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Asymmetric Nuclear Matter and its Instabilities
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In order to investigate the instabilities in asymmetric nuclear matter described within relativistic mean field
hadron models, we build the spinodals. We have used relativistic models both with constant and density depen-
dent couplings at zero and finite temperatures. We have seen that the main differences in the spinodals occur at
finite temperature and large isospin asymmetry close to the boundary of the instability regions.

It is important to test the relativistic models often used in
the literature at finite temperature and different densities, since
these models can describe the ground state of both stable and
unstable nuclei [1] as well as the properties of neutron stars
and supernovae [2], once the couplings are conveniently ad-
justed.

Asymmetric nuclear matter (ANM) may present instabili-
ties and phase transitions. This is a topic of great interest
nowadays. The instabilities present in ANM may manifest
themselves as an isospin distillation or fractionation [3]. Mul-
tifragmentation also takes place when the system enters the
spinodal region through nucleation or through spinodal de-
composition. The correlation between spinodal decomposi-
tion and negative heat capacity evidences the fact that the
spinodal decomposition is the dynamics underlying the liquid
gas phase transition [4]. Also in neutron stars the underlying
asymmetry of the equation of state which is used to describe
it is an important source of investigation. It has recently been
proposed that there is a relationship between the neutron skin
of heavy nuclei and the properties of neutron star crusts, na-
mely the thicker the neutron skin of a heavy nucleus the thin-
ner the solid crust of a neutron star.

Moreover, standard relativistic mean field interactions show
limitations for describing nuclei close to the stability line.
This is due to the fact that the isovector channel is poorly
constrained by experimental data. An example is the syste-
matic overestimate of the neutron skins [5]. Some of these
limitations are overcome by quantum hadrodynamical models
with density dependent meson-nucleon couplings (which we
refer to as TW) [6, 7], which have been used with success to
describe both nuclear matter and finite nuclei.

We may ask whether the recent improvements of the RMF
models, both through the inclusion of density dependent
meson-nucleon couplings and/or theδ scalar-isovector me-
son, present different features at subnuclear densities of nu-
clear asymmetric matter which could have consequences for
the properties of the inner crust of neutron stars or in mul-
tifragmentation or isospin fractionation reactions. The para-
metrizations of these models take generally into account sa-
turation properties of nuclear matter and properties of stable
nuclei. Extension of the model for very asymmetric nuclear
matter or to finite temperatures may show different behaviors.
The simplest test between the models is a comparison of the

regions of uniform unstable matter.
We start from the lagrangian density of the relativistic TW

model [6]
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whereΩµν = ∂µVν−∂νVµ , ~Bµν = ∂µ~bν−∂ν~bµ−Γρ(~bµ×~bν).
The parameters of the model are: the nucleon massM = 939
MeV, the masses of the mesonsms, mv, mρ, and the density
dependent coupling constantsΓs, Γv and Γρ, which are ad-
justed in order to reproduce some of the nuclear matter bulk
properties[6].

Other possibilities for these parameters are also found in the
literature [8]. Notice that in this model the non-linear terms
are not present in eq.(1), in contrast with the usual non-linear
Walecka model (NLWM). The equations of motion are then
obtained in a mean field approximation and the distribution
function readsfi± = 1/{1+ exp[(E∗ ∓ νi)/T]} , where the
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Γρ
2 b0−ΣR

0 ,
τp3 = 1, τn3 =−1, with the rearrangement term given by

ΣR
0 =

∂Γv

∂ρ
ρV0 +

∂Γρ

∂ρ
ρ3

b0

2
− ∂Γs

∂ρ
ρsφ0. (2)

The energy density in the mean field approximation reads:
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and the pressure becomes
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TABLE I: Nuclear matter properties.

NL3 [9] TM1 [10] TW [6] NLδ [11] DDHρδ [12]
B/A (MeV) 16.3 16.3 16.3 16.0 16.3
ρ0 (fm−3) 0.148 0.145 0.153 0.160 0.153
K (MeV) 272 281 240 240 240

Esym. (MeV) 37.4 36.9 32.0 30.5 25.1
M∗/M 0.60 0.63 0.56 0.60 0.56
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For two of the usual NLWM parametrizations, namely NL3
[9] and TM1 [10], the above equations read:
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where the meson-nucleon coupling constants,gs,gv, andgρ
substituteΓs,Γv, andΓρ. They are not density dependent and
consequently all derivative terms in the pressure cancel out
andκ, λ andξ are the self-coupling constants multiplying the
non-linear terms.

To investigate the influence of theδ-meson in the stability
conditions we have included in both the density dependent and
the NLWM models, the isovector-scalar meson terms [11]:

L = gδψ̄~τ ·~δψ+
1
2
(∂µ

~δ∂µ~δ−m2
δ
~δ2 ), (6)

wheregδ andmδ are respectively the coupling constant of the
δ meson with the nucleons and its mass. Self-interacting terms
for theσ-meson are also included,κ andλ denoting the cor-
responding coupling constants.

For reference, in Table I we show the properties of nu-
clear matter reproduced by the models we discuss in the pre-
sent work. The equation of motion for this field becomes
δ3 = gδ

m2
δ
ρs3, with ρs3 = ρsp−ρsn. The energy density and the

pressure are also affected by the presence of the new meson.
The term+1/2m2

δ δ2
3 should be added to the energy density

and the−1/2m2
δδ2

3 should be added to the expression of the
pressure, both given in eq. (5). The effective masses for pro-
tons and neutrons acquire different values, namely,

M∗
i = M−gs φ0− τi3gδδ3 i = p,n.
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FIG. 1: Symmetry energy results for the NL3, TM1, TW, NLδ and
DDHρδ parameter sets.
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FIG. 2: Spinodal regions for different parameter sets andT = 0 (up-
per panel),T = 10 MeV (middle panel) andT = 14 MeV (lower
panel).

For completeness, we have also included theδ-meson in a
model where theρ andδ couplings are density dependent, as
done in [12], where it is called density dependent hadronic
model (DDHρδ). In this case the coupling constantsgs, gv,
gρ andgδ used in equation (6) should be replaced byΓs, Γv,
Γρ andΓδ and the non-linear scalar terms do not appear. The
rearrangement term appearing in the effective chemical poten-
tial and pressure now has the extra term− ∂Γδ

∂ρ ρs3 δ3 and the

pressure becomesP(Γs,Γv,Γρ,Γδ) = P(Γs,Γv,Γρ)− m2
δ

2 δ2
3 .

The stability conditions for asymmetric nuclear matter in
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terms of the proton fraction read
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It has recently been argued [13, 14] that in ANM the spinodal
instabilities cannot be separately classified as mechanical or
chemical instabilities. In fact, the two mentioned conditions
in equation (7) that give rise to the instability of the system
are coupled so that it appears as a mixture of baryon density
and concentration fluctuations.

In order to calculate the boundaries of the spinodal instabi-
lity regions we use the well known Gibbs-Duhem relation, at
a fixed temperature and isospin asymmetry withδ =−ρ3/ρ =
1−2yp [15]. The spinodal regions can then be obtained for
both different temperatures and different parametrizations.

A quantity of interest in ANM is the nuclear bulk symmetry
energy discussed in [16]. This quantity is important in studies
involving neutron stars and radioactive nuclei. The behavior
of the symmetry energy at densities larger than nuclear satura-
tion density is still not well established. In general, relativistic
and non-relativistic models give different predictions for the

symmetry energy. It is usually defined asEsym= 1
2

∂2E/ρ
∂δ2

∣∣∣
δ=0

.

In Fig.1 we show the symmetry energy for the different mo-
dels used in this work, calculated atT = 0 andyp = 0.5. We
can see that at subsaturation densities where the instability
regions occur (0 up to 0.1 fm−3), NL3 and TM1 parametri-
zations give very similar behaviors. The NLδ parametrization
describes saturation at 0.16 fm−3 and this fact affects the sym-
metry energy at low densities, in particular it is the model with
the lowest symmetry energy in this range of densities (see Ta-
ble I). The TW model presents a different behavior, after a
faster increase at low densities, the symmetry energy increa-
ses much slower than most of the other models at larger den-
sities. A very low value of the symmetry energy was obtained
with the DDHρδ parametrization. It amounts to 25 MeV. The
density dependent hadronic models show a softer symmetry
energy at the densities shown. At higher densities the models
containing theδ-meson are expected to get a harder behavi-

our due to relativistic effects, namely theδ contribution goes
to zero and only the repulsive contribution from theρ-meson
remains [11].

In Fig. 2 we display the spinodals for different parameter
sets obtained withT =0, 10, 14 MeV. ForT = 0 MeV the
differences are not significant, occuring at the higher density
branch,∼ 0.1 fm−3. In particular, in the NLδ parametrization
the boundary lies at a larger density than in the other models
for δ < 0.5. The spinodals for the density dependent hadro-
nic models are decreasing less with the asymmetry parame-
ter δ than the others. At finite temperature the differences
are larger. These differences occur again in the larger density
branch, and it is again the NLδ which presents a boundary
at larger densities in the small asymmetry region followed by
the TW and the DDHρδ models. In the large asymmetry re-
gion we are already testing both the critical temperatures and
asymmetries of the models and the differences between the
models are larger. For the DDHρδ model, as temperature in-
creases, the instability boundaries extend to higher asymme-
tries as compared with all the other models. This is possibly
due to a lower symmetry energy. The opposite occurs with the
NL3 parametrization which has the larger symmetry energy.
We conclude that the information obtained from the spinodal
decomposition sensitive to the underlying model comes from
the phase space close to the spinodal boundary at large isospin
asymmetry.

In conclusion, we have compared the spinodal boundary
as a function of density and isospin asymmetry, at several
temperatures, for different relativistic models. We have con-
sidered both quantum hadrodynamical approaches with non-
linear terms (NL3, TM1, NLδ) and density dependent hadro-
nic models with density dependent coupling parameters (TW,
DDHρδ). The largest differences between the models occur
at finite temperature and are more clearly shown in the high
isospin asymmetry region.
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