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We obtained theoretical fusion cross sections based on a new and accurate procedure to calculate the Coulomb
and nuclear interactions between deformed nuclei. The calculations were performed within the context of the
barrier penetration model with zero point motion for the64Ni + 64Ni system.

I. INTRODUCTION

It is well known that fusion cross section data for heavy-ion
systems show large enhancements at sub-barrier energies in
comparison with theoretical predictions from the unidimen-
sional barrier penetration (BP) model [1]. Several attempts
to improve the BP model have been performed by conside-
ring permanent and/or vibrational deformations of the nuclei
(e.g. [2]). Most works in this direction have used approxi-
mations for the corresponding deformed potentials. In recent
papers [3, 4], we proposed a new procedure to calculate ac-
curately the Coulomb and nuclear interactions between defor-
med nuclei. We demonstrated that, in certain cases, the usual
approximations for the deformed potentials significantly dif-
fer from the more accurate results. In the present paper, we
compare the results for the fusion cross section when calcula-
ting it using the approximate or the more accurate deformed
potentials. The calculations were performed for the64Ni +
64Ni system (data from [5–7]), because this system present
very large enhancements in comparison with the predictions
of undeformed (unidimensional) BP calculations.

II. THE COULOMB AND NUCLEAR INTERACTIONS

Hereafter, we assume the two parameter Fermi (2pF) dis-
tribution to describe the deformed density of a given nucleus
i

ρi(~r) =
ρ0i

1+exp
(

r−Ri
a

) , (1)

Ri = R0i +∑δλi Yλ0(Θi), (2)

whereΘi is the angle between~r and the symmetry axis of
the deformation. The corresponding deformation parameter is

defined from:δλi = βλiR0i , and the densities are normalized
to

Z
ρ(~r) d~r = X, (3)

whereX is the number of protonsZ or nucleonsA for the
charge and matter distributions, respectively. We limit the
present study toλ = 2 and 3. In the vibrational model, the
βλ parameter vary according a Gaussian distribution of pro-
bability with standard deviationσλ. Considering a previous
systematics [3], we have adopted the following deformation
parameters for the64Ni: σ2 = 0.214andσ3 = 0.262.

The Coulomb interaction between two charge distributions
is given by:

VC(R) =
Z Z

e2

|~R+~r2−~r1|
ρ1(~r1) ρ2(~r2) d~r1 d~r2, (4)

where~R is the position vector of the center of mass of nucleus
2 measured from that of the nucleus 1, and describes their
relative motion. The direction of the symmetry axis of each
deformation relative to~R is defined by two angles:θi andφi .

The computational resolution of Eq. (4) is very time-
consuming due to the six-dimensional integral involved in
the calculation. This becomes a problem in studies where
it should be solved several times. Therefore, faster methods
to obtain good approximations for the deformed potential are
quite convenient. According [3, 4], the Coulomb potential can
be obtained with good accuracy from:

VC(R)≈V(0)
C (R)+VCor(R), (5)

whereV(0)
C is the non-deformed Coulomb potential, obtained

with the corresponding non-deformed densities. The (exten-
sive) expressions forVCor(R) can be found in Refs. [3, 4].
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Within the non local model [8–10], the nuclear interaction
VN is connected with the folding potentialVF through

VN(R,E) = VF(R) e−4v2/c2
, (6)

wherec is the speed of light and v is the local relative velocity
between the two nuclei,

v2(R,E) =
2
µ

[E−VC(R)−VN(R,E)] . (7)

The folding potential depends on the densities of the nuclei
involved in the collision:

VF(R) =
Z

ρ1(~r1) ρ2(~r2) vNN(~R−~r1 +~r2) d~r1 d~r2 . (8)

Usually, in Eq. (8)ρi are the nucleon densities of the nuclei,
andvNN is the effective nucleon-nucleon interaction. In many
works, the Paris and Reid versions of the M3Y interaction [11]
have been assumed forvNN. In [10], we demonstrated that the
folding type interaction, Eq. (9), produces very similar results
in comparison with those from the M3Y:

vNN(r) =
Z

ρm(r1)ρm(r2) V0 δ(~r−~r1 +~r2) d~r1d~r2, (9)

whereV0 = −456MeV f m3 andρm is the matter density of
the nucleon. Based on the intrinsic charge distribution of the
proton in free space, which has been determined by electron
scattering experiments, an exponential shape has been assu-
med for the matter density of the nucleon [10]. Due to the
delta function, the folding in Eq. (9) is named as the zero-
range approach. We have also defined [10] the matter density
of the nucleus (ρM) by folding the corresponding nucleon den-
sity (ρN) with the matter density of the nucleon

ρM(~r) =
Z

ρN(~r ′)ρm(~r−~r ′) d~r ′. (10)

Thus, we distinguish the matter density of the nucleus from
the nucleon distribution of the nucleus by taking into account
the finite size of the nucleon. By inserting Eqs. (9) and (10)
in Eq.(8), the folding potential can be recast in the following
form

VF(R) = V0

Z
ρM1(~r1)ρM2(~r1−~R) d~r1. (11)

Due to the six-dimensional integral, the numerical resolution
of Eq. (8) implies a similar problem as that for the Coulomb
potential. Eq. (11) is much faster to calculate because the
zero-range approach reduces it to a three-dimensional inte-
gral.

In many works (e.g. [2]), the Coulomb and nuclear de-
formed potentials have been calculated through the following
approximate expressions:

VC(R) ≈ Z1Z2e2
[

1
R

+
3β21R2

01

5R3 Y20(θ1)+

3β31R3
01

7R4 Y30(θ1)+
3β22R2

02

5R3 Y20(θ2)−
3β32R3

02

7R4 Y30(θ2)
]
. (12)

VF(R)≈V(0)
F (R) e∆/aP, (13)

∆ = β21R01Y20(θ1)+β31R01Y30(θ1)+
β22R02Y20(θ2)−β32R02Y30(θ2), (14)

whereV(0)
F (R) is the folding potential obtained with the un-

deformed densities andaP is the diffuseness of the potential.
Taking into account the approximate exponential shape of the
potential in the surface region, the diffuseness involved in Eq.
(13) can be estimated by

aP =−V(0)
F (R)

[
dV(0)

F

dR

]−1

. (15)

However, we have demonstrated that such approximations are
not much precise in certain cases [3]. In the next section,
we show that the use of these approximations result in fusion
cross sections quite different from the values obtained with
the more precise deformed potentials.

III. BARRIER PENETRATION CALCULATIONS

In the context of the barrier penetration model, the effective
potential is a sum of the Coulomb, nuclear and centrifugal
parts:

Ve f f(R,E) = VC(R)+VN(R,E)+
`(`+1)~2

2µR2 . (16)

The BP cross section is associated with the transmitted flux
through

σBP(E) =
π
k2 ∑(2`+1) T̀ . (17)

For deformed densities, the effective potential and the corres-
ponding BP cross sections depend on the deformation parame-
ters of the nuclei:βλi , θi , andφi . In this work, we assume the
sudden approximation where such parameters remain constant
during the collision. However, from one collision to another,
these parameters can vary according their distributions of pro-
bability:

P(θ) =
1
2

sin(θ), (18)

P(φ) =
1
2π

, (19)

P(β) =
1√
2πσ

e
− β2

2σ2 . (20)

We have calculated BP cross sections by obtaining the cor-
responding average over the possible configurations of the de-
formation parameters. We have used a Monte Carlo method,
where the values ofβλi , θi , andφi are obtained randomly ac-
cording their distributions of probability. Fig. 1 presents the
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fusion data for the64Ni + 64Ni system. There are different
data sets with cross sections that differ by a factor of about th-
ree in the sub-barrier energy region. These different data sets
have been represented by different symbols. The dotted line
in Fig. 1 represents the cross sections obtained with the un-
deformed potential, while the dashed and solid lines represent
the results obtained with the approximate and with the more
accurate expressions for the deformed potentials, respectively.
Clearly, the deformation largely enhances the cross section in
the sub-barrier region and almost does not affect it in the re-
gion above the barrier. The use of the approximations results
in fusion cross sections quite different from the values obtai-
ned with the more precise deformed potentials.
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FIG. 1: Fusion cross sections for the64Ni + 64Ni system. The dotted
lines represent BP calculations considering non-deformed densities.
The other lines correspond to deformed densities obtained with the
usual approximate expressions for the potentials (dashed line) and
with the more precise expressions assumed in this work (solid line).
The arrow represents the position of the s-wave barrier height (VB)
obtained with the non-deformed interaction.

Our calculations with the accurate potentials show that the
vibrational model is in a reasonable agreement with the fusion
data in a level so down as about 1 mb. Below this level, for ex-
treme sub-barrier energies, the data present a decrease much
steeper than the theoretical predictions. Similar hindrance of
the data compared to predictions of coupled-channel calculati-
ons has already been observed for several systems [7, 12, 13].

IV. SUMMARY AND CONCLUSION

We have used an accurate method for calculating deformed
potentials to study the fusion process for the64Ni + 64Ni sys-
tems within the context of the barrier penetration model with
zero point motion. We demonstrated that the accurate method
provides fusion cross sections that significantly differ from
those obtained with the usual approximations for the defor-
med potentials. The accurate method gives cross section pre-
dictions that reproduce the order of magnitude of the data to a
level about 1 mb. The hindrance of the fusion data below this
level, observed in extreme sub-barrier energies, is still an open
problem. This phenomenon is quite important for reactions of
astrophysical interest, as these usually take place in such very
low energy region.
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Institute for Nuclear Astrophysics (JINA) NSF PHY 0216783.

[1] L. C. Vaz and J. M. Alexander, Phys. Rev. C18, 2152 (1978).
[2] H. Esbensen, Nucl. Phys. A352, 147 (1981).
[3] L. C. Chamon, G. P. A. Nobre, D. Pereira, E. S. Rossi Jr., C.

P. Silva, L. R. Gasques, and B. V. Carlson, Phys. Rev. C70,
014604 (2004).

[4] B. V. Carlson, L. C. Chamon, and L. R. Gasques, to appear in
Phys. Rev.C.

[5] M. Beckerman, M. Salomaa, A. Sperduto, J. D. Molitoris, and
A. DiRienzo, Phys. Rev. C25, 837 (1982).

[6] M. Stefanini, K. M. Varier, H. Zhang, F. Scarlassara, S. Beghini,
G. Montagnoli, L. Miller, G. F. Segato, F. Soramel, and C. Sig-
norini, Nucl. Phys. A609, 91 (1996).

[7] C. L. Jiang, K. E. Rehm, R. V. F. Janssens, H. Esbensen, I. Ah-
mad, B. B. Back, P. Collon, C. N. Davids, J. P. Greene, D. J.
Enderson, G. Mukherjee, R. C. Pardo, M. Paul, T. O. Penning-
ton, D. Seweryniak, S. Sinha, and Z. Zhou, Phys. Rev. Lett.93,
012701 (2004).

[8] M. A. Cândido Ribeiro, L. C. Chamon, D. Pereira, M. S. Hus-
sein and D. Galetti, Phys. Rev. Lett.78, 3270 (1997).

[9] L. C. Chamon, D. Pereira, M. S. Hussein, M. A. Cândido Ri-
beiro and D. Galetti, Phys. Rev. Lett.79, 5218 (1997).

[10] L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C.
De Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Candido
Ribeiro, E. S. Rossi Jr., and C. P. Silva, Phys. Rev. C66, 014610
(2002).

[11] G. R. Satchler and W. G. Love, Phys. Rep.55, 183 (1979).
[12] C. L. Jiang, H. Esbensen, K. E. Rehm, B. B. Back, R. V. F.

Janssens, J. A. Caggiano, P. Collon, J. Greene, A. M. Heinz, D.
J. Henderson, I. Nishinaka, T. O. Pennington, and . Seweryniak,
Phys. Rev. Lett.89, 052701 (2002).

[13] C. L. Jiang, H. Esbensen, B. B. Back, R. V. F. Janssens, and K.
E. Rehm, Phys. Rev. C69, 014604 (2004).


