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The decay mechanisms of giant resonances have been revisited to investigate the isoscalar dipole resonance
in 208Pbnucleus.

I. INTRODUCTION

The purpose of this work is to present a feasible scheme
to calculate the giant resonances (GR’s) widths in order to in-
vestigate the decay mechanisms of these collective excitation
modes. This scheme is based on a calculation model where
the escape and the spreading widths are directly connected.
The method is applied for isoscalar giant dipole resonances
(ISGDR) in 208Pb, since new results are indicating the neces-
sity of improvements in the structure calculations around the
ISGDR[1–5]. The escape width was calculated using a pre-
vious version of the continuumRPAapproach [6], which was
modified to take into account the differences among the neu-
tron and proton radii in nuclei with neutron excess [7, 8]. To
calculate the spreading width we present a new formulation
of an approximated semi-microscopic method, based in the
statistical Multi-Step Compound Theory (MSC) of Feshbach,
Kerman and Koonin (FKK) [9] in connection with theRPA
calculations.

In the Sect. II of this work, we describe the theoretical
approach used in the spreading width calculation. The results
are discussed in the Sect. III.

II. RPA+FKK APPROACH

A recent version [7] of the continuum Random Phase Ap-
proximation (RPA) that accounts for a careful treatment on the
differences between the neutron and proton densities was used
to calculate the escape width. The details of this calculation
may be seen in the contribution for this proceeding: “Partial
Escape Width for Nuclei with Neutron Excess” [8].

In order to perform the calculation of the spreading width,
we have used the Statistical Multi-Step Compound Theory
(MSC) of Feshbach, Kerman and Koonin (FKK) [9]. In this
approach, the excitation of theGR takes place in a number
of stages, with the particle emission being allowed in any
of them. Each stage is represented by a level of complexity,
characterized by the number of particle-hole pairs that are ex-
cited by an external field [10]. Assuming an energy and an-
gular momentum factorization of the state density, the spre-
ading width in this formalism is written as:〈Γ↓n+1

nJ (E)〉 =
X ↓n+1

nJ Y↓n+1
n (E) . The angular momentum structure inclu-

ded in the particle-particle two-body interaction and the spin

distribution of the single-particle levels are contained in the
X function. TheY function contains all the dependence on
excitation energy originated from the final state density, the
particle-hole distinguishability, and describes the available
phase space for the transition. Thus, theX and Y functi-
ons are calculated separately, resulting in a complete uncou-
pling between the angular momentum of the excited particle-
hole pairs and the energy considered in the calculation of the
width. This way, all1p− 1h pairs are treated on equal foo-
ting in any energy, making the results strongly dependent on
the particle-hole basis (for more details of theFKK appro-
ach see Refs. [9] and [10]). On the other hand, in theRPA
approach, the excitation probability of a specific particle-hole
pair depends on the excitation energy and angular momentum
coupling. Therefore, since we have accounted for a sufficien-
tly complete1p−1h basis in theRPAcalculation, the results
do not change considerably when another more internal (or
more external) single-particle level is included in the confi-
guration basis. Thus, intending to minimize the dependence
on the1p−1h basis and the number of possible intermediate
coupling effects, we have implemented some modifications in
the original form [9] of theX function to include the micros-
copic information calculated byRPA. In Ref. [9] the density
of single-particle(hole) states is derived from the equidistant
single-particle model, resulting in a n-stageYn(E) function
with a direct dependence onE2. Therefore, for resonances
at energies far away from the nucleon binding energy (as in
isoscalarGDR) this outcome is not a good option because the
spreading width involves only intermediate bound states. This
way, we use theYn(E) function proposed by Oblozinsky [11]
where the level density is obtained restricting the nucleons to
bound states, limiting the energy dependence.

Thus, the main improvement proposed in this work consists
of taking into account the excitation probability of each1p−
1h pair that is accessed in the energy in which the calculations
are performed (this proposal is hereafter referred to asRPA+
FKK approach). The proposed newX function is given by:

X↓(n+1)
nJ (εm) =

2π ∑
jQ j4 j3

P J
Q j4

R1( j)R1(Q)RN−1( j4)
RN(J)

(2 j3 +1)
(2Q+1)

∆(QJ j4)

∑
j1 j2

P j3
j1 j2

R1( j1)R1( j2)(〈{ j1 j2} j3|V|{Q j} j3〉)2L(εm,E2)

(1)
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TABLE I: The escape [8] and spreading width ofGDR in 208Pb.

E(MeV) Γ↑(MeV) Γ↓(MeV) Γ(MeV)
This work
IVGDR 10.8 0.0 4.4 4.4
ISGDR 24.4 2.7 3.3 6.0
Experimental values
IVGDR 13.5 4.0[12]
ISGDR 20−23 2.5−10[1–4]

where

P J
jp jh =

NP|xJ
jp jh
|2

∑
jp jh(Γp≈0)

|xJ
jp jh
|2 , (2)

andNp is the number of bound (or with single-particle width
too smaller thanGR width) 1p− 1h configurations coupling
to
−→
J . The functionsRN(J) and∆(abc) are given, respecti-

vely, by Eqs. (5.7) and (5.26) from Ref. [9]. The amplitudes
xJ

Q j4
andx j3

j1 j2
, used in the evaluation ofPJ

Q j4
andP j3

j1 j2
, are cal-

culated in the excitation energyεm and intermediary phonon
energyε j3, respectively. All energiesε j , as well as the am-
plitudesxJ

j j ′ , are obtained withRPAcalculation. The quantity
L(εm,E2p−2h) is a lorentzian type function:

L(εm,E2p−2h) =
η2

(εm−E2p−2h)2 +η2 , (3)

with E2p−2h = ε j +ε j1−ε j4−ε j2. We would like to emphasize
that the calculation of theX function is performed only in the
excitation energy (E) which correspond to the energy solution
(εm) of theRPAformalism. The modifications in the original
X function [9] are given by thePJ

jp jh
andL(εm,E2p−2h) factors.

Another point that deserves a special attention is the part
that deals with the residual interaction used in the calculation.
The coherence of theRPA+FKK approach is guaranteed by
using the same two-body residual interaction, as the Landau-
Migdal interaction given in Ref. [7], to diagonalize theRPA
equations and to compute theX function in Eq.(1). Procee-
ding this way, the parameters of the residual interaction were
adjusted at level of theRPA calculation in a standard way,
in order to reproduce the excited states with the lowest ener-
gies and to eliminate the1− spurious solution at zero energy.

However, in theFKK calculations [9, 10], the two-body inte-
raction was assumed to be the simplest zero-range form where
the strength of the interaction is a free parameter.

III. RESULTS AND DISCUSSIONS

The first application test refers to the spreading width cal-
culation of the isovectorGDR in 208Pb. The general state-
ment found in the literature is that the decay of this reso-
nance in heavy nucleus is largely dominated by the statistical
mechanism, corresponding to a more complex structure than
1p−1h, which is in agreement with our results showed in TA-
BLE I.

The calculated spreading width is approximately equal to
the total width, showing the largest domain of the statistical
decay. On the other hand, the isoscalarGDR in 208Pb is loca-
ted far away from the isovector one, and it presents a large di-
rect decay. The strength of this excitation (calculated byRPA
in Ref. [8]) is separated in two main components, in agree-
ment with all experimental data. The lower-energy component
is due to the remaining isovector contribution with a spurious
state mixing character. The highest energy and broadest peak
is identified as theISGDR. Our calculations predict a consi-
derable strength in the energy region above20 MeV, which
is composed by the presence of various narrow peaks super-
posing to exhaust about82% of the EWSRbetween20−30
MeV. These peaks are mainly composed by3hω transiti-
ons involving the neutrons and protons of the external shells.
Using the results provided byRPAcalculation, we obtained
the spreading width

〈
Γ↓

〉
= 3.3 MeV (see TABLE I), resul-

ting a total width〈Γ〉 = 6.0 MeV, in agreement whith the fits
from Ref.[4], and also, with the value of3.2 MeV used in the
analysis of the Ref.[5]. The results show that the spreading
and escape widths have compatible values. The large direct
decay reflects the fact that this resonance is located in higher
energy than the isovectorGDRand far beyond the neutron th-
reshold. Thus, the direct decay channel is quite favored by
this high energy and it competes equally with the statistical
mechanism, unlike of what happens with the isovector one.
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