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Analytical Treatment for the Deuteron-Deuteron Interaction
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In the study of two interacting systems within the framework of microscopic theories, the correct treatment
of the effective interaction between the fragments has been the most troubling problem, due to the technical
difficulties in calculating the exchange terms. In the framework of the Generator Coordinate Method, and
through a double projection technique, we obtain this effective interaction between two pairs of nucleons, taking
into account the Coulomb exchange plus a nuclear part. Our treatment is useful in the analysis of the role of
correlated nucleon pairs in photoabsorption experiments by nuclei.

Recently, the suggestion that the nuclear response may be
interpreted as the response of a collection of neutron-proton
pairs (or quasideuterons) was revitalized [1, 2] through the in-
troduction of a microscopic method, the so-called Correlated
Basis Function method, used to calculate the distribution of
quasideuterons in the nuclear system. The adoption of such a
point of view makes the problem of finding the effective inte-
raction between the pairs a very important one. In fact, the tre-
atment of systems of interacting particles which are composed
of fundamentalfermions is an old, but still difficult problem,
mainly due to the correct introduction of the Pauli Principle in
obtaining the effective potential. As other examples in which
this kind of problem could be very appealing, we mention the
nucleus-nucleus collision [3] and the formation of compound
states from two given fragments.

In this work we present a method, based on the Genera-
tor Coordinate Method (GCM), which allows one to obtain
the effective ( or collective) potential in such a way that the
Pauli Principle is fully taken into account and, at the same
time, the microscopic degrees of freedom are kept. Though
the GCM was already used in the past for obtaining the phase-
shifts in collision problems [4], we show below that it is also
possible, using the formalism developed in [3, 5], to obtain a
complete analytical form for the collective potential for a sui-
table choice of the basis space. To be specific, we consider
the case in which two pairs of nucleons with different isospin
quantum numbers interact through a Coulomb plus a nuclear
force. Choosing the other appropriate quantum numbers we
may particularize to the deuteron-deuteron case.

In what follows we outline the method and the general re-
sults. Next, we present our application for the two nucleon
pair case and obtain a closed expression for what we call the
collective hamiltonian matrix, including the Coulomb and nu-
clear part. In order to check the consistency of the method
and formulae we calculate theα particle binding energy using
a simple gaussian potential for the nucleon-nucleon force. Fi-
nally, we discuss how to obtain, from the expressions deri-
ved here, an analytical form for the potential in the deuteron-
deuteron case. The final form of the potential and applications
will be presented in a separate paper.

The GCM ansatz for a many-body wavefunction of a sys-
tem of nucleons is defined as:|ψ >=

R
f (~α)|~α > d~α and

< r1, r2, ....rN|ψ >=
R

f (~α) < r1, r2, ...|~α > d~α, where f (~α)
is a variational function of the generator coordinate~α and
< r1, r2, ...|~α > is a Slater determinant.

By minimizing the energy, we obtain the Griffin Hill Whe-
eler equation:

Z (
<~α|Ĥ|~α′ >−E <~α|~α′ >)

f (~α′)d~α′ = 0. (1)

As we are interested in the relative motion of two pairs of
nucleons , the distance between them (~α), is taken as the gene-
rator coordinate. The pair wave function is described by one
neutron and one proton in the lowest state of the harmonic os-
cillator potential. One of the pairs is centered around the point
with coordinate vector~α2 and the other one is centered around

−~α
2 . The overlap kernel, for our choice for the generator state

|~α >, is

〈
~α|~α′〉N(~α,~α′) = (c1A4 +c2B4 +c12A

2B2), (2)

with A = exp
(
− (~α−~α′)2

16b2

)
, B = exp

(
− (~α+~α′)2

16b2

)
. The cons-

tantsc1,c2 andc12 depend on the the angular momentum con-
figuration of the system. In the cases we consider here, we
always havec1 = c2 = 1. The hamiltonian kernel equation (1)
can be written as

<~α|Ĥ|~α′ >=<~α|T|~α′ > + <~α|V|~α′ >, (3)

where the kinetic part is:

<~α|T|~α′ >=
(
~2

mb2

)[
3
4

<~α|~α′ >−c1A4
(

(~α−~α′)2

8b2

)

−c2B4
(

(~α+~α′)2

8b2

)
+c12A

2B2 (~α2 +~α′2)
8b2

]
(4)

For the sake of simplicity, from now on, we are going to write
the potentials and the kinetic energy kernels in unities of~2

mb2 .
Also, we should stress at this point that the center of mass and
internal energy contributions were properly subtracted in the
above expression for the kinetic energy. For the potential we
have to distinguish two parts. For the Coulomb part we obtain:

<~α|VC|~α′ >=−c12

2
A2B2[

I(~α+~α′)+ I(~α−~α′)
]
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+A4I(~α+~α′)+B4I(~α−~α′). (5)

and for the nuclear part:

<~α|VN|~α′ >= 2(A4 +B4)I(0)−2c12 A2B2(I(~α)+ I(~α′))

−c12 A2B2[
I(~α+~α′)+ I(~α−~α′)

]

+4A4I(~α+~α′)+4B4I(~α−~α′). (6)

In the above equations we have defined:

I(~ρ) =
1

b3
√

8π3

Z
exp(− (~r−~ρ/2)2

2b2 )V(~r), (7)

with b the oscillator length parameter which defines the po-
tential well. Although the nuclear interactionV(~r) does not
contain explicit velocity dependencies, this could be included
in the formalism without changing equations 5 and 6. Also,
in the expressions for the potential energy kernel, the terms
proportional toI(0) can be recognized as the internal energy
potential of the system, i.e., the potential energy between the
nucleons pertaining to the same pair. The Griffin Hill Whee-
ler variational equation can be casted in the Schrodinger form
through a double projection that diagonalizes the generator
states overlap. The firstprojectioncorresponds to a Fourier
Transform of the overlap, for which we define the following
state

∣∣∣~K
〉

=
1√

(2π)3λ(K)

Z
ei~K·~α |~α〉d~α, (8)

and
〈
~K|~K′

〉
=

1√
(2π)3λ(K)

1√
(2π)3λ(K′)

Z
d~α
Z

d~α′e−i~K·~α 〈
~α|~α′〉ei~K′·~α′ . (9)

The
〈
~K|~K′

〉
overlap can then be diagonalized in such a way that:

R 〈
~K|~K′

〉
φn(~K′)d~K′ = Λnφn(~K). Thus we can define the

basis states,

|n〉=
Z φn(~K′)√

Λn

∣∣∣~K′
〉

d~K′. (10)

such that

〈n|m〉=
Z

d~K′
Z

d~K
φ∗m(~K)√

Λm

〈
~K|~K′

〉 φn(~K′)√
Λn

= δnm (11)

Thus we can define the projector as

P = ∑
n
|n〉〈n|= ∑

n

Z
d~K′d~K

φn(~K′)√
Λn

∣∣∣~K′
〉〈

~K
∣∣∣ φ∗n(~K)√

Λn
. (12)

The projected Hamiltonian readsHe f f = ∑n,m|n〉〈n| Ĥ |m〉〈m|. The total projector can be also written as an operator acting on
the many body operators through the generator states

P = ∑
n

Z
d~K′d~K

φn(~K′)√
Λn

∣∣∣~K′
〉〈

~K
∣∣∣ φ∗n(~K)√

Λn
= ∑

n

√
Λn |n〉

Z
d~α
Z

d~K
φ∗n(K)√

λ(K)
e−i~K·~α 〈~α| , (13)

and it is easy to prove that the Griffin Hill Wheeler equation is thus equivalent to the Schrödinger type equation for the projected
hamiltonian.

∑
m

{〈n| Ĥ |m〉−E 〈n|m〉}ψm = 0. (14)

where〈n|m〉= δnm,
Within our choice for the state|~α >, the state|n > is:

|n >=
1

(2π)3/2

Z
d~K

φn(~K)
(Λn)1/2

Z
d~α e−i~K·~α |~α > (15)
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Λn is the
〈
~K|~K′

〉
overlap matrix eigenvalue andφn(~K) are the corresponding eigenvectors. They are given explicitly by:

φn(~K) =
2−n/2(nx!ny!nz!)−1/2b3/2

π3/4
Hnx(b Kx)Hny(b Ky)Hnz(b Kz)e−(b K)2/2 (16)

and

Λn = (4πb2)3/2e−(b K)2
λn, λn = (1+(−)n−c12δn0), (17)

wheren = nx +ny +nz is the total oscillator quantum number andHn(x) are Hermite polynomials.
After some manipulations we finally obtain for the kinetic and potential matrixes a very compact expression. For the kinetic

term:

< n′|T|n >= (3+
n
2
)δnn′ +

3

∑
i 6= j 6=k=1

(√
(ni +2)(ni +1)

4
δn′i ,ni+2 +

√
(n′i +2)(n′i +1)

4
δni ,n′i+2

)
δn j

′,n j δnk
′,nk
×

(√
2(1−c12)

2
(δn0 +δn′0)+δnn′ 6=0

)
− 9

4
δnn′ (18)

where1,2,3 stand forx,y,zandδnn′ = δnxn′xδnyn′yδnzn′z . The symbolδnn′ 6=0 means that it is equal to1 if n andn′ are both different
from zero and it is0 otherwise. And for the potential term:

< n′|V|n >=
1

2
n+n′

2 (nx!...nz′ !)1/2λ1/2
n λ1/2

n′

1

(2π)3/2b3

Z
d3r V (r) exp(

−r2

2b2 )IC,N(r), (19)

where for the Coulomb interaction we define:

IC(r) =−c12

2
in+n′

2(n+n′)/2
((−1)n′ +1)Hnx+nx′Hny+ny′Hnz+nz′+

+
in+n′

2(n+n′)/2
((−1)n′ +1)nx!...nz′ !

(nx+nx′ )/2...

∑
k1k2k3

22(k1+k2+k3)

k1!k2!k3!(nx−2k1)!...(nz′ −2k3)!
Hnx+nx′−2k1Hny+ny′−2k2Hnz+nz′−2k3, (20)

and for the nuclear interaction part, we have:

IN(r) = 2n+1nx!ny!nz!((−1)n +1)δnn′ −2 c12

[
in

2n/2
HnxHnyHnzδn′0 +

in
′

2n′/2
Hnx′Hny′Hnz′ δn0

]
−

−c12
in+n′

2(n+n′)/2
((−1)n′ +1)Hnx+nx′Hny+ny′Hnz+nz′+

+4
in+n′

2(n+n′)/2
((−1)n′ +1)nx!...nz′ ! ∑

k1k2k3

22(k1+k2+k3)

k1!k2!k3!(nx−2k1)!...(nz′ −2k3)!
Hnx+nx′−2k1Hny+ny′−2k2Hnz+nz′−2k3, (21)

where the argument of the Hermite polynomials are always
{ x√

2b
, y√

2b
, z√

2b
}, in that order. The formalism shown above

can be directly applied to calculate the binding energy of
the α particle. This can be done choosing the correct cou-
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pling coefficients. In this case,c12 = 1. Also, we have
used a gaussian potential for the nuclear interaction defined
as: V(r) = V0exp(− r2

a2 ), with a = 1.5 f m, V0 = 50 MeV and
the oscillator parameterb chosen in such a way to reproduce
the root mean square radius. With this parametrization we
build and diagonalize the hamiltonian matrix and find the va-
lue−22.5 Mev for theα particle binding energy. Of course,
the introduction of the exchange force terms as well as the
tensor component in the nuclear potential should be done in
order to get a better result. However this simple test can give
us a first good check for the model consistency and our for-
mulae. Note that, for the Gaussian and Coulomb potentials,
all the remaining integrals which appear in equations (20)and
(21) can be done analytically.

Besides the energy and eigenstates it is also possible to ob-
tain an explicit form for the effective potential and inertia,
starting from theHe f f = ∑n,m|n〉〈n|H |m〉〈m|. For that we
can build a collective (effective) momentum representation ta-
king the{|K〉} vectors, defined above as a basis. Thus the ef-
fective Hamiltonian in the momentum representation is given
by

〈K|He f f
∣∣K′〉 = ∑

n,m
〈K|n〉〈n|H |m〉〈m

∣∣K′〉

and, through the fourier transform, we obtain the position re-
presentation of the effective hamiltonian

〈X|He f f
∣∣X′〉 = ∑

n,m

√
ΛnΛm〈n|H |m〉 φ̃n(X)φ̃∗m(X′) .

The collective , or effective hamiltonian can be written as
a function of collective momentum and position through a
Weyl-Wigner transform or equivalently through an expansion
on the non-locality (see details in references [5],[3]):

He f f =
1
8
{P,{P,B(X)}}+V(X)

where the inertia can be written as

B(X) =
1

M(X)
=
Z

dξ
(−iξ)2

2!

〈
X +

ξ
2

∣∣∣∣H

∣∣∣∣X−
ξ
2

〉

and the potential as

V(X) =
Z

dξ
〈

X +
ξ
2

∣∣∣∣H

∣∣∣∣X−
ξ
2

〉
.

The final form of the potential and inertia are left to a forthco-
ming paper.
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