postulated Poissonian random processes (on
roundings. This is described by a Poisson distributigring  the basis that no real system can be wholly isolated), as al-
the form of Abel’s kernel), and the result at tihis obtained ready dlgcussed. Thls_ interpretation aside, we agree with the
by averaging over al’ in the interval {,t) [cf. Eq. (12)]. authors in Ref. [34]_, in that the method prowdes_ adequate

This is the time-smoothing procedure in Kirkwood's sense [cf convergence properties (ensured by Abel's kernel in Zubarev’

Eq. (24)], and therefore, it is introduced information related@PProach) for the equations of evolution of the system. These

to the past history in the thermo-hydrodynamic macrostate ofroPerly describe the irreversible processes unfolding in the
the system along its evolution from the inittal media, with an evolution from a specific initial condition of

a@reparation of the system and, after remotion of all external

Two points need be considered here. One is that the initi , . . .
constraints - except thermal and particle reservoirs - tending

to is usually taken in the remote pagf {~ —), and the other . . ot L
that the integration in time in the intervah(t) is weighted to the final grand-canonical equilibrium distribution

by the kernelw(t,t") (Abel's kernel in Zubarev's approach, Moreover, the convergence imposed by Abel’_s kernel in
Fejers kernel in Kirkwood, Green , Mori approaches: andZubarev's approach appears as the most appropriate, not only

others are possible). As a consequence the procedure intr,[?—r the practical mathematical advantages in the calculation

duces a kind okvanescent historgs the system macrostate it provides, but mostly important, by the attached physical

evolves toward the future from the initial condition at titge M€aNiNg associated to the proposed adiabatic decoupling of
(— —o). Therefore, the contributiop!, (t) to the full statis- correlations which surface in the transport equations in the ac-
) , A

tical operator, that is, the one describing the dissipative evof0MpPanying MaxEnt-NESEF kinetic theory [56]. In fact, on

lution of the state of the system, to be clearly evidenced ifhe one hand this kinetic theory produces, when restrictions

the resulting kinetic theory, clearly indicates that it has beerr® applied on the gener.al theory,.the.expectt_ad cqllision oper-
introduced afading memoryprocess. This may be consid- ators (as Fhosg denvgd in other. kinetic theories) introducing,
ered as the statistical-mechanical equivalent of the one prdifter the time integration in the intervabt) has been done,

posed in phenomenological continuum-mechanical-based RH1€ €xpected terms of energy renormalization and energy con-
tional Thermodynamics [52, 53]. In Zubarev's approach thisServation in the collision events. Furthermore, as pointed out

fading process occurs in an adiabatic-like form towards the redY Zubarev [24], Abel's kernel ensures the convergence of the

mote past: as time evolves memory decays exponentially Wiﬂ,ptegrals in the calculati_on of the transport_coefficients_, which
lifetime £-1 In some cases show divergences when, instea@y keynel

We may interpret this considering that as time evolves cor’S used (as in Green, Mori, etc. approaches). The procedure

relations established in the past fad away, and only the moéyso appears as having certain analogies with the so-called re-

recent ones strongly influence the evolution of the nonequipeated randomness assumptions [57, 58] as discussed by del

librium system; here again is in action Bogoliubov’s principle Rio and Garcia-Colin [59].

of correlations weakening. This establisheeversible be- NIgig?be:sggm;zli?\ngIﬁier:ett?ceTcrm()erl)sﬂgutcitslsort]hZm:lraa)éimc;rt
havior in the system introducing in a peculiar way a kind of atis, P

Eddington’stime-arrow: Colloguially speaking, we may sa (evolution) equations for the basic set of macrovariables that
that because of its fadi.ng memory )f[he system, can onlil/ evzlvgescribe the irreversible evolution of the macrostate of the sys-

irreversibly towards the future and cannot “remember” how o They are, in principl_e, straightfc_)rwardly derived, consi;t-
ing in Heisenberg equations of motion for the corresponding

to retrieve the mechanical trajectories that would return it t asic dynamical variables (mechanical observables) or Hamil-
the past situations (what is attained when neglecting the a} y
li

on equations in the classical case, averaged over the nonequi-

vance solutions of Liouville equation). In a sense we may,., .
brium ensemble, namely

say that Boltzmann original ideas are here at work in quite

general conditions [54, 55], and in its evolution towards the 0 1 .. .

future, once any external perturbating source is switched off, 3 Qi (&:1) = Tr{iﬁ [Pi (8),H] pe (t)} - (28)
the system tends to a final state of equilibrium irrespective of

the nonequilibrium initial condition of preparation. USi”gA the separation of the Hamiltonian as given I-H)y:

Alvarez-Romero and Garcia-Colin [34] has presented an inHo +H’, whereH, is the kinetic energy and’ contains the in-



696 Aurea R. Vasconcellos, J. Ga@le Ramos, and Roberto Luzzi

teraction and the separation of the statistical operator as givgghenomena are described by these contributions to the Hamil-
by Eq. (21), it follows that Eq. (28) can be written in the form tonian, and to the statistical operator in Eq. (21), respectively.

[56, 60] Hence, as already anticipated, dissipation is not present in the
5 instantaneous quasi-equilibrium operapdt, 0) of Eq. (19),
Yn. _ 40 (1) _ but in the nonequilibrium operator containing the history and
t)=3" (& 1)+ J; t)+ 0, 29
atQ (&) J (&) J €+ (29) time-smoothing characteristic pf (t) of Egs. (16) and (22).

We notice that ifH’ is null, so isp. (t), when H, coincides
with the whole Hamiltonian corresponding to a full equilib-
0 1 . o rium condition.

(&t) = Tr{, [P(&),Ho] p(t,O)} ) (30) The collision integral of Eq. (32) requires an, in general,
quite difficult, and practically unmanageable, mathematical
handling. But for practical use, it can be reformulated in the

Yan-Tr{;
1.4 A
nen-Te{POA RO} . @

where on the right-hand side are present the contributions

=

. S form of an infinite series of partial collision integrals in the

- i Q§n> (Eat) ) (33)
n=2

where quantitiesQ(" for n = 2,3,.... can be interpreted

As shown elsewhere [32, 56, 60] this Eq. (29) can be conas describing two-particle, three- particle, etc., collisional
sidered as a far-reaching generalization of Mori's equationgrocesses. These partial collision integrals, and then the trans-
[19, 61]. It also contains a large generalization of Boltzmann'sport equation (29), are highly nonlinear, with complete details
transport theory, with the original Boltzmann equation for thegiven in Refs. [56, 60].
one-particle distribution retrieved under stringent asymptotic An interesting ||m|t|ng case is the Markovian approxima_
limiting conditions; details and discussions are given in Refstion to Eq. (29), consisting into retaining in the collision inte-
[33] and [62]. gral of Eq. (33) the interactioH’ strictly up to second order

In this Eq. (29), in most cases of interest the contribution(jimit of weak interactions) [13, 60, 65] to obtain for a density
JW is null because of symmetry properties of the |nteract|onsQ (£,t) the equation [13, 22, 63, 64]

in H’, and the ternd(© provides a conserving part consisting

in the divergence of the flux of quanti; (£,t) [63, 64]. The 0 ) B

last term, i.e. the one of Eq. (32), is the collision integral 5 Qi EH=J"EH+J7 (& (34)
responsible for relaxation processes, which, evidently, can-

cels if H' or pg is null, what clearly indicates that dissipative where

Zt
et = dtelITH{[R (' —1),, [P (8)]] P(t,0)}, (35)

—o00

once Jj(l) is taken as null, and subindex nought indicatesism [84—87].

mechanical evolution undét, alone (interaction representa-  In this way, through the realization of the basic steps we
tion). have described, a nonequilibrium statistical ensemble formal-
ism - the MaxEnt-NESEF - can be built. We consider in con-

tinuation the use of NESEF for the construction of a Nonequi-
florium Statistical Thermodynamics [46, 88].

Finally, an additional step is the construction of the all im-
portant MaxEnt-NESEF response function theory for system
arbitrarily away from equilibrium, to connect theory with ob-
servation and measurement in the experimental procedure: see
for example [66—81] and Chaptérin the book of Ref. [13].

We simply notice that as in the traditional response function . INFORMATIONAL-STATISTICAL

theory around equilibrium [82, 83], the response of the sys- THERMODYNAMICS

tem away from equilibrium to an external probe is expressed

in terms of correlation functions but defined over the nonequi- Several formulations of nonequilibrium thermodynamics at
librium ensemble. Moreover, also in analogy with the case¢he phenomenological level are presently available. The first
of systems in equilibrium it is possible to construct a doubletheory set forth to extend the concepts of equilibrium ther-
time nonequilibrium thermodynamic Green function formal- modynamics (or thermostatics) goes back to the early thirties,
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with the work of de Donder [89] and Onsager [90], giving Holotropic approachby N. Bernardes [109]jnformational

rise to what is referred to as Classical (sometimes called LinStatistical Thermodynamic®r Information-theoretic Ther-
ear) Irreversible Thermodynamics [5, 91, 92], described in thenodynamics) with mechanical statistical foundations, initi-
already classical textbook by de Groot and Mazur [93]. Ex-ated by A. Hobson [110] and whose systematization and ex-
tension of Classical Irreversible Thermodynamics to encomtension is described here.

pass nonlinear conditions not so near to equilibrium, in what We may say that Rational Thermodynamics and Generics
is termed Generalized Non-Equilibrium Thermodynamics ispelong to level (ii); Orthodox Irreversible Thermodynamics to
due to the Brussels’ School [94]. The inclusion of nonlin- jevel (i); Extended Irreversible Thermodynamics to level iii);
ear effects in Generalized Nonequilibrium ThermodynamicsHolotropic Thermodynamics also to level (iii); Informational
allows to incorporate in the theory a particular situation inStatistical Thermodynamics, evidently, to level (iv).

the field of nonlinear complex systems [95-97], namely, the The |atter one, to be referred to as IST for short, is partially
case of dissipative evolution in open irreversible systems, withyascribed next. This frontier area of Physics is presently un-
the possible emergence of ordered patterns on a macroscopjgr robust development, but, it ought to be stressed, not com-
scale, the so-called Prigogine’s dissipative structures [98, 99} etely settled in a closed form. As noticed, several schools
Classical Irreversible Thermodynamics is a well establisheg thought are, in a sense, in competition and, consequently,
theory but within its own domain of validity, which has severe {he developments in the field are accompanied with intense
limitations. To remove such conceptual and practical limita-3 g jively controversy (for a particular aspect of the question
tions of this theory and, in particular, to encompass arbitrarily_ tpe role of irreversibility and entropy — see Letters Section
far-from-equilibrium situations, phenomenological Classical;, Physics Today, November 1994, pp. 11-15 and 115-117).
Irreversible Thermodynamics is being superseded by new akyjite recently the statistical physics and thermodynamics of
tempts. nonlinear nonequilibrium systems has been discussed in a rel-

It is worth recalling that it is considered that the Severa|e\/ant set of articles pub“shed in the namesake book []_]_l],
approaches to Thermodynamics can be classified within thgy which we call the attention of the reader: the present sec-
framework of at least four levels of description [100—102],ti0n may be considered as a complement to this book by par-
namely: tially touching upon the question of the statistical foundations

(i) The so-calledengineering approach or CK Thermody- of irreversible thermodynamics on the basis of a Gibbs-like
namics(for Clausius and Kelvin), based on the two laws of ensemble approach for nonequilibrium (and then dissipative)
Thermodynamics and the rules of operation of Carnot cyclessystems.

(ii) The mathematical approaclas the one based on differ-  Consider the question of kinetic and statistical theories for
ential geometry instead of Carnot cycles, sometimes referreflonequilibrium processes. Presently several approaches are
to as theCB Thermodynamidgor Caratheodory and Born);  being pursued, which have been classified by R. Zwanzig [15].

(iii) The axiomatic point of view replacing Carnot cycles Among them we do have NESEF described in the preced-
and differential geometry by a set of basic axioms, which trying section, which is considered to have an appealing struc-
to encompass the previous ones and extend them; let us calltitre and offering a very effective technique to deal with a
the TC Thermodynamicor Tisza and Callen), ofxiomatic  large class of experimental situations [15]. Such NESEF ap-
Thermodynamics pears as a quite appropriate formalism to provide microscopic

(iv) The statistical-mechanical point of view, based of (mechanical-statistical) foundations to phenomenological ir-
course on the substrate provided by the microscopic mechamneversible thermodynamics [46, 112, 113], and nonclassical
ics (at the molecular, or atomic, or particle, or quasiparticle thermo-hydrodynamics [114].
level) plus theory of probability, which can be referred to as NESEF appears to be an appropriate formalism to yield,
Gibbsian Thermodynamias Statistical Thermodynamics as already noticed, statistical-mechanical foundations to phe-

This field has not as yet achieved a definitive closed level ohomenological irreversible thermodynamics, in particular
description and, therefore, it is natural for it to be the subjecthe construction of IST (also referred-to as Informational-
of intense discussion and controversy. Each school of thoughitheoretic Thermodynamics). It was pioneered by Hobson
has its virtues and defects, and it is not an easy task to readif{t10, 115] a few years after the publication of Jaynes’ sem-
classify within the above scheme the variety of existing theoinal papers [116, 117] on the foundations of statistical me-
ries: among several approaches we can mention and we apahanics based on information theory. A brief review is given
ogize for those omittedRational Thermodynamic®s pro- in Refs. [46, 112, 113], the diversity of extremum princi-
posed by Truesdell [52]; what we cdllrthodox Irreversible  ples in the field of nonequilibrium theories is reviewed in Ref.
Thermodynamicss proposed by B. Chan Eu [108xtended  [118], and further material is present in Ref. [119]. We no-
Irreversible Thermodynamicsriginated and developed by tice that Thermostatics, Classical Irreversible Thermodynam-
several authors and largely systematized and improved bigs and Extended Irreversible Thermodynamics are encom-
J. Casas ¥zquez, D. Jou, and G. Lebon of the so-calledpassed in Informational Statistical Thermodynamics, which
Catalan School of Thermodynamics [104, 105]Ganeral-  gives them a microscopic foundation. Moreover, Generalized
ized Kinetic approactdeveloped by L. S. Gara Coin and  Nonequilibrium Thermodynamics (that is, the extension of
the so-called Mexican School of Thermodynamics [106]; theClassical Irreversible Thermodynamics to the nonlinear do-
Wave approach to Thermodynamdise to I. Gyarmati [107]; main) is also contained within the informational-statistical
the approach so-calleGenericsby M. Grmela [108]; the theory [120]. Recent attempts to improve on the construction
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of IST are reported in Refs. [46, 121-134]. of a far-reaching generalization of Mori's theory [19], to-

The present development of theories for the thermodynam@ether with an accompanying response function theory for
ics of irreversible processes contained, one way or anothef@r-from-equilibrium systems [13, 32, 84], and a generalized
within the list of four levels presented above, and IST is oneBoltzmann transport theory [33]. As already noticed, NESEF
of them, brings to the fore a fundamental question in nonequibas been applied to the study of ultrafast relaxation processes
librium thermodynamics, namely, which is the origin of irre- in the so-called photoinjected plasma in semiconductors with
versibility (or the origin of the so-called time-arrow problem Particular success, in the sense of obtaining very good agree-
[50, 135, 136]) and the definition of an entropy and entropyment between theory and experiment [66-80] and see Chap-
production functions, and the sign of the latter. This is a quiteter 6 in the book of the Ref. [13]. Such kind of experiments
difficult, however engaging, problem which, as noted, has ascan be used to satisfactorily allow for the characterization and
sociated a considerable amount of controversy. The questigh€asurement of nonequilibrium temperature, chemical poten-
has been subsumed by Leon Rosenfeld as “to express int@ls, etc., which are Concepts derived from the entropy-like
precise formalism [thejomplementaritpetween the thermo- function that the theory defines in a similar way to equilib-
dynamic or macroscopic aspect and the atomic one” [1374ium and local equilibrium theories [81]. Since they depend
139]. Several approaches, seemingly different at first sighton such entropy-like function they are usually referred to as
have been produced, beginning with the great contribution§uasi-temperature, quasi-chemical potentials, etc. Moreover,
of Ludwig Boltzmann [54]. Some Schools set irreversibil- Without attempting a rigorous approach, we simply call the at-
ity at the level of probability distributions but together with tention to the fact that the formalism here presented appears
methods for either discarding microscopic information that isas providing a kind of partial unification of several apparently
unnecessary for predicting the behavior of the macroscopiéifferentiated approaches to the subject: First, the formalism
state of the system (on the basis of information theory), oPegins with a derivation within the framework of Jaynes-style
introducing a dynamic of correlations; they are compared irinformational approach, and, therefore, the informational en-
refs. [140-142]. More recently some approaches have reropy that the method introduces is dependent on a restricted
lied upon a description in terms of a dynamic origin of irre- set of variables. This is the result that this entropy is a pro-
versibility as associated to ergodic properties of chaotic-likgection on the space of such contracted set of variables of the
systems [143, 144]. In Mackey’s line of thought the concepffine-grained Gibbs entropy (as later on described and depicted
of irreversibility appears hidden behind a rather abstract math Fig. 1). The latter is obtained, as shown in next section, on
ematical formalism, and no connection is made with the conthe basis of a memory-dependent MaxEnt construction. Sec-
cept of entropy production. On the other hand, Hasegawa arfend, the connection with the approach of the Brussels-Austin
Driebe’s work deals with irreversibility for a particular class School (subdynamics of correlations) appears partially with
of chaotic systems; how it can be extended to quite generdhe introduction in this particular MaxEnt approach ofah
thermodynamic situations is an open matter. As pointed oufioc hypothesis that introduces irreversibility from the outset,
by J. L. Lebowitz [55] all these approaches contain interestconsisting in a mimic of Prigogine’s dynamical condition for

ing and useful ideas and can be illuminating when properlydissipativity [50, 51, 150, 151]. Additional discussions on the
applied. equivalence of both approaches have been provided by sev-

We here deal with the question strictly within the frame- €ral authors [27, 140]. We return to a consideration of these

work of Informational Statistical Thermodynamics. There-duestions in last section.
fore, it must be understood that the functions that in what

follows are referred to as entropy and entropy production are Beginning in next section we describe the construction of
those which such theory defines. J. Meixner, over twentythe Informational-Statistical Thermodynamics (IST) based on
years ago in papers that did not obtain a deserved diffusiothe NESEF (we call the attention to the fact that throughout
[145, 146], gave some convincing arguments to show that ithe review is used Zubarev's approach in NESEF, a concise,
is very unlikely that a nonequilibrium state function playing elegant, and quite practical formalism). The attention is con-
the role that the entropy has in equilibrium may be uniquelycentrated on the state function called informational-statistical
defined. Summarizing his ideas one may assert that the coantropy. After its introduction and an accompanying general
clusion reached by him is that such a function either cannot bgiSCUSSiOﬂ, several properties of it are considered, name|y: (1)
defined, or it may be done so in an infinite number of waysThe nonequilibrium equations of state, that is, the differential
A softened form of this idea was advanced by Grad over forty;pefficients of this IST-entropy (meaning the one defined in
year ago [147]. Exploring recent literature on this questionthe context of IST), which are the Lagrange multipliers that
these conjectures seem to hold true in a more restricted sengfs formalism introduces; (2) Derivation ofd-type theorem
(this literature is quite broad; see for example [148, 149] anchnd a, so-called, weak principle of increase of informational-
references therein). entropy production; (3) Criteria for evolution and (in)stability

We call the attention, and emphasize, the fact that any theanalysis; (4) A kind of generalized Clausius-Carnot and Gibbs
ory to have physical meaning needs be convalidated by conrelations; (5) A brief study of fluctuations and generalized
parison of its predictions with experimental results. In theMaxwell relations; and (6) a Boltzmann-like formula, relating
particular case of NESEF, which provides statistical foundathe informational entropy with the extension in phase space
tions to IST, as noticed in Sectia® it yields a nonlinear (or number of states at the quantum level) compatible with the
guantum transport theory of large scope [56], which consistacroscopic information available.
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requires an extended definition allowing for the treatment of
open systems and far-from-equilibrium conditions. Clearly,
such definition must contain as limiting cases the particular
and restricted ones of equilibrium and local equilibrium. In ar-
bitrary nonequilibrium conditions it appears to hold that there
is not any possibility to define a unique state function play-
ing the role of a nonequilibrium entropy, as forceful argued
by Meixner [145, 146] - a point we agree with and the In-
QA5 = S - Se(t) = formational Statistical Thermodynamics in continuation de-
= S(t) - S(to) scribed, seems to reinforce. Hence, it must be kept in mind
that in what follows we are introducing this quasi-entropy
INFORMATIONAL SUBSPACE function in the context of the Informational Statistical Ther-
(OF “RELEVANT VARIABLES”) modynamics, namely, the based on NES&d therefore de-
pendent on the description to be used in each case follow-
ing Bogoliubov’s principle mentioned in Secti@ Neverthe-
less, it needs be emphasized that this quasi-entropy function
goes over the thermodynamic one in equilibrium (thus recov-
ering Clausius’ result as shown by Jaynes [152]), as well as
over the local equilibrium one of classical irreversible ther-
modynamics, when the proper restrictive limits are taken. Al-

FIG. 1: An outline of the description of the non-equilibrium- t€rnatives for a nonequilibrium quasi-entropy have been pro-

dissipative macroscopic state of the system. The projection — de?0sed by several authors, we may mention the one in ex-

pending on the instantaneous macrostate of the system — introduct@nded irreversible thermodynamics [104, 105] and the con-

the coarse-graining procedure consisting into the projection onto theept of calortropy [103, 153], with both of them seemingly en-

subspace of the “relevant” variables associated to the informationajompassed in Informational Statistical Thermodynamics. We

constraints in NESEF. return to this point of the introduction of a nonequilibrium
entropy-like state function in different approaches, along with
further commentaries, in the last section.

S(t) = (PO Ine®)t)—u

(NON-CONSERVED INFORMATIONAL ENTROPY)

INFORMATION LOSS

GIBBS’ AND INFORMATIONAL ENTROPIES
)
S

Sa(t) = =(Ine(@)[t) —— N

(CONSERVED GIBBS’ ENTROPY)

IV. PROPERTIES OF IST-ENTROPY

. . . . i A. The IST-informational entropy or quasientropy
In its original formulation Classical (Onsagerian) Irre-

versible Thermodynamics starts with a system in conditions of Gibbs’ entroov. the straiahtforward generalization of equi-
local equilibriumand introduces as basic macrovariables a set Py, 9 9 q

of quasi-conserved quantities, namely the fields of energy anlc'};réuTssg?nctﬁess\l;?igggi\ﬁr;'bl?ngﬁrgoﬂénggécioi?:irﬁe
mass densities. This theory introduces a state functional ot PP 9

these variables satisfying a Pffafian differential form identical,memory’ namely
however locally, to Gibbs relation for entropy in equilibrium. Se(t) = —Tr{ps(t)Inpe (1)}

A more general approach is that of Extended Irreversible ) ] o
Thermodynamics, which introduces a state functional deperf-annot represent an appropriate entropy since it is conserved,

dent on the basic variables of Classical Irreversible ThermothatisdSg (t) /dt=0. This is the result thate satisfies a mod-
dynamics plus all dissipative fluxes elevated to the categorified Liouville equation with sources [cf. Eq. (27)], the latter
of basic variables. We consider now the case of Irreversibl@0ing to zero withe going to zero after the (_:alculatpn of the
Statistical Thermodynamics based on the state space consi§ggular average has been performed, and is a manifestation of
ing, within the tenets of NESEF, of the set of basic variablegh® fact that it is dine-grained entropy which preserves in-
{Qj (th)} which can be scalars, vectors, or tensor fields oiformaﬂon The Igtter is the |nformat|or_1 provided at the |'n|t|al
any rank, chosen in the way described in the Sectiolve time qf preparatlon of the s_y_s_tem as given by Eq. _(21), ie. the
recall, and stress, that they are the statistical average valu@8€ given in terms of the initial values of the basic variables,
of well defined mechanical quantities. Within this approach,r‘amelyQi (to). Hence, for any subsequent tirhe> t, we

we look next for the definition of a functional of these vari- Introduce acoarse-grained NESEF-based informational en-
ables playing the role of a state functional - to be called thdroPYysuch that, according to the foundations of the formalism,
IST-entropy-like function or informational-statistical entropy S dependent on the information provided by the constraints of
- that is meaningful and pertinent to the class of physical sitEd- (11) at each given time and only on this informatioie
uations and accompanying experiments under analysis withifitroduce the IST-informational entrof(t), which can also
NESEF in each case. Particular care needs be exercised wig§ calledjuasientropygiven by

the use of t_he Wo_rdantropy Entropy has a very _spe_cial sta- S(t) = —Tr{pe (t) & (t)Inpg (1)} = —Tr{pe () NP (t,0)} =

tus in Physics, being a fundamental state function in the case

of Thermostatics. It is a well established concept in equilib- ~

rium, but an elusive one in nonequilibrium conditions whenit =—Tr {Ps (t) S(t,O)} =-Tr{p(t,0)Inp(t,00} . (37)

(36)

)
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In this Eq. (37),Sis the informational-entropy operator of and hence

Eq. (17) [45], and?Z (t) is a time-dependent projection op- 55(t)

erator, defined in Eqg. (23) [32], which projects over the sub- Fi(rit) = s~—— . (44)
space spanned by the basic set of dynamical variables to be 8Q; (r,1)

called thenformational subspacéor relevant subspace) asil-  Equation (43) stands for a generalized Gibbs relation in the

lustrated in Fig.1. Moreover, the last equality in Eq. (37) is context of Informational Statistical Thermodynamics, which
a consequence of the coarse-graining condition consisting igoes over the well known expressions which follow in the
that [13, 31] limit of the restricted cases of equilibrium and local equilib-

_ _ 5 _ 5 08 = rium in Thermostatics and Classical (Linear or Onsagerian)

Qj(r,t)=Tr {Pl (r) pe (t>} =Tr {PJ (r) p(t,O)} (58) Irreversible Thermodynamics. Equations (42) and (44) tell us

. S . that variable$ andQ are conjugated in the sense of nonequi-
For simplicity we are considering the case when the basic dy-, . . .

i X P librium thermodynamics (these expressions are the general-
namical variables are local densities, i.e. they depend only on”_.. : . ; o
. ) o ization of the corresponding relations in equilibrium), what
the field variabler, the generalization to an extended set of. . . :
' . ; . is a consequence of the properties of the weight function
field variables is straightforward.

: eexp{e(t’—t)} and of the coarse-graining property of Eq.
nformational entropy of Eq. . (37) and Gibbs' eniropy (38): EGUAtons (42) and (44) can be consideredaequi-
of Eq. (36), is ' librium equations of statgnd Egs. (41) and (42) defingt)
’ ' as a kind of a logarithm of aonequilibrium partition function
St)—Ss(t) =—Tr{pe(t)[B(t)—1Inpe (1)} , (39) inthe nonequilibrium statistical ensemble formalism based on

. . . NESEF. FurthermoreS(t) has the important property of be-
which can be interpreted as a kind wfeasurement of the ing a convex function of the variabl€g;, what is a result of

information lostwhen the macroscopic state of the SyStemapplication of MaxEnt as shown in [13].

:Sedzsscgﬁgg dm r;{gtri?tas do}cnﬂt]:rr:]esdgfce?o'?aittig:irggsg) \ée\l/ré?bles’ We are now in condition to introduce the important thermo-
V.Vh'élt we haveycalled tk;e informatioFr)lallsubs acé of “relevan&ynamlc function which is the MaxEnt-entropy production (or
, : ; i P i formational-entropy production), namely

variables, (illustrated in Fig.1 , and as already noticed

the geometrical-topological aspects of this process are dis- ., ds(t) _Z 4@ os(r,t) ¢ z BrE (rt 0Q;j (r,t)
cussed in [47]). The coarse-grained auxiliary operator (théy )= dt r ot Zl Rt ot '
instantaneously “frozen” quasiequilibriuf)t, 0) has the im- = (45)

portant property that, at any time it maximizes the IST-  \here we have taken into account Eq. (41). In Eq. (45) the

informational entropy of Eq. (37) for the given values of the o\ g |ution of the basic variables is governed by Egs. (29),

constraints of Eq. (11), at fixed tim¢ and the condition of  ,aaning that the right-hand side of this Eq. (45) contains
normalization which, we recall, is ensured by the properties of¢ three contributions present in Egs. (30). But, it can be

the weight functioreexp{e(t’ —t)} and the coarse-graining ghquwn only the collision integrals of Eq. (32) contribute to
condition of Eq. (38). Furthermore, from Eq. (37) and they,o informational-entropy production, i.e.

definition ofp we can write that 7 Lz
_ n Z z gt)y= dro(rt)= dBrE(r,t) 5(rt) =
S=e0)+3 rREHQEY= drsey L O rU= 2, drRED Ay
=1
(40) nZ 1o A
wheres(r,t) defines a local informational entropy density. We = > B Fy (r,t)Tr{. {Pj (r),H’} P (t)} , (46)
recall that the variables andQ can be scalars, vectors or ten- j=1 in

sors, and so the produeR in Eq. (40) must be understood as
being algebraic product of scalars, scalar product of vector
and fully contracted product of tensors, respectively,
the scalaSis rendered.

which clearly indicates that the informational-entropy produc-
Yion follows from the fact thap, is the contribution to the sta-
S0 thafigtical operator in Eq. (22) associated to relaxation effects,
while the auxiliar ensemble characterizedfys relaxation

Since z free. This is a manifestation of the projection procedure used
3 in the definition of the IST-entropy: relaxation processes are
d(t) = - ; d*r Q;(r,t) dF (r,t) o (4D) associated to the influence of the dynamic effects (collisional
= processes) generated HY, that acting on the initial condition
once we take into account that at timet, of Eq. (21) drivesp, outside the chosen informa-
do(t) tional subspace. This is illustrated in Fi.
Qj(r,t) = _6Fj (r.0) ' (42) Taking into account Eq. (45) and the definition of the lo-

_ _ o cal informational entropy density of Eqg. (40), there follows a
whered stands for functional differentiation in the sense de-generalized local in space Gibbs relatidhat is, it is satisfied
fined in [154], we find that the relation

Z
n

ds(t) = Z d3r Fj(r,t) dQj(r,t) (43) ds(r,t) = i Fj (r,t) dQ(r,t) , 47
=1 =1
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for the informational-entropy density of Eqs. (40) and (45). Integrating in space Eq. (49), we obtain an expression for
Moreover, we recall that the equations of irreversible evo-the global informational-entropy production, namely
lution for the basic variables consistently follow from the

= Z _

method [23, 24, 56]: for the space-dependent variables 5(t) = dS®t) _ " g 98(rY)
Qj (r,t) these equations take the general form [13] [cf. Egs. 7 dt 7 ot
(29) and (34)] = dBPros(r,t)— dr divig(r,t). (52)

0Q; (r,t L~ . . .

% = —divlj (r,t)+ 7, (r,t) , (48)  But, using Gauss theorem in the last integral of Eq. (52), we

can rewrite it as

where the first term on the right is the divergence of the flux ds(t) YA z
densityl; associated to the densi (r,t) [13, 14, 24]. Also, 5 = d*ros(r,t)— dZ-ls(rit) . (53)
let us recall thatQ; can be a scalar, a vector, or a ramk- s

(> 2) tensor (and so ig;), thenINj must be interpreted, respec-
tively, as a vector, a rank two tensor, and rar(& 3) tensors
(see [13]). Moreover, in the equations of evolution for the
macrovariable®); (§,t), Eq. (48), for simplicity (the general

where the lastterm is a surface integral over the system bound-
aries. Equation (53) allows us to separate the entropy produc-
tion into two contributions (as is usually done, cf. [94] and
[99]): one is thanternal production of informational entropy

case can be straightforwardly handled) we consideriﬁ?it 7
vanishes. For better accompanying of the following results we P(t) = d3r as(r.t) (54)
introduce the nomenclatuﬂér] to indicate a flux of tensorial
rankr = 1,2,3,..., orr—th order flux of a given density. and the other is thexchange of informational entropy with
Using these Egs. (48), we can write a continuity equationthe surroundingsor flux term
for the IST-entropy density given by
z
asgt’t) Fdivis(rt) = os(rt) . (49) Pe(t) = — dx-ls(r.t)
z
z
In this Eq. (49))sis the flux of the IST-informational-entropy - *i - Fj[r—l] e |J.[r] (r,t)  (55)
given by = rs1
n _ Furthermore, using Eq. (41), Eq. (54) becomes
sry=3 3 A ey eilley L (s0) h g Ea. (41). Ea. (54)
j=1r>1 n
P)=o()+ ¢y Y Grad Firy elley
where on the righF ® | stands for contracted tensorial prod- I=1r=1
uct (F being a tensor of rank=0,1,2, ..., andl is a tensor of L (56)
rankr = 1,2,3, ..., respectively) to produce the vectef and ~ @nd then taking into account that
Os is an associated entropy-production density given by ds(t)
. ﬁ(t):T =P(t)+Ps(t) ) (57)
rt)=o(r,t Grad F' ¥ (r t 1 r ot
os(r.t) =ofr, )+]er; (LY @Iy, use of Egs. (55) and (56mplies in that
(51) o Z
whereGrad is the gradient operator in tensorial calculus and d3 Grad F™ Y (rt) ® (I (r,t) = —Ps (1)
a(r,t) is given by Eq. (46). Using the definition of Eq. (50), =i/ ! )
one recovers the limiting case of Classical Irreversible Ther- (58)

modynamics, and therefore may be considered the straighthis is just a consequence that the quantif{@s(which gave
forward generalization for the entropy flux density to arbi- origin to the divergence of the flux) do not contribute to the
trary nonequilibrium conditions. It is worth recalling that Eq. informational-entropy production, that is, as already noticed,
(48) is the average over the nonequilibrium ensemble, charaghere is no dissipation in the nonequilibrium macroscopic de-
terized by the distribution in Eq. (16), of the correspondingscription associated to the auxiliary operaft,0), but the
Hamiltonian equations of evolution in the classical level andirreversib|e processes are fully accounted form%t) [Cf
Heisenberg equations of evolution in the quantum level, forEqs. (22), (32), and (46), and Fij.

the |Oca|—in—space-dependent dynamical variables. When one Summarizing these results, the informationa|_entropy pro-
introduces the equations for the density of mass and of energyiction densitys (r,t) accounts for the local internal produc-
in the case of a fluid, there follows the equations for a non+ion of informational entropy. Moreover, using Egs. (54) and

classical hydrodynamics, and the classical one is recovered s5), together with Eq. (57) we can make the identifications
a limiting restrictive case together with the use of a barycen-

tric frame of reference [14, 33]. o;(t)=P(t) ; (59)
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O (1) =Ps (1) . (60) Thus, the quantities that are the differential coefficients of
the quasientropy in IST, which, as already noted, are in this

Accordingly, Eq.(59) stands for internal production 0f qonge nonequilibrium thermodynamics variables conjugated
informational-entropy and the contribution in Eq. (60) is ass0yg the pasic ones, are for the densities

ciated to informational-entropy exchange with the surround-

ings. The informational-entropy producti@r(t) can then be Bi (r,t) = d5(t) /3¢ (r,1) , (62)
interpreted as corresponding in the appropriate limit to the en-

tropy production function of Classical Irreversible Thermody-

namics. g (r,t) =3S(t) /dn (r,t) , (63)

where d, we recall, stands for functional differential [154].
B. The nonequilibrium equations of state The IST-quasientropy of Egs. (20), appropriately given in
terms ofg, n;, and their fluxes of all order [cf. Egs. (5) to
Let us next proceed to analyze the differential coefficientd6)], goes over the corresponding one of local equilibrium in
of the informational entropy [cf. Eq. (44)]. Consider a sys- Classical Irreversible Thermodynamics, when all variaBles
tem composed o$ subsystems. Let (r,t) be the locally- become identical for all subsystems and equal to the recipro-
defined energy densities ang(r,t) the number densities in cal of the local equilibrium temperature, while thebecome
each (=1,2,...,s) subsystem, which are taken as basic vari-equal to—Pj, whereyy are the local chemical potentials for
ables in NESEF (some of the subsystems belong to the déhe different chemical species in the material. All the other
scription of the reservoirs, but we do not separate them at thigariables associated to the fluxes are null in such limit. Of
point). We callB; ) and{ 1) their associated intensive vari- course, when the complete equilibrium is achiefiehdp go
ables [the Lagrange multiplieFsin Eq. (17) that the formal-  over the corresponding values in equilibrium.
ism introduces]. But, as shown elsewhere [13], it is required Consequently, in NESEF we can introduce the space and
the introduction of the fluxes of these quantities as basic varitime dependent nonequilibrium temperature-like variables
ables, and with them all the other higher order fluxes (of ten©i (T,t) , which we callquasitemperature for each subsystem
sorial rankr > 2). Consequently, the statistical operator de-l = 1to s,namely
pends on all the densities and their fluxes, and Eq. (44) tells

us that the Lagrange multipliers associated to them depend, Bi (r,t) = 85(t) /3ei (r,t) = O 1 (r,t) . (64)

each one, on all these basic variables, namely, the densities

&tr1), Niry)» their vectorial fluxedg (r,t), 1o (r,t), and rank where then

r > 2 tensorial fluxes! (rt), 110 (r.t). e n NNy o- 65
As noticed before, this parﬂcular choice of the basic vari- P { SRR nk’{ Ek} { }} ey - (69)

ables |mpl|es in a dgscr.|pt|on which can be gonsujered as &ith Boltzmann constant taken as unit. This Eq. (65) tells
far-reaching generalization of a grand-canonical dIStI’IbutIOFhS that the Lagrange multiplig represents in the MaxEnt

in arbitrary nonequilibrium conditions. The CorreSpond'ngapproach to the NESEF a reciprocal quasitemperature (non-
auxiliary coarse-grained (‘instantaneously frozen”) distribu- equilibrium temperature-like variable) of each subsystem, and

tion is then which is dependent on the space and time coordinates. Ev-
_ z idently, as we have intended to indicate between the curly
p(t,0)= exp{ —Q(t) — Z d3r [Br (r,t)& (r)+ brackets in Eq. (65), it depends not only on the energiaad
densitiesn (I =1,2,...,s) but on all the other basic variables

which are appropriate for the description of the macroscopic
+4 () A () +0g (1, 8) - Te (1) +an (r,t) -To (1) + state of the system, that is, the vectorial and tensorial fluxes.
The definition of Eq. (65) properly recovers as particular lim-
iting cases the local-equilibrium temperature of classical irre-
+ ZQ[ e Isl (r )Jragl] e 'W (r)] : versible thermodynamics and the usual absolute temperature
in equilibrium; in both cases there follows a unique tempera-
(61) ture for all subsystems as it should.
where the upper triangular hat stands for the dynamical oper- A quite important aspect of the question needs be stressed
ator of the corresponding quantity: the energy densithe  at this point: Equation (64) is the formal definition of the so-
particle densityi, and their fluxes of all orders> 1[r isalso  called quasitemperature in IST, a very convenient one because
the corresponding tensorial rank, witk= 1 standing for the of the analogy with local-equilibrium and equilibrium theo-
vectorial fluxes, which have been explicitly separated out irries, which are recovered in the appropriate asymptotic limits:
Eq. (51)]. Moreoverf, ¢, and thea’s are the correspond- for a general discussion on nonequilibrium temperature defin-
ing Lagrange multipliers (intensive nonequilibrium thermo- itions see [155]. But we recall that it is a Lagrange multiplier
dynamic variables in IST). We further recall that the properthat the method introduces from the outset being a functional
nonequilibrium statistical operator that describes the dissipasf the basic set of macrovariables. Therefore, its evolution in
tive irreversible macrostate of the systenpigt) of Eq. (16), time, and then its local and instantaneous value, follows from
built on the basis of the auxiliary one of Eq. (61). the solution of the generalized transport equations, namely



Brazilian Journal of Physics, vol. 35, no. 3A, September, 2005 703

Egs. (29), for the densities and all their fluxes. Thus, in IST,rreversible thermodynamics) the sign of the entropy produc-
the quasitemperature of each subsystem is, as already emphan function. This is defined as non-negative in Extended
sized, afunctional of all the basic variablesyhich are, we Irreversible Thermodynamics, but such property does not fol-
recall, the densities and their fluxes of, in principle, all orderslows immediately frons of Eq. (45) [or Eq. (46)]. The col-
This question is extensively dealt with in references [76, 81]]ision integral 7 on which© depends has an extremely com-
where it is also described how to measure quantities like thelicated expression, even in its alternative form given by Eq.
guasi-temperature, quasi-chemical potentials, and drift velod:32). There is only one manageable case, the quasi-linear the-
ities, and comparison with experiment is given: theoreticalry of relaxation near equilibrium, whénis definite positive,
results and experimental data shows very good agreement. as for example proved in [24].
However, we can show that for this informational nonequi-
librium statistical thermodynamics there followgeneralized
C. Ageneralized?{—theorem #H-theoremjn the sense of Jancel [156], which we calteak
principle of increasing of informational-entropy production.
One point that is presently missing is the attempt to extracFor that purpose we take into account the definition of the
from this Informational Statistical Thermodynamics (and thuslST-quasientropy, and resorting, for simplicity, to a classical
to also provide for a reasonable criterion in phenomenologicamechanical description, we can write

z
S(t) =S(to) == dI [pe(F [)INB (T [1,0) —pe (T [ to) NP(T [ to,0)] (66)

whererl is a point in classical phase space. since the last integral is null. This quantifys cancels for
But, because of the initial condition of Eq. (21) we havep, = p [i.e. for null p; of Eq. (22)], and its change when
thatinp (I | t5,0) = Inpe (I | to) and, further, since Gibbs en- introducing the variatiops — pe + 0ps is

tropy, namely z
z 0AS(t) = dI dpe (I [t) Infpe (M [t) /P (T [t,0)] =
Se(t)=— drpe(F|t)Inpe(I[t) (67)
z ([t

is conserved, thatis, it is constant in time [tH&y(t) = Sc (to) = drdp(r|t) In [1+ S(U] , (71)
and we recall tha%s (t,) = S(to,0)], it follows that p(r|t,0)
B B z where we used the separationpgfgiven by Eq.(22).
S(t)=S(to) =~ dl pe (T [t)[Inp(T" [t,0) —Inpe (T [t)] = The variation in Eg. (71) vanishes fgg = p, when, as

shown, also vanishesS(t), so it follows thatAS(t) is a min-

7 imum for pe = P, when it is zero, and positive otherwise,
—— drpe(T|O)[BM)—Lhpe(F|t) ., (68) Namely
AS(t) >0 , (72)

where?; is the projection operator of Eqg. (38) and then
- B which defines for the NESOM the equivalent of Jancel’s gen-

S(t) — S(to) = S(t) — S (1) . (69) eralized#-theorem [156]. It should be noticed that the in-
equality of Eq. (72) can be interpreted as the fact that, as the

Recalling that the coarse-graining condition of Eq. (38) en-system evolves in time from the initial condition of prepara-
sures, besides the definition of the Lagrange multipl§rs tion under the governing action of the nonlinear generalized
which according to Eq. (44) are differential coefficients of thetransport equations (29), the informational entropy cannot de-
entropy and the simultaneous normalizatiorpgfandp, we  crease, or, because of Eq. (72), the IST-informational-entropy

can write Eq. (66) in the form is always larger than Gibbs statistical entropy. These results
_ _ _ _ reproduce for the MaxEnt-NESOM described in sectyn
AS(t) =S(t) —S(to) = S(t) - S (t) = those obtained by del Rio and Garcia-Colin [149] in an al-
ternative way.
z Using the definition for the informational entropy produc-
=— dlpe(T [t)[Inp (T [t,0) —Inpe (T [t)]+ tion function we can rewrite Eq. (72) as
Zt Z
z dt d*G(r,t)>0 . (73)

+ dipe(T[t)—p(T[t,0)] (70)

to
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Equation (73) does not prove thafr,t) is a monotoni- the space of thermodynamic states, is the one that concomi-
cally increasing function of time, as required by phenomenotantly ensures that in the framework of Informational Statisti-
logical irreversible thermodynamic theories. We have onlycal Thermodynamics are contained generalized forms of Pri-
proved the weak condition that as the system evavisgppre-  gogine’s theorem of minimum entropy production in the linear
dominantly definite positive. We also insist on the fact thatregime around equilibrium, and Glansdorff-Prigogine’s ther-
this result is a consequence of the presence of the contributianodynamic principles of evolution and (in)stability in nonlin-
Pt to pg, which is then, as stated previously, the part that acear conditions. Let us see these points next.
counts for — in the description of the macroscopic state of the D. Evolution and (in)stability criteria
system — the processes which generate dissipation. Further-
more, the informational entropy with the evolution property | his subsection we summarize three additional properties
of Eq. (72) is the coarse-grained entropy of Eq. (37), the&y the informational-entropy production, namely the criterion
coarse-graining being performed by the action of the projecy eyolution and the (in)stability criterion - generalizations of
tion operator?; of Eq. (38): This projection operation ex- noge of Glansdorff-Prigogine in nonlinear classical Nonequi-
tracts from .the Gibbs entropy the contribution associated t@piym Thermodynamics [94], and a criterion for minimum
the constraints [cf. Eq. (11)] imposed on the system, by progqyction of informational entropy also a generalization of
jecting it onto the subspace spanned by the basic dynamicgle gne due to Prigogine [91]. Details of the demonstrations
quantities, what is graphically illustrated in Fid.(see also 4. given elsewhere [46].

[47]). Hence, the informational entropy thus defined depends The time derivative o6 (t) of Eq. (45) can be split into two
on the choice of the basic set of macroscopic variables, whos;[

completeness in a purely thermodynamic sense cannot be in%_rms, namely
dubitably a_sserte_d. We restate that in each particular problem do(t) deo(t) doa(t)
under consideration the information lost as a result of the par- = + ,
ticular truncation of the set of basic variables must be carefully dt dt dt
evaluated [157]. Retaking the question of the signa@ 0t t),  \yhere
we conjecture that it is always non-negative, since it can not be
intuitively understood how information can be gained in some deo (1) n Z 3. OFj (r,t) 9Qj(r,t)
time intervals along the irreversible evolution of the system. at d°r ot )
However, this is expected to be valid as long as we are using =1
an, in a sense, complete description of the system meaning
that the closure condition is fully satisfied (in the case of the?nd
nonequilibrium grand-canonical ensemble when taking densi-
ties and fluxes of all orders). Once a truncation procedure is
introduced, that is, the closure condition is violated, then the dt
local density of informational entropy production is no longer
monotonously increasing in time; this has been illustrated byhat is, the change in time of the informational-entropy pro-
Criado-Sancho and Llebot [158] in the realm of Extended Ir-duction due to that of the variabl&sand that of the variables
reversible Thermodynamics. The reason is, as pointed out b9, respectively. Recalling that th@; stand for the thermody-
Balian et al.[47] that the truncation procedure introduces somaamic variables in Informational Statistical Thermodynamics
kind of additional (spurious) information at the step when the[cf. Eq. (11)], while theF; stand for the Lagrange multipli-
said truncation is imposed. ers introduced by the method [cf. Eq. (14)], which are the
Two other properties of the IST-informational-entropy differential coefficients of the informational entropy [cf. Eg.
function are that, first, it is a maximum compatible with the (44)], Eqgs. (75) and (76) are related to what, in the limiting
constraints of Eq. (11) when they are given at the specificase of classical (linear or Onsagerian) Thermodynamics, are
timet, that is,p maximizesS(t) when subjected to normaliza- the contributions due to the change in time of the thermody-
tion and such constraints, and second one recovers the propasmic fluxes and forces respectively, as will be better clarified
values in equilibrium. This particular property of vinculated in continuation. First we notice that using Eq. (44) we can
maximization, which ensures th&tt) is a convex function in  write that

(74)

(75)

02Qj (r,t)

_ Z
dea(t) _ & 3
=y drF(r,t) 22 (76)
2 4

ot2 ’

Z _
oFj(r,t) o &5t 2 3 &°S(t) 0Qx (ry,t)
Ay A S0 o )
and then
_ z z _
dea(t) 2 3 3 &S(t) 0Q; (r,t) 0Q« (r,t)
at *jg:l s 0Ly et at ’ (78)
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which is non-positive because of the convexitySpthat is whereAF < F(€9 and index(eq) indicates the value of the
deo (1) corresponding quantity in thequilibrium state.The internal
v <0 . (79)  production of informational entropy ;) = P(t) of Egs. (59)

) . , and (56), in the condition of departure from equilibrium de-

Inequality (79) can be considered as generalized fneq by Eq. (86), satisfies in thismmediate neighborhood of
Glansdorff-Prigogine thermodynamic criterion for evolution, ¢, steady state near equilibriumihich we call thestrictly
which in our approach is a consequence of the use of MaxEnj,aar regime(SLR), that
in the construction of IST within the framework of the NESEF
of section2. aﬁ)LR(t) =PSR(t) =

Also, an alternative criterion can be derived in terms of the
generating functionab(t), as given by Zubarev [24]. Defin-

: Z z
g C 3 3 . SLR
do(t) nZ oF, (1.1 = P d°r dra AFj(r,t) Lj(r,ra) ARc(ro,t)+
¢(t):T:_;l ¢rQ;(r,t) ZLt . (80)
it follows that +£Z r Grad o (1.8) T (1.0 e
do(t) _ ded(t) | dod () (81) &
dt dt dt ’
where where LR is the symmetric matrix of Onsager-like kinetic
dep(t) 0 z o) 92F; (1 1) ) coefficients, around the equilibrium state, given by
e 121 e ’ 20 . .
and = dve | Te{B ) A lr.0) pea} -

z w
dod(t) < 5 0Qj(r,t) OFj(r,t)
dat le T ot - 8

But do¢ (t) / dt is then—drG(t) / dt, and because of Eq. ZTr{ﬁj (r) P (r) G (r,ra) Pa(r) 5; (ry) peq} ,
(79) firh
(88)

ng)t(t) >0 (84)  Where
during the irreversible evolution of the system, hence it fol- zt . . 1
lows an alternative criterion given in terms of the variation in  Cmn(r;r1) = duTr{Pn(r)pegn(r)peg '} . (89)
time of the rate of change of the logarithm of the nonequilib- 0
rium partition-like function.
Consider next an isolated system composed of a given opez?‘Pd
system in interaction with the rest acting as sources and reser- 1

voirs. These sources and reservoirs are assumed to be ideal, P= in [P, H/] )
that is, its statistical distribution, denoted pyr, is taken as

constantly stationary, in order words as unaltered by the inwith H’ the part of the Hamiltonian containing the interac-
teraction with the much smaller open system. The nonequitions, and use was made of the fact that

librium statistical operatops(t), for the whole system to be z z

used in the equation of evolution is then written as S & o LSR(r,ra) Fled

i
Ps(t) =pe(t) x psr (85) '
wherepg (t) is the statistical operator of the open system con- z z
structed in the MaxEnt-NESEF. _ Z e SR )R =0 ,  (90)
If the open system is in a steady state [to be denoted here-

after by an upper indefss)], then the production of global in- ) ) . . . .
formational entropy is null, that iﬁsszﬁfﬁ +6?§) —0,where 1€ there is no production of informational entropy in equilib-

the two contributions are the internal and external produc{'hum‘ tMoreloveraln Ihe neflghtborhopd of the ettq.umbtrrl]urtn_ state
tion of informational entropy, as given by Eqgs. (59) and (60).f ein erna|1 p;z uction of entropy is nonnegative, that is (see
Hence,ﬁfis) = —6?3), meaning that the increase of the global or example [24])
internal entropy production is compensated by the pumping of SRt = PSRty >0 . (91)
entropy to the external world. ® o

Let us consider now a small deviation from the steady statgaking into account that for a system subject to time-
which is assumed to beear equilibrium,and we write independent external constraints, so as to produce a steady

F (1) = Fj(eq) L AR (rt) 7 (86) state, it is verified thad R / dt = 0, we obtain that
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deogi®t) o 2 7 o, R (1)

dt j.gzl d* ot LiSkLR(rafl) AR (rq,t)+
U AF| (rt) -~
T2 drerdTG ey : 92)
and
dQGEI{R(t) jilz d3rZ d3ry AF; (r 1) LjskLR(r,rl)6AFk67(tr1,t)Jr
- Jilz d3r Grad AF; (r,t) ® 0|~j(§:,t) )

whererj are the fluxes [cf. Eqgs. (48) and (50)]. But, accordingparticular case of the theorem of Eq. (79). Therefore, on ac-
to Onsager’s relations in the linear domain around equilibriuntount of Egs. (91) and (96), according to Lyapunov’s theorem

(see for example [24]), it follows that there follows the generalization in IST of Prigogine’s theo-
"z rem. This theorem proves that in the linear regime near equi-
_ o i ; ; i =SLR; .
I (rt) = Z dr, /\,-Sk"R(r,rl) Grad AFc(r1,t) , I!br!um, thatisin the strllctly linear rgglmer,(i) .|s.a none.qw.
= librium state function with an associated variational principle,

(94) and thatsteady states near equilibrium are attractors charac-
where the matrix of kinetic coefficients is symmetric, i.e. terized by producing the least dissipation (least loss of infor-
/\J.SkLR(rJl) = /\EjLR(r,M)- Using Eq. (94) and recalling that mation in our theory) under the given constrainté/e stress
the matrix of coefficientiijsk'-Ris also symmetric [46], we can that this result is a consequence of the fact that the matrix

verify that the expressions in Eqgs. (92) and (93) are identica?f kinetic coefficients jx is symmetric in the strictly linear

and, therefore, regimeand this result implies thai,:ﬁ?"TR near equilibrium
is one half the exact differential of the entropy production.
dag;R(t) de  do\ _sir drayR(E) Outside the strictly linear regime the antisymmetric part of
I TE (dt + dt) (i) (t)= ZT - (95)  the matrix of kinetic coefficients may be present and, there-

fore, there is no variational principle that could ensure the

The results of Egs. (59), (60), (90) and (95) are of relevancétability of the steady statélhe latter may become unstable
in proving a generalization in IST of Prigogine’s theorem ofonce a certain distance from equilibrium is attained, giving
minimum internal production of entropy. In fact, in the SLR rise to the emergence of a selforganized dissipative structure
regime, taking the time derivative of Eq. (54), it follows from [98, 99, 159, 160].
Eqg. (95) that

Consequently, outside the strictly linear domain, essentially
for systems far-away-from equilibrium, other stability crite-
rion needs be determined. We look for it first noting that,
B because of the convexity of the MaxEnt-NESEF entropy as
as a consequence that in the steady state the flyxasEqg.  is demonstrated in [46] for states around any arbitrary steady
(56) are time independent on the boundariesdi&./ dt=0. state, let it be near or far away from equilibrium, the following
Hence, the inequality in Eq. (96) is a consequence for thisesult holds, namely

dPSIR dﬁﬁ')-R B d;:ﬁ(si)LR _deoSIR o
dt.  dt " dt T dt — ’

(96)

n Z z
%623(0 :% & driCut(r,ry)™ AQj(rt) AQc(ri,t) <0, (97)
==
\
where Time derivation of Eq. (97) leads to the expression
52S(t) (s9 o di1,
Cl(rry)S — [ } 08 AFT(t) = — -5%5(t) =
i< (0T = |50 (r.08Qe (e 9 dt2
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ot lowing three characteristics: (a) time organization, (b) space

organization, (c) functional organization [99, 160]. Finally,
we stress the fact that in the nonlinear domain the criteria for

3 0AQj (r,t) evolution and stability are decoupled - differently to the lin-
- Z d*r AR (r,t) ot ear domain - and this fact allows for the occurrence of new
types of behavior when the dynamical system is driven far

away from equilibrium: order may arise out of thermal chaos
n SS) AAQ; (r,t) [161, 162] and the system displays_compl_ex behavior. As
Z (r, )T , (99)  noted before, we restate that IST, built within the framework
=1 of MaxEnt-NESEF, can provide solid microscopic and macro-
scopic basis to deal with selforganization, or the sometimes

called Thermodynamics of Complex Systems [163, 164].

0AQj (ry,t i issipati -
_ Z &3 diry C_—l(r7rl)(ss) AQK(r,1) Qj(ra,t) solution (the dissipative structure) may present one of the fol
i

a quantity called thexcess entropy productiorin deriving
the previous to the last term in Eq. (99) we used the calcula-
tion of C in the steady state which is thus time independent,
and it was used the fact th@tis a symmetric matrix (what is
a manifestation of the existence of Maxwell-type relations in E. Generalized Clausius relation in IST
IST, as will be shown later on).

Consequently, taking into account Egs. (97) and (99), Lya-

- The inf tional ent in IST al tisfi kind of
punov stability theorem (see for example [99]) allows us to © informarional entropy In a'so satisties a Kind o

. X SO YL - generalized Clausius relation. In fact, consider the modifi-
es_tab_hsh_a general|ze£B|Iansdorff-Pr|gqg|ne-hke (_|n)_stab|l|ty cation of the informational entropy as a consequence of the
criterion in th_e rea'”_‘ of the Info_r mat|onaI_Stat|s_t|_caI Ther- modification of external constraints imposed on the system.
modynamics: For given constraints, A0 is positive, the Let us callA; (1 =1,2,...s) a set of parameters that charac-

reference steady state is stable for all fluctuations compatiblf-e ; : -
. . ; . X ) rize such constraints (e.g., the volume, external fields, etc.).
with the equation of evolution (which are provided in MaxEnt-(JC (e.g )

. . " Introducing infinitesimal modifications of them, sel;, the
NESEF by the nonlinear transport theory briefly summarize . N ; : I
. . L . t the inf t | ent
in Sec. 2). Stability of the equilibrium and steady states in orresponding variation in the informational entropy is given

the linear regime around equilibrium are recovered as partic-

ular limiting and restricted cases of the general theory. There- z n
fore, given a dynamical open system in a certain steady state,  dS(t)=  d*r Y Fj(r,t) 0Q;(r,t) (100)
it can be driven away from it by changing one or more con- =1

trol parameters on which its macrostate depends. At some

critical value of one or more of these control parameters (fokvheredQ; are the nonexact differentials

example the intensities of external fields) the sign of the ex-

cess entropy production function may change from positive _ —AdN. 4B

to negative, meaning that the steady state looses its stabil- Qi (r,) =dQ () —@r 6 (101)

ity and a new macrostate becomes stabilized characterizing o

some kind of, in general, patterned structure, the so-callewith (dP; (r) | t) =Tf{dpjp(t,0)}~ In these expressions the
Prigogine’s dissipative structurd’he character of the emerg- nonexact differentials are the difference between the exact dif-
ing structure is connected with the type of fluctuation arisingferentials

in the system that instead of regressing, as should be the case

in the linear (or Onsagerian) regime, increases to create the _ S 9Qj(r,t
new macrostate. The instability corresponds to a branchingd@Qi (:t) =d Tr{PJ (Np, )} Qé;(\l ) v
point of solutions of the non-linear equations of evolution, and = (102)
to maintain such non-equilibrium structures a continuous exz 4

change of energy and/or matter with external reservoirs is nec-

essary, i.e. entropy must be pumped out of the open system. { OP
Z J

We again stress that this kind of self-organized ordered behav- (dP; (r 6>\
|

ior is ruled out in the strictly linear regime as a result of the
previously demonstrated generalized Prigogine’s minimum
entropy production theorem. Thus, nonlinearity is requirecthe latter being the average value of the change in the corre-
for these structural transitions to occur at a sufficiently far dissponding dynamical quantity due to the modification of the
tance from equilibrium. The new nonequilibrium branch of control parameters. This follows from the fact that

Pt 0)} . (103)

st = %ju Sy dr aFg;rl’t)Qj () +F (r,t)iaQ(j”(\T’t)d)q 7 (104)
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and that

29(t) n 2

d3r [Qj (r,t) an

Consequently, using Egs.
librium at temperatur@, described by the canonical distribu-

tion, and perform an infinitesimal change in volume, dafy
then

1 du 1 0H
ds= T [d(H) — (dH)] T T<de>
du 14U du p
=T T dv = - fdV (106)
and then follows the form of the first law given by
dU =TdS- pdVv (207)

aFj (I’,t)
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(9
sy

+F; (nt)Tr{ (105)

(104) and (105), we obtain Eqtrajectory of evolution of the system, governed by the kinetic
(100). It is worth noticing that if we take the system in equi-

equations (48).

Moreover, using the redefinitions given in Egs. (109), we
may noticed that the generalized space and time dependent
Gibbs relation of Eq. (47) becomes

o(r,t1) ds(r,t):ds(r,t)+i?j(r,t) dQj(r,t) ,
J:

(112)
where on the left side it has been put into evidence the qua-
sitemperatur® (we stress that in Eq. (102Q indicates the
nonexact differential resulting from modifications in the con-
straints, while in Eq. (112) is present the differenti&) on
the variables on which the functidhdepends). This is the
case of a single nonequilibrium system; we have already call
the attention to the fact that, in the general case, there exist

Equation (100 tells us that the MaxEnt-NESEF Lagrangejifferent quasitemperatures for different subsets of degrees of
multipliers are integrating factors for the nonexact differen-freedom of a given sample in nonequilibrium conditions. The

tials 2Q).
Let us take as the energy density one of the varia|esay

case of the photoinjected highly excited plasma in semicon-
ductors is an excellent example: Coulomb interaction between

Q1(r,t) = &(r,t), and in analogy with equilibrium we define carriers produces their internal thermalization (in nonequilib-
the intensive non-equilibrium thermodynamic variable we callyjym conditions) resulting in a unique quasitemperature which

guasitemperatureor better to say its reciprocal

O 1(r,t) =35(t) / 8&(r,t) (108)

After introducing the additional redefinitions of the La-
grange multipliers in the form

Fi(r,t) =071(r,t) #(r,t) , (109)

space-dependent Clausius expression for a system in arbitr
nonequilibrium conditions, namely

2 sy Z .
dt === dt O 1(r,t') 24(r,t')

5(r,t)—3(r,to) =

to to

(110)

is attained in the ten-fold femtosecond time scale, while the
optical phonons are driven away from equilibrium as a result
of the interaction with the nonequilibrium carriers and acquire
different quasitemperatures in each mode. Only in the ten-fold
picosecond time scale there follows mutual thermalization of
carriers and all the phonon modes, when all acquire a unique
guasitemperature, and in the long run carriers’ and optical-
phonons’ systems attain final equilibrium with the heat reser-

using Eqg. (40) allows us to introduce a kind of generalizedvowwnh which they are in contact; then the quasitemperature

es over the temperature of equilibrium with the reservoir
7, 165].

Integrating in space Eq. (111), and taking into account the
results that led to thé/-theorem of subsectiolv.C, we can

write
)

S(t) = S(to) = S(t) — S5 (1)

where we have introduced the nonexact differential for a gen-

eralized heat functiog(r,t) given by

2q(r,t) —dt 28 (1) _as(r,t’)+ifj (r1) 2Q; (r.)
3 (111)

Zt Z .
= dt drot(rt)ad(rt)>0
to

(113)

This Eq. (113) suggests an interpretation of it, in anal-

In Eqg. (110) is to be understood that the integration in timeogy with equilibrium, as resulting from a kind of pseudo-

extends , in the time interval that goes fragrto t, along the

Carnot principle for arbitrary nonequilibrium systems, in the
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sense of taking the contribution of the integrand as a locasical mechanical level of description is used for simplicity) is

reversible exchange of a heat-like quantity between the sysjiven by

tem and a pseudo-reservoir at local and instantaneous temper-

ature®(r,t). Some considerations on Carnot’s principle and

its connection with MaxEnt, as a general principle of reason-

ing, has been advanced by Jaynes [166]. He described the

evolution of Carnot’s principle, via Kelvin's perception that it

defines a universal temperature scale, Clausius’ discovery that

it implied the existence of the entropy function, Gibbs’ per-

ception of its logical status, and Boltzmann'’s interpretation of

entropy in terms of phase volume, into the general formalism z

of statistical mechanics. The equivalentin IST of Boltzmann's Qj(t)= dI Pj() p(I" [t,0) = —3(t) / 3F;j(t)

results is provided in subsectitviG. (114)
that is, by minus the functional derivative of the generating
functional @ with respect to the associated Lagrange multi-

F. Fluctuations and Maxwell-like relations plier F (t) [and we recall that this function can be related to a
kind of non-equilibrium partition function through the expres-
As already shown, the average value of any dynamicasion@(t) =InZ(t)]. Moreover, from a straight calculation it
quantity P; (") of the basic set in MaxEnt-NESEF (the clas- follows that

do(t) / OF; (t) OF (t) = —8Qj (t) / dF¢ (t) = —8Qx (t) / OF; (t) =

Z
— dr AP, (N)AR(T) p(M [t,0) = Ci (1), (115)

where
Z

APy (M) =Py (M) — dr Py(1) p(" [t,0) =P (M) -Qj(t) (116)

and Eq. (115) defines theatrix of correlationsf‘(t) .Thedi- and then, because of Eq. (44),

agonal elements af are the mean square deviations, or fluc- —

tuations, of quantitie®; (I") , namely Fij(t)=205(t) /3Q;(t) . (120)
Z

” Moreover, we find that
Gj ()= dr[ap(M)]” p(r[t,0)=

. &S (t) / 8Q; (1) 8Qx (t) = 8F; (t) / 8Qi(t) =
= drp(N-QM)*p(r|t,0)=A%Q;(t) , (117)

SFy (1) /3Q; (1) = —kg b Y (t 121
and the matrix is symmetrical, that is, k(1) /0Q; (M) ke C‘k ® (121)

that is, the second order functional derivatives of the IST-

: — 32 . _
Cik (t) = 6°0(t) / OF; (1) OF (t) = informational-entropy are the components of minus the in-
verse of the matrix of correlations~?, with elements to be
= 8(t) / 8Fc () 8F; (t) = Gqj (t) 7 (118) denoted byC]-(,:l) (t). Moreover, the fluctuation of the IST-

informational-entropy is given by
3S (1) ds(t)
3Qj (t) dQx (t)

what is a manifestation in IST of the knowaxwell relations
in equilibrium. Azf(t) _ Z
]

Let us next scale the informational entropy and Lagrange Ci (1)

multipliers in terms of Boltzmann constarkg, that is, we
introduce

S S =Y Ck()F;(t)IF , 122
St)=ksS(t) ; Fij(t)=ksFj(t) (119) IZ ik (O F; () Fie (1) (122)
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and that of the intensive variabl&s are Consequently, again quite in analogy with the case of equilib-
rium, the number of states contributing for the quan@fyto

AF () = oF; (t) oF; (t) . (t) = have the given average value, is overwhelmingly enormous.

! ; 3Qu (1) dQ (1) Kk Therefore, we can write that

z

ot)=In dr exp{—JZle (1) ISJ (l‘)} ~

“Eyql0 g0 an-ggtn

(123)
therefore n z
- ~In exp{— Fi(t) Q (t)} dari, (128)
Q) &°Fj (1) =K Gy () € " (0 =K8Gy; (1) 2 .
(124)
where where the integration is over the manifoff (t) in phase
(—1) space composed of the phase polhts M (t) such that
Gjj(t)= Gt G; (1) (125) ~
M():Qjt) <P (N <Qj(t)+AQ;(t) , (129
and then "
whereAQj is of the order o/ “ (t) . Hence
[8%Q; (0] 2 [ 4% (1] 2 =861 () . (126) J R n
The quantitiescﬁ(_l) are the matrix elements of the inverse S =ke(V) + JZI]FJ Qi V)= glF' QO+
of the matrix of correlations, and if the variables are uncorre-
latedG;j; (t) = 1. Equation (126) has the likeness of an uncer- z n
tainty principle connecting the variabl€g and[F; (t), which +kgin  drr+ Z Fit)Q;t) (130)
are thermodynamically conjugated in the sense of Eqgs. (42) j=1

M
and (44), with Boltzmann constant being the atomistic para- v

meter playing a role resembling that of the quantum of actiorafter using Eq. (119), and then

in mechanics. This leads to the possibility to relate the results _

of IST with the idea of complementarity between the micro- S = kBan{QJ' (t)} ' (131)

scopic and macroscopic descriptions of many-body systemgpere

advanced by Rosenfeld and Prigogine [50, 137-139]; this is

discussed elsewhere [167]. W{Qj(t)} = {extension o fM (t)} (132)
Care must be exercised in referring to fluctuations of the . ) .

intensive variable. In the statistical description fluctua- With extension meaning the measure of the hypervolume in

tions are associated to the specific varialflgs but theF’s ~ Phase space occupied B (t) and changing in time as it pro-
are Lagrange multipliers fixed by the average values of th&eeds the evolution of the nonequn}bnum macroscopic state
P's, and soA2¥ is not a proper fluctuation of but a sec- of the system. We recall that this is an approximate result,
ond order deviation interpreted as being a result of the fluctu®ith an error of the order of the reciprocal of the square root
ations of the variable® on which it depends, in a generaliza- ©f the number of degrees of freedom of the system, and there-
tion of the usual results in statistical mechanics in equilibriumere €xact only in the thermodynamic limit.

[168]. These brief considerations point to the desirability to Eduation (131) represents the equivalent in IST of Boltz-

develop a complete theory of fluctuations in the context ofiann expression for the thermodynamic entropy in terms of
MaxEnt-NESEF; one relevant application of it would be thethe logarithm of the number of complexions compatible with

study of the kinetics of transition between dissipative struci1€ macroscopic constraints imposed on the system. It should

tures in complex systems, of which is presently available EQe noticed that in IST they are givgn by the so-c_all_ed informa-
phenomenological approach [99]. tional set, the one used as constraints in the variational process

in MaxEnt, that is, thg Q;j (t) }, which are the average values
of the set of mechanical variabld®; (t)}. Moreover, they
G. A Boltzmann-like relation: S (t) = kg InW (t) are univocally related to the Lagrange multipliers (or set of in-
tensive nonequilibrium thermodynamical variables) that also
ecompletely describe the macroscopic state of the system in
IST, namely the sefkgF; (t) =TF; (t)}.
_ The expression of Eq. (131) in the quantum level of de-
cription follows similarly, when we derive that

According to the results of the previous subsection, quit
similarly to the case of equilibrium it follows that the quotient
between the root mean square of a given quantity and its av
erage value is of the order of the reciprocal of the square root

of the number of particles, that is W{Qj (t)} _ Z 1— number of states i (t)
) 1/2 12 R (t)
[2%Q; ()] / Qj(t) ~ N7V . (127) (133)

)
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whereni is the set of quantum numbers which characterize the V. CONCLUDING REMARKS
guantum mechanical state of the system, #iatontains the
set of state$n ), such that We have considered in Sectitinthe construction of a Non-

equilibrium Statistical Ensemble Formalism Gibbs’ style. On
this we stress the point that to derive the behavior of the
macroscopic state of the system from partial knowledge has
been already present in the original work of Gibbs. This is
where we have used the usual notations of bracs and kets aad the roots of the well established, fully accepted, and ex-
matrix elements between those states. ceedingly successful statistical mechanics in equilibrium: the
In terms of these results we can look again at e statisti_cal _distri_bu_tion which should _depend on all constants
theorem of subsectiof.3and write of motion is bunt: in any qf the canonical ensembles, in terms
of the available information we do have, namely, the prepa-
_ _ ration of the sample in the given experimental conditions in
S(t)—S(to) =ksIn [ext{M (1)} —ext{M (t5)}] >0 ,  equilibrium with a given (and quite reduced) set of reservoirs.
(135)  Werner Heisenberg wrote [169], “Gibbs was the first to in-
whereext means extension of the manifoff in the classi-  troduce a physical concept which can only be applied to an
cal approach and number of states in the quantum approagbject when our knowledge of the object is incomplete”.
fixed by the informational constraints. EVidently, Eq (135) Returning to the question of the Bayesian approach in
tells us that the extension 6f increases in time, what can be statistical mechanics, Sklar [4] has summarized that Jaynes
interpreted in the following way: Consider the system in anfirstly suggested that equilibrium statistical mechanics can be
|n|t|a”y hlghly excited nonequilibrium State (tO fix ideas let viewed as a Specia| case of the genera| program of System-
us think in terms of the photoinjected plasma in semiconducatic inductive reasoning, and that, from this point of view, the
tors; see sectioriin Chapter3 of the book of Ref. [13]), from  probability distributions introduced into statistical mechanics
which it evolves towards final equilibrium, an evolution gov- have their bases not so much in an empirical investigation of
erned by the kinetic equations of subsectforWith elapsing  occurrences in the world, but, instead in a general procedure
time, as pointed out by Bogoliubov, subsets of correlations digor determining appropriate priori subjective probabilities
down (in the case of photoinjected plasma implies the situam a systematic way. Also, Jaynes’ prescription was to choose
tion of increasing processes of internal thermalization, nullithe probability distribution which maximizes the statistical
fication (decay) of fluxes, etc.) and a decreasing number oéntropy (now thought in the information-theoretic vein) rela-
variables are necessary to describe the macroscopic state tffe to the known macroscopic constraints, using the standard
the system. In IST this corresponds to a diminishing infor-measure over the phase space to characterize the space of pos-
mational space, meaning of course a diminishing informationsibilities. This probability assignment is a generalization of
and, therefore, a situation less constrained with the consequefie probabilities determined by thrinciple of Indifference
increase of the extension 8 and increase in informational in Logic specifying one’s rational choicef a priori proba-
entropy. bilities. In equilibrium this is connected with ergodic theory,
Citing Jaynes, it is this property of the entropy — measur-as known from classical textbooks. Of course it is implied to

ing our degree of information about the microstate, which isaccept the justification of identifying averages with measured
conveyed by data on the macroscopic thermodynamic variquantities using the time in the interval of duration of the ex-
ables — that made information theory such a powerful tool inP€riment. This cannot be extended to nonequilibrium condi-
showing us how to generalize Gibbs’ equilibrium ensembledions involving ultrafast relaxation processes. Therefore, there
to nonequilibrium ones. The generalization could never havéemains the explanatory question: Why do our probabilistic
been found by those who thought that entropy was, like enassumptions work so well in giving us equilibrium values?
ergy, a physical property of the microstate [166]. Also fol- [4]-

lowing JaynesW (t) measures thelegree of control of the The Bayesian approach attempts an answer which, appar-
experimenter over the microstatehen the only parameters ently, works quite well in equilibrium, and then it is tempting
the experimenter can manipulate are the usual macroscopi@ extend it to nonequilibrium conditions. Jaynes rationale
ones. Attime, when a measurement is performed, the state i$or it is, again, that the choice of probabilities, being deter-
characterized by the s€@; () }, and the corresponding phase mined by a Principle of Indifference, should represent max-
volume isW (t), containing all conceivable ways in which the imum uncertainty relative to our knowledge as exhausted by
final macrostate can be realized. But, since the experiment @ur knowledged of the macroscopic constraints with which we
to be reproducible, the region with voluridé(t) should con-  start [11]. This has been described in previous sections.

tain at least the phase points originating in the region of vol- At this point, it can be raised the question that in the study
umeW (t), and thenV (t) > W (t) . Because phase volume of certain physico-chemical systems we may face difficulties
is conserved in the micro-dynamical evolution, it is a funda-when handling situations involving fractal-like structures, cor-
mental requirement on any reproducible process that the phaselations (spatial and temporal) with some type of scaling,
volumeW (t) compatible with the final state cannot be lessturbulent or chaotic motion, finite size (hanometer scale) sys-
than the phase volum# (t,) which describes our ability to tems with eventually a low number of degrees of freedom,
reproduce the initial state [152]. etc. These difficulties consist, as a rule, in that the researcher

M(6): Qi) < (AP |A) <Qj)+AQ;(t) , (134)
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is unable to satisfy Fisher's Criterion of Sufficiency [170] in  Needless to say that this question of Eddington’s time-
the conventional, well established, physically and logicallyarrow problem has produced a very extensive literature, and
sound Boltzmann-Gibbs statistics, meaning an impairment ttively controversies. We do not attempt here to add any con-
include the relevant and proper characterization of the systensiderations to this difficult and, as said, controversial subject.
To mend these difficulties, and to be able to make predictionsVe simply list in the references [50, 54, 55, 135, 135, 136,
(providing an understanding, even partial, of the physics of thd 61, 183—195] some works on the matter which we have se-
system but of interest in, for example, analyzing the technolected. As commented by Sklar [4], Nicolai S. Krylov (the
logical characteristics of a device), consists into resorting tdRussian scientist unfortunately prematurely deceased) was
statistics other than the Boltzmann-Gibbs one which are naleveloping an extremely insightful and careful foundational
at all extensions of the latter but, as said, introduce a patchingtudy of nonequilibrium statistical mechanics [29]. Krylov
method. To mend these difficulties, and to be able to makéeld the opinion that he could show that in a certain sense,
prediction (an understanding, even partial, of the physics oheither classical nor quantum mechanics provide an adequate
the system but of interest in, for example, analyzing the techfoundation for statistical mechanics. Krylov's most impor-
nological characteristics of a device), consists into resortingant critical contribution is precisely his emphasis on the im-
to statistics other than the Boltzmann-Gibbs one (which ar@ortance of initial ensembles. Also, that we may be utterly
not at all extensions of it but, as said, introduce a patchinginable to demonstrate that the correct statistical description
approach). of the evolution of the system will have an appropriate fi-

Several approaches do exist and we can mention Generaﬂite relaxation _tinje, much less the appropriatg exact evolu-
ized Statistical Mechanics (see for example P. T. Landsberdion of our statistical correlates of macroscopic parameters,
in Ref. [171]), Superstatistics (see for example E. G. D. Co_unle_ss our sta_tlgt_lcal approach _mclud_es an appropriate con-
hen, C. Beck in Refs. [172, 173]), Nonextensive Statistics (se&traint on the initial ensemble with which we choose to rep-
for example the Conference Proceedings in Ref. [174]), anfeSent the initial non_eqwhbnum cond|t|or_1 of the_ system in
some particular cases are statistical mechanics based on Refii€stion. Moreover, itis thought that the interaction with the
Statistics (see for example I. Procaccia in Ref. [175] and TSYStem from the outside at the single moment of preparation,
Arimitzu in Refs. [176, 177]), Kappa (sometimes called De-rather than the interventionists ongoing interaction, is what
formational) statistics (see for example G. Kaniadakis in Refgrounds the asymmetric evolution of many-body systems. It
[178]). A systematization of the subject, accompanied of dS the mgluctable mterfgrmg perturbgtlon of the system by the
description of a large number of different possibilities, are de/Mechanism that sets it up in the first place that guarantees
scribed in what we have dubbeddsconventional Statistical that the appropriate statistical description of the system will

Mechanicswhose general theory, discussion and application@e a collection of initial states sufficiently large, sufficiently
are presented in Refs. [179-181]. simple in shape, and with a uniform probability distribution

over it. Clearly, a question immediately arises, namely: Ex-
actly how does this initial interference lead to an initial en-
semble of just the kind we need? [4] We have seen in section
2 how MaxEnt-NESEF, mainly in Zubarev’'s approach, tries
to heuristically address the question. Also something akin to

Cifﬁc initiall_co(rig:tion [Cr]:i Eq',&(ﬁl)]b_ impéyifng ijn aTl;]i_nd_ these ideas seems to be in the earlier work of the Russian-
of generajizedstosszanlanzatz has been detined. IS 1S Belgian Nobel Prize llya Prigogine [50, 150, 161], and also

a wquing proposal that goes in the direction V.VhiCh Was €Sy, the considerations in Refs. [4, 190-192, 196, 197]. Cer-
sentially suggested by Boltzmann, as quoted in Ref. [182]tain kind of equivalence - at least partial - seems to exists be-

“Since in the differential equations of mechanics themselve}veen Prigogine’s approach and MaxEnt-NESEF, as pointed

Eﬂere is(,j absollutel3t/hno|thtitng analggous tﬁ the lslecond law to t by Dougherty [141, 142], and we side with Dougherty’s
ermodynamics, the latler can beé mechanically representeg,, “y e recently, Prigogine and his School have extended

only by means of assumptions regarding initial conditions ‘those ideas incorporating concepts, at the quantum level, re-

Or, in other W(_)rds [182], _th_a_t the 'a"_VS of phyS|cs_ are aIWayﬁated to dynamical instability and chaos (see for example Refs.
of the form: given some initial conditions, here is the result[198 199]). In this direction, some attempts try to incorpo-
aftelr sorlne tltrjlne.t But theytr:cew:[:‘rrl t(tall us h(IJW the Wogcbtr rate time-symmetry breaking, extending quantum mechanics
evolves.In order to account for that, one always needs 10 aSt,, 5 ganeral space state, a “rigged” (or “structured”) Hilbert

sume something, first on the initial conditions and, second, 0Qpace or Gelfand space, with characteristics (superstructure)

the distinction of the description being macroscopic and tr.“?nirroring the internal structure of collective and cooperative

system hever isolated (dgmping of corrglations). In this VeIg’nacroscopic systems [200-202]. This formulation of dynam-
Hawkings [135] has manifested that “It is ”Orr'_‘a”y assUMEG.s constitutes an effort towards including the second law of
that a System in a pure quantum state evolves in a unitary V\.'at¥1ermodynamics, as displayed explicitly by*&function of

through a succession of [such] states. Bgt if there is loss of "Nthe Boltzmann type, which decreases monotonically and takes
formation through the appearance and disappearance of blaﬁ§ minimum value when unstable systems have decayed or

holes, there can’t be a unitary evolution. Instead, the [...] fi- S
nal state [...] will be what is called mixed quantum state. when the system reaches equilibrium [203, 204].

This can be regarded as an ensemble of different pure quan- Finally, and in connection with the considerations presented
tum states, each with its own probability”. so far, we stress that in the formalism described in previous

Another point of contention is the long standing question
aboutmacroscopic irreversibility in natureAs discussed in
section2, it is introduced in the formalism via the general-
ization of Kirkwood'’s time-smoothing procedure, after a spe-
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sections, no attempt is made to establish any direct relatioto rely exclusively on the available information and avoiding
with thermodynamic entropy in, say, the classical Clausiusto introduce any spurious one. The aim is to make predictions
Carnot style, with its increase between initial and final equi-on the behavior of the dynamics of the many-body system on
librium states defining irreversibility. Rather, it has been in-the basis of only that information. On this, Jeffreys, at the be-
troduced a statistical-informational entropy with an evolutionginning of Chapter | in the book of reference [37], states that:
as given by the laws of motion of the macrovariables, asThe fundamental problem of scientific progress, and the fun-
provided by the MaxEnt-NESEF-based kinetic theory. Irre-damental of everyday life, is that of learning from experience.
versible transport phenomena are described by the fluxes #fnowledge obtained in this way is partly merely description
energy, mass, etc..., which can be observed, but we do nof what we have already observed, but part consists of making
see entropy flowing. We have already stressed in subsectidnferences from past experience to predict future experience.
IV.C that the increase of IST-entropy amounts t&falike  This may be called generalization of induction. It is the most
theorem, that is, a manifestation on the irreversible charadmportant part.” Jeffreys also quotes J. C. Maxwell who stated
ter of the transport equations, in close analogy with Boltz-that the true logic for this world is the Calculus of Probability
mann’s #H-theorem which does so for Boltzmann equation.which takes account of the magnitude of the probability that
Moreover, as stated elsewhere (see for example Ref. [13])s, or ought to be, in a reasonable man’s mind.

we side with Meixner's point of view [53, 205] in that, dif-  5ome authors conjecture that this may be the revolutionary
ferently to equilibrium, does not exists a unique and premselxhought in modern science (see for example Refs. [36, 37,
defined concept of thermodynamic entropy out of equilibrium.1 61 "206]): It replaces the concept of inevitable effects (tra-
The one of subsectioh/.A, is the one peculiar to IST, and jectories in a mechanicist point of view of many-body (large)
depending on the nonequilibrium thermodynamic state degystems) by that of the probable trend (in a generalized the-
fined by Zubarev-Peletminskii selection law altogether WlthOry of dynamical systems). Thus, the different branches of
the use of Bogoliubov’s principle of correlation weakening. gcience that seem to be far apart, may, within such new par-
The IST-informational-entropy, we recall, has several propgigm, grow and be hold together organically [207]. These
erties listed in subsectioh/.B, and one is that it takes (in points of view are the subject of controversy, mainly on the
the thermodynamic limit) a typical Boltzmann-like expressionpart of the adepts of the mechanicist-reductionist school. We
[cf. Eq. (40)], implying that the macroscopic constraints im- ¢l the attention to the subject but we do not take any particu-
posed on t'he system (the 'lnform.atlonql bases) determine t,hﬁr position, simply adhering to the topic here presented from
vast majority of microscopic configurations that are compati- pragmatical point of view. In that sense, we take a position
ble with them and the initial conditions. It is worth noticing -gincident with the one clearly stated by Stephen Hawkings
that then, according to the weak principle of increase of the{zog]: “I do not demand that a theory corresponds to reality.
IST-informational-entropy, as the dissipative system evolvesg i that does not bother me. | do not demand that a theory
such number of microscopic configurations keeps increasingorespond to reality because | do not know what reality is.
up to a maximum when final full equilibrium is achieved. Fur- Reality is not a quality you can test with litmus paper. All |

ther, MaxEnt-NESEF recovers in the appropriate limit the dism concerned with is that tigheory should predict the results
tribution in equilibrium, and in IST one recovers the tradi- 4 measuremehfemphasis is ours].

tional Clausius-Carnot results for increase of thermodynam-

ics entropy between an initial and a final equilibrium states,th MaXEt;'t'leESEF IS the C??Strl:ﬁt've crtl)tlerlon IOé_de_rIVIPg
as shown in Ref. [13, 166]. e probability assignment for the problem of dissipative

processes in many-body systems, on the bases of the avail-

Ending this considerations, it can be further noticed tha@ble information (provided, as Zwanzig pointed out [209], on
in the preceding sections we have described, in terms ahe knowledge of measured properties, the expectation on the
a general overview, a theory that attempts a particular aneharacteristics of the kinetic equations and of sound theoret-
swer to the long-standing sought-after question about the exeal considerations). The fact that a certain probability dis-
istence of a Gibbs-style statistical ensemble formalism fotribution maximizes the informational entropy, subject to cer-
nonequilibrium systems. Such formalism, providing micro-tain constraints representing our incomplete information, is
scopic (mechanical-statistical) bases for the study of dissithe fundamental property which justifies the use of that distri-
pative processes, heavily rests on the fundamental ideas abdtion for inference; it agrees with everything that is known,
concepts devised by Gibbs and Boltzmann. It consists intdut carefully avoids assuming anything that is not known. In
the so-called MaxEnt-NESEF formalism, which appears to behat way it enforces - or gives a logico-mathematical view-
covered under the theoretical umbrella provided by Jaynegoint - to the principle of economy in logic, known as Oc-
Predictive Statistical Mechanics. We have already called theam’s Razor, namely “Entities are not to be multiplied except
attention to the fact that it is grounded on a kind of scientificof necessity”. Particularly, in what concerns Statistical Ther-
inference approach, Jeffrey’s style, based on Bayesian prolnodynamics (see Sectidtl ), MaxEnt-NESEF, in the con-
ability and information theory in Shannon-Brillouin’s sense text of Jaynes’ Predictive Statistical Mechanics, allows to de-
[36, 37]. It has been improved and systematized mainly byive laws of thermodynamics, not on the usual viewpoint of
the Russian School of Statistical Physics, and the different apnechanical trajectories and ergodicity of classical deductive
proaches have been brought under a unified description baseshsoning, but by the goal of using inference from incomplete
on a variational procedure. It consists in the use of the prininformation rather than deduction: the MaxEnt-NESEF distri-
ciple of maximization of the informational entropy, meaning bution represents the best prediction we are able to make from
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the information we have [7-12].
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