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Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly
important today, since they relate to the gravitational wave observations which may provide the unique finger-
print of black holes’ existence. Besides the astrophysical interest, theoretically perturbations around black holes
can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.

I. INTRODUCTION

Present astronomical searching for black holes are based on
the study of images of strong X-rays taken of matter around
the probable black hole candidate. Usually the astronomers
study the X-ray binary systems, which consist of a visible star
in close orbit around an invisible companion star which may
be a black hole. The companion star pulls gas away from the
visible star. As this gas forms a flattened disk, it swirls toward
the companion. Friction caused by collisions between the par-
ticles in the gas heats them to extreme temperatures and they
produce X-rays that flicker or vary in intensity within a sec-
ond. Many bright X-ray binary sources have been discovered
in our galaxy and nearby galaxies. In about ten of these sys-
tems, the rapid orbital velocity of the visible star indicates that
the unseen companion is a black hole. The X-rays in these
objects are produced by particles very close to the event hori-
zon. In less than a second after they give off their X-rays, they
disappear beyond the event horizon. In a very recent study,
the sharpest images ever taken of matter around the probable
black hole at the centre of our Galaxy have brought us within
grasp of a crucial test of general relativity ł a picture of the
black hole’s ‘point of no return’ [1]. A supermassive black
hole has been proved existing in the centre of our own Galaxy.

However this way of searching for black hole is not direct,
to some sense it relies on the evolution behavior of the vis-
ible companion. Whether a black hole itself has a charac-
teristic ‘sound’, which can tell us its existence, is a question
we want to ask. Performing numerical studies of perturba-
tions around black holes, it was found that during a certain
time interval the evolution of the initial perturbation is dom-
inated by damped single-frequency oscillation. The frequen-
cies and damping of these oscillations relate only to the black
hole parameters, not to initial perturbations. This kind of per-
turbation which is damped quite rapidly and exists only in a
limited time interval is referred to as the quasinormal modes.
They will dominate most processes involving perturbed black
holes and carry a unique fingerprint which would lead to the
direct identification of the black hole existence. Detection of
these quasinormal modes is expected to be realized through
gravitational wave observations in the near future. In order
to extract as much information as possible from gravitational
wave signal, it is important that we understand exactly how the
quasinormal modes behave for the parameters of black holes
in different models. (see [2][3] for a review and references
therein)

Besides the astronomical interest, the perturbations around

black holes have profound theoretical implications. Motivated
by the discovery of the correspondence between physics in
the Anti-de Sitter (AdS) spacetime and conformal field theory
(CFT) on its boundary (AdS/CFT), the investigation of QNM
in AdS spacetimes became appealing in the past several years.
It was argued that the QNMs of AdS black holes have direct
interpretation in term of the dual CFT (for an extensive but
not exhaustive list see [4][5][6][7][8, 9][10–15]) . In de Sitter
(dS) space the relation between bulk dS spacetime and the
corresponding CFT at the past boundary and future boundary
in the framework of scalar perturbation spectrums has also
been discussed [16, 17][18][19]. A quantitative support of the
dS/CFT correspondence has been provided. More recently the
quasinormal modes have also been argued as a possible way
to detect extra dimensions [20].

The study of quasinormal modes has been an intriguing
subject. In this review we will restrict ourselves to the dis-
cussion of non-rotating black holes. We will first go over per-
turbations in asymptotically flat spacetimes. In the following
section, we will focus on the perturbations in AdS spacetimes
and dS spacetimes and show that quasinormal modes around
black holes are testing grounds of AdS/CFT and dS/CFT cor-
respondence. We will present our conclusions and outlook in
the last part.

II. PERTURBATIONS IN ASYMPTOTICALLY FLAT
SPACETIMES

A great deal of effort has been devoted to the study of
the quasinormal modes concerned with black holes immersed
in an asymptotically flat spacetime. The perturbations of
Schwarzschild and Reissner-Nordstrom (RN) black holes can
be reduced to simple wave equations which have been ex-
amined extensively [2][3]. However, for nonspherical black
holes one has to solve coupled wave equations for the radial
part and angular part, respectively. For this reason the non-
spherical case has been studied less thoroughly, although there
has recently been progress along these lines [21]. In asymptot-
ically flat black hole backgrounds radiative dynamics always
proceeds in the same three stages: initial impulse, quasinor-
mal ringing and inverse power-law relaxation.

Introducing small perturbationhµν on a static spherically
symmetric background metric, we have the perturbed metric
with the form

gµν = g0
µν +hµν. (1)
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In vacuum, the perturbed field equations simply reduce to

δRµν = 0. (2)

These equations are in linear inh.
For the spherically symmetric background, the perturbation

is forced to be considered with complete angular dependence.
From the 10 independent components of thehµν only htt , htr ,
andhrr transform as scalars under rotations. Thehtθ, htφ, hrθ,
andhrφ transform as components of two-vectors under rota-
tions and can be expanded in a series of vector spherical har-
monics while the componentshθθ, hθφ, andhφφ transform as
components of a2×2 tensor and can be expanded in a series
of tensor spherical harmonics [2][3]. There are two classes of
tensor spherical harmonics (polar and axial). The differences
are their parity under space inversion(θ,φ)→ (π−θ,π + φ).
After the inversion, for the function acquiring a factor(−1)l

refers to polar perturbation, and the function acquiring a factor
(−1)l+1 is called the axial perturbation.

The radial component of a perturbation outside the event
horizon satisfies the following wave equation,

∂2

∂t2 χ` +
(
− ∂2

∂r2∗
+V̀ (r)

)
χ` = 0, (3)

where r∗ is the “tortoise” radial coordinate. This equation
keeps the same form for both the axial and polar perturba-
tions. The difference between the axial and polar perturba-
tions exists in their effective potentials. For the axial perturba-
tion around a Schwarzschild black hole, the effective potential
reads

V̀ (r) =
(

1− 2M
r

)[
`(`+1)

r2 +
2σM

r3

]
. (4)

However for the polar perturbation, the effective potential has
the form

V̀ (r) =
(

1− 2M
r

)
2n2(n+1)r3 +6n2Mr2 +18nM2r +18M3

r3(nr +3M)2 . (5)

Apparently these two effective potentials look quite different,
however if we compare them numerically, we will find that
they exhibit nearly the same potential barrier outside the black
hole horizon, especially with the increase ofl . Thus polar and
axial perturbations will give us the same quasinormal modes
around the black hole.

Solving the radial perturbation equation here is very similar
to solving the Schrodinger equation in quantum mechanics.
We have a potential barrier outside the black hole horizon, and
the incoming wave will be transmitted and reflected by this
barrier. Thus many methods developed in quantum mechanics
can be employed here. In the following we list some main re-
sults of quasinormal modes in asymptotically flat spacetimes
obtained before.

(a) It was found that all perturbations around black holes
experience damping behavior. This is interesting, since it tells
us that black hole solutions are stable.

(b) The quasinormal modes in black holes are isospectral.
The same quasinormal frequencies are found for different per-
turbations for example axial and polar perturbations. This is
due to the uniqueness in which black holes react to perturba-
tions.

(c) The damping time scale of the perturbation is propor-
tional to the black hole mass, and it is shorter for higher-order
modes (ωi,n+1 > ωi,n). Thus the detection of gravitational
wave emitted from a perturbed black hole can be used to di-
rectly measure the black hole mass.

(d) Some properties of quasinormal frequencies can be
learned from the following table

We learned that for the samel , with the increase ofn,
the real part of quasinormal frequencies decreases, while the

n ` = 2 ` = 3 ` = 4
0 0.37367 -0.08896 i0.59944 -0.09270 i0.80918 -0.09416 i
1 0.34671 -0.27391 i0.58264 -0.28130 i0.79663 -0.28443 i
2 0.30105 -0.47828 i0.55168 -0.47909 i0.77271 -0.47991 i
3 0.25150 -0.70514 i0.51196 -0.69034 i0.73984 -0.68392 i

TABLE I: The first four QNM frequencies (ωM) of the Schwarzschild
black hole for̀ = 2,3, and4[3].

imaginary part increases. This corresponds to say that for the
higher modes, the perturbation will have less oscillations out-
side of the black hole and die out quicker. With the increase of
the multipole indexl , we found that both real part and imag-
inary part of quasinormal frequencies increase, which shows
that for the biggerl the perturbation outside the black hole
will oscillate more but die out quicker in the asymptotically
flat spacetimes. This property will change if one studies the
AdS and dS spacetimes, since the behavior of the effective
potential will be changed there.

All previous works on quasinormal modes have so far been
restricted to time-independent black hole backgrounds. It
should be realized that, for a realistic model, the black hole
parameters change with time. A black hole gaining or losing
mass via absorption (merging) or evaporation is a good ex-
ample. The more intriguing investigation of the black hole
quasinormal modes calls for a systematic analysis of time-
dependent spacetimes. Recently the late time tails under the
influence of a time-dependent scattering potential has been ex-
plored in [22], where the tail structure was found to be mod-
ified due to the temporal dependence of the potential. The
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FIG. 1: Temporal evolution of the field in the background of Vaidya
metric (q=0) for l = 2, evaluated atr = 5. The mass of the black hole
is M(v) = 0.5±0.001v. The field evolution forM(v) = 0.5+0.001v
andM(v) = 0.5−0.001v are shown as the top curve and the bottom
curve respectively. For comparison, the oscillations forM = 0.5 is
given in the middle line.

exploration on the modification to the quasinormal modes in
time-dependent spacetimes has also been started. Instead of
plotting an effective time-dependent scattering potential by
hand as done in [22], we have introduced the time-dependent
potential in a natural way by considering dynamical black
holes, with black hole parameters changing with time due
to absorption and evaporation processes. We have studied
the temporal evolution of massless scalar field perturbation
[23][24].

We found that the modification to the QNMs due to the
time-dependent background is clear. When the black hole
massM increases linearly with time, the decay becomes
slower compared to the stationary case, which corresponds
to saying that|ωi | decreases with respect to time. The os-
cillation period is no longer a constant as in the stationary
Schwarzschild black hole. It becomes longer with the increase
of time. In other words, the real part of the quasinormal fre-
quencyωr decreases with the increase of time. WhenM de-
creases linearly with respect to time, compared to the station-
ary Schwarzschild black hole, we have observed that the de-
cay becomes faster and the oscillation period becomes shorter,
thus both|ωi | andωr increase with time. The objective picture
can be seen in Fig.1.

III. PERTURBATIONS IN ADS AND DS BLACK HOLE
SPACETIMES

Motivated by the recent discovery of the Anti-de Sit-
ter/Conformal Field Theory (AdS/CFT) correspondence, the
investigation of QNMs in Anti-de Sitter (AdS) spacetimes be-
came appealing in the past years. It was argued that the QNMs

of AdS black holes have direct interpretation in terms of the
dual conformal field theory.

The first study of the QNMs in AdS spaces was performed
by Chan and Mann [4]. Subsequently, Horowitz and Hubeny
suggested a numerical method to calculate the QN frequen-
cies directly and made a systematic investigation of QNMs
for scalar perturbation on the background of Schwarzschild
AdS (SAdS) black holes [5]. They claimed that for large AdS
black holes both the real and imaginary parts of the quasinor-
mal frequencies scale linearly with the black hole temperature.
However for small AdS black holes they found a departure
from this behaviour. This was further confirmed by the object
picture obtained in [12].

Considering that the Reissner-Nordstrom AdS (RNAdS)
black hole solution provides a better framework than the
SAdS geometry and may contribute significantly to our un-
derstanding of space and time, the Horowitz-Hubeny numeri-
cal method was generalized to the study of QNMs of RNAdS
black holes in [6] and later crosschecked by using the time
evolution approach [7]. Unlike the SAdS case, the quasinor-
mal frequencies do not scale linearly with the black hole tem-
perature, and the approach to thermal equilibrium in the CFT
was more rapid as the charge on the black hole increased. In
addition to the scalar perturbation, gravitational and electro-
magnetic perturbations in AdS black holes have also attracted
attention [8, 9]. Other works on QNMs in AdS spacetimes
can be found in [10–15]. Recently in [9] Berti and Kokkotas
used the frequency-domain method and restudied the scalar
perturbation in RNAdS black holes. They verified most of our
previous numerical results in [6, 7].

As was pointed out in [6] and later supported in [9], the
Horowitz-Hubeny method breaks down for large values of the
charge. To study the QNMs in the near extreme and extreme
RNAdS backgrounds, we need to count on time evolution ap-
proach. Employing an improved numerical method, we have
shown that the problem with minor instabilities in the form
of “plateaus”, which were observed in [7], can be overcome.
We obtained the precise QNMs behavior in the highly charged
RNAdS black holes.

To illustrate the properties of quasinormal modes in AdS
black holes, we here briefly review the perturbations around
RNAdS black holes. The metric describing a charged, asymp-
totically Anti-de Sitter spherical black hole, written in spheri-
cal coordinates, is given by

ds2 =−h(r)dt2 +h(r)−1dr2 + r2(dθ2 +sin2 θdφ2) , (6)

where the functionh(r) is

h(r) = 1− 2m
r

+
Q2

r2 −
Λr2

3
. (7)

We are assuming a negative cosmological constant, usually
written asΛ = −3/R2. The integration constantsm and Q
are the black hole mass and electric charge respectively. The
extreme value of the black hole charge,Qmax, is given by the
function of the event horizon radius in the formQ2

max= r2
+(1+

3r2
+/R2). Consider now a scalar perturbation fieldΦ obeying

the massless Klein-Gordon equation
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¤Φ = 0. (8)

The usual separation of variables in terms of a radial field and
a spherical harmonic Ỳ,m(θ,ϕ),

Φ = ∑̀
m

1
r

Ψ(t, r)Y`m(θ,φ) , (9)

leads to Schr̈odinger-type equations in the tortoise coordinate
for each value of̀ . Introducing the tortoise coordinater∗ by
dr∗
dr = h(r)−1 and the null coordinatesu= t−r∗ andv= t +r∗,

the field equation can be written as

−4
∂2Ψ
∂u∂v

= V(r)Ψ , (10)

where the effective potentialV is

V(r) = h(r)
[
`(`+1)

r2 +
2m
r3 −

2Q2

r4 +
2
R2

]
. (11)

Wave equation (10) is useful to study the time evolution of the
scalar perturbation, in the context of an initial characteristic
value problem.

In terms of the ingoing Eddington coordinates(v, r) and
separating the scalar field in a product form as

Φ = ∑̀
m

1
r

ψ(r)Y`m(θ,φ)e−iωv, (12)

the minimally-coupled scalar wave equation (8) may thereby
be reduced to

h(r)
∂2ψ(r)

∂r2 +
[
h′(r)−2iω

] ∂ψ(r)
∂r

−Ṽ(r)ψ(r) = 0 , (13)

whereṼ(r) = V(r)/h(r) = h′(r)/r + `(`+1)/r2.

Introducing x = 1/r, Eq.(13) can be re-expressed as
Eqs.(15-18) in [6]. These equations are appropriate to di-
rectly obtain the QN frequencies using the Horowitz-Hubeny
method.

We have used two different numerical methods to solve the
wave equations. The first method is the Horowitz-Hubeny
method. The second numerical methods we have employed
is the discretization for equation (10) in the form

[
1− ∆2

16
V(S)

]
ψ(N) = ψ(E)+ψ(W)−ψ(S)− ∆2

16
[V(S)ψ(S)+V(E)ψ(E)+V(W)ψ(W)] . (14)

The pointsN, S,W andE are defined as usual:N = (u+∆,v+
∆), W = (u+ ∆,v), E = (u,v+ ∆) andS= (u,v). The local
truncation error is of the order ofO(∆4).

Figure 2 demonstrates the behaviors of the field with the in-
crease of the charge in RN AdS black hole background. Since
the imaginary and real parts of the quasinormal frequencies
relate to the damping time scale (τ1 = 1/ωi) and oscillation
time scale (τ2 = 1/ωr ), respectively. We learned that asQ
increasesωi increases as well, which corresponds to the de-
crease of the damping time scale. According to the AdS/CFT
correspondence, this means that for biggerQ, it is quicker for
the quasinormal ringing to settle down to thermal equilibrium.
From figure 2 it is easy to see this property. Besides, figure 2
also tells us that the biggerQ is, the lower frequencies of os-
cillation will be. If we perturb a RN AdS black hole with high
charge, the surrounding geometry will not “ring” as much and
as long as that of the black hole with smallQ. It is easy for
the perturbation on the highly charged AdS black hole back-
ground to return to thermal equilibrium.

However this relation seems not to hold well when the
charge is sufficiently big. We see that over some critical
value of Q, the damping time scale increases with the in-
crease ofQ, corresponding to the decrease of imaginary fre-
quency. This means that over some critical value ofQ, the
larger the black hole charge is, the slower for the outside per-

turbation to die out. Besides the oscillation starts to disappear
at Qc = 0.3895Qmax. These points can be directly seen in the
wave function plotting from Fig.3 and Fig.4.

In addition to the study of the lowest lying QNMs, it is
interesting to study the higher overtone QN frequencies for
scalar perturbations. The first attempt was carried out in [15].
We have extended the study to the RNAdS backgrounds. It
was argued that the dependence of the QN frequencies on the
angular index̀ is extremely weak [9]. This was also claimed
in [15]. Using our numerical results we have shown that this
weak dependence on the angular index is not trivial.

For the same value of the charge, we have found that both
real and imaginary parts of QN frequencies increase with the
overtone numbern, which is different from that observed in
asymptotically flat spacetimes [25] whereωr approaches a
constant whileωi tends to infinity in the limitn→ ∞. In as-
ymptotically flat spacetimes, the constantωr was claimed as
just the right one to make loop quantum gravity give the cor-
rect result for the black hole entropy with some (not clear yet)
correspondence between classical and quantum states. How-
ever such correspondence seems do not hold in AdS space.

For the large black hole regime the frequencies become
evenly spaced for high overtone numbern. For lowly charged
RNAdS black hole, choosing bigger values of the charge, the
real part in the spacing expression becomes smaller, while the
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FIG. 2: Semi–log graphs of|Ψ| with r+ = 0.4 and small values ofQ.
The extreme value forQ2 is 0.2368.
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FIG. 3: Semi-log graphs of the scalar field in the event horizon,
showing the transition from oscillatory to non-oscillatory asymptotic
decay. In the graphs,r+ = 100, ` = 0 andR= 1.

imaginary part becomes bigger. This calls for further under-
standing from CFT.

Qualitative correspondences between quasinormal modes
in AdS spaces and the decay of perturbations in the due CFT

have been obtained above, while quantitive examinations are
difficult to be done in usual four-dimensional black holes due
to the mathematical complicacy. Encouragingly, in the three-
dimensional (3D) BTZ black hole model [26], the mathemat-
ical simplicity can help us to understand the problem much
better. A precise quantitative agreement between the quasi-
normal frequencies and the location of poles of the retarded
correlation function of the corresponding perturbations in the
dual CFT has been presented [27]. This gives a further evi-
dence of the correspondence between gravity in AdS space-
time and quantum field theory at the boundary.

There has been an increasing interest in gravity on de Sitter
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FIG. 4: Graph ofωi with Q/Qmax, showing thatωi tends to zero as
Q tends toQmax. In the graph,r+ = 100, R= 1, ` = 0 andn = 0.

(dS) spacetimes in view of recent observational support for a
positive cosmological constant. A holographic duality relat-
ing quantum gravity on D-dimensional dS space to CFT on
(D-1)-sphere has been proposed [28]. It is of interest to ex-
tend the study in [27] to dS space by displaying the exact so-
lution of the quasinormal mode problem in the dS bulk space
and exploring its relation to the CFT theory at the boundary.
This could serve as a quantitative test of the dS/CFT corre-
spondence. We have used the nontrivial 3D dS spacetimes
as a testing ground to examine the dS/CFT correspondence
[18][19]. The mathematical simplicity in these models ren-
ders all computations analytical.

The metric of the 3D rotating dS spacetime is given by

ds2 =−(M− r2

l2 +
J2

4r2 )dt2 +(M− r2

l2 +
J2

4r2 )−1dr2 + r2(dϕ− J
2r2 dt)2, (15)

whereJ is associated to the angular momentum. The horizon of such spacetime can be obtained from

M− r2

l2 +
J2

4r2 = 0. (16)
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The solution is given in terms ofr+ and−ir−, wherer+ cor-
responds to the cosmological horizon and−ir− here being
imaginary, has no physical interpretation in terms of a hori-
zon. Usingr+ and r−, the mass and angular momentum of
spacetime can be expressed as

M =
r2
+− r2−

l2 , J =
−2r+r−

l
(17)

Scalar perturbations of this spacetime are described by the
wave equation

1√−g
∂µ(
√−ggµν∂νΦ)−µ2Φ = 0, (18)

whereµ is the mass of the field. Adopting the separation

Φ(t, r,ϕ) = R(r) e−iωt eimϕ, (19)

the radial part of the wave equation can be written as

1
grr

µ2R =
1

grr

d
rdr

(
r2

grr

dR
rdr

)+ [ω2− 1
r2 m2(M−

r2

l2 )− J
r2 mω]R, (20)

wheregrr = (M− r2/l2 + J2/(4r2))−1. Employing (17) and

definingz= r2−r2
+

r2−(−ir−)2 , the radial wave equation can be sim-
plified into

(1−z)
d
dz

(z
dR
dz

)+


1

z

(
ωl2r+ +mlr−

2(r2
+ + r2−)

)2

−
(
−ωl2ir−+ imlr+

2(r2
+ + r2−)

)2

+
1

4(1−z)
µ2l2


R= 0. (21)

We now set the Ansatz

R(z) = zα(1−z)βF(z), (22)

and Eq.(21) can be transformed into

z(1−z)
d2F
dz2 +[1+2α− (1+2α+2β)z]

dF
dz

+{(β(β−1)+
µ2l2

4
)

1
1−z

+
1
z

[(
ωl2r+ +mlr−

2(r2
+ + r2−)

)2

+α2

]

−
[(−iωl2r−+ imlr+

2(r2
+ + r2−)

)2

+α2 +(1+2α)β+β(β−1)

]
}F = 0.

(23)

Comparing with the standard hypergeometric equation

z(1−z)
d2F
dz2 +[c− (1+a+b)z]

dF
dz
−abF = 0, (24)

we have

c = 1+2α
a+b = 2α+2β

α2 +
(

ωl2r+ +mlr−
2(r2

+ + r2−)

)2

= 0

β(β−1)+
µ2l2

4
= 0

(−ωl2ir−+ imlr+

2(r2
+ + r2−)

)2

+(α+β)2. = ab (25)

Without loss of generality, we can take

α = −i

(
ωl2r+ +mlr−

2(r2
+ + r2−)

)
,

β =
1
2

(
1−

√
1−µ2l2

)
, (26)

which leads to

a = − i
2

(
ωl2 + iml
r+ + ir−

+ i(1−
√

1−µ2l2)
)

,

b = − i
2

(
ωl2− iml
r+− ir−

+ i(1−
√

1−µ2l2)
)

,

c = 1− i

(
ωl2r+ +mlr−

r2
+ + r2−

)
, (27)
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and the solution of (21) reads

R(z) = zα(1−z)β
2F1(a,b,c,z) . (28)

Using basic properties of the hypergeometric equation we
write the result as

R(z) = zα(1−z)β(1−z)c−a−b Γ(c)Γ(a+b−c)
Γ(a)Γ(b) 2F1(c−a,c−b,c−a−b+1,1−z)

+zα(1−z)β Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) 2F1(a,b,a+b−c+1,1−z) .

(29)

The first term vanishes atz = 1, while the second vanishes
provided that

c−a =−n, or c−b =−n, (30)

wheren = 0,1,2, ... Employing Eqs (27), it is easy to see that
the quasinormal frequencies are

ωR = i
m
l
−2i

(
r+− ir−

l2

)
(n+

h+

2
)

ωL = −i
m
l
−2i

(
r+ + ir−

l2

)
(n+

h+

2
), (31)

whereh± = 1±
√

1−µ2l2. Taking other values ofα andβ
satisfying (25), we have also the frequencies

ωR = i
m
l

+2i

(
r+− ir−

l2

)
(n+

h+

2
)

ωL = −i
m
l

+2i

(
r+ + ir−

l2

)
(n+

h+

2
), (32)

ωR = i
m
l
−2i

(
r+− ir−

l2

)
(n+

h−
2

)

ωL = −i
m
l
−2i

(
r+ + ir−

l2

)
(n+

h−
2

), (33)

ωR = i
m
l

+2i

(
r+− ir−

l2

)
(n+

h−
2

)

ωL = −i
m
l

+2i

(
r+ + ir−

l2

)
(n+

h−
2

). (34)

For a thermodynamical system the relaxation process of a
small perturbation is determined by the poles, in the momen-
tum representation, of the retarded correlation function of the
perturbation. Let’s now investigate the quasinormal modes
from the CFT side. Define the invariant distance between two
points defined byx andx′ reads [28][29]

d = l arccosP, (35)

whereP = XAηABX′B. In the limit r, r ′→ ∞,

P ≈ 2sinh
(ir+ + r−)(l∆ϕ− i∆t)

2l2

×sinh
(ir+− r−)(l∆ϕ+ i∆t)

2l2 . (36)

This means that we can find the Hadamard Green’s function as
defined by [29] in terms ofP. Such a Green’s function is de-
fined asG(u,u′) =< 0|{φ(u),φ(u′)}|0 > with (∇2

x−µ2)G =
0. It is possible to obtain the solution

G∼ F(h+,h−,3/2,(1+P)/2) (37)

in the limit r, r ′→ ∞.

Following [28] [29], we choose boundary conditions for the
fields such that

lim
r→∞

φ(r, t,ϕ)→ r−h−φ−(t,ϕ) . (38)

Then, for larger, r ′, an expression for the two point function
of a given operatorO coupling toφ has the form

Z
dtdϕdt′dϕ′

(rr ′)2

l2
φ
↔
∂r∗ G

↔
∂r∗ φ =

Z
dtdϕdt′dϕ′φ

1

[2sinh(ir++r−)(l∆ϕ−i∆t)
2l2 sinh(ir+−r−)(l∆ϕ+i∆t)

2l2 ]h+
φ (39)

wherer∗ in (39) is the tortoise coordinate. For quasinormal modes, we have
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Z
dtdϕdt′dϕ′

exp(−im′ϕ′− iω′t ′+ imϕ+ iωt)

[2sinh(ir++r−)(l∆ϕ−i∆t)
2l2 sinh(ir+−r−)(l∆ϕ+i∆t)

2l2 ]h+

≈ δmm′δ(ω−ω′)Γ(h+/2+
im/2l +ω/2

2πT
)Γ(h+/2− im/2l +ω/2

2πT
)Γ(h+/2+

im/2l −ω/2
2πT̄

)

×Γ(h+/2− im/2l −ω/2
2πT̄

)

(40)

where we changed variables tov = lϕ + it , v̄ = lϕ− it , and
T = ir+−r−

2πl2
, T̄ = ir++r−

2πl2
. The poles of such a correlator are

ωL = − im
l
±2

ir+− r−
l2 (n+h+/2), (41)

ωR =
im
l
±2

ir+ + r−
l2 (n+h+/2),

corresponding to the quasinormal modes (31,34) obtained be-
fore.

The quasinormal eigenfunctions thus correspond to excita-
tion of the corresponding CFT, being exactly those that appear
in the spectrum of the two point functions of CFT operators in
dS background for large values ofr, that is at the boundary.

The poles of such a correlator correspond exactly to the
QNM’s obtained from the wave equation in the bulk. This pro-
vides a quantitative test of the dS/CFT correspondence. This
work has been extended to four-dimensional dS spacetimes
[19].

IV. CONCLUSIONS AND OUTLOOKS

Perturbations around black holes have been a hot topic in
general relativity in the last decades. The main reason is
its astrophysical importance of the study in order to foresee
gravitational waves. To extract as much information as pos-
sible from the future gravitational wave observations, the ac-
curate quasinormal modes waveforms are needed for differ-
ent kinds of black holes, including different stationary black
holes (especially interesting with rotations), time-dependent
black hole spacetimes which can describe the black hole ab-
sorption and evaporation processes and extremely interesting

situations with colliding black holes since they may produce
stronger gravitational wave signals which may be easier to be
detected.

Besides astronomical interest, perturbations around black
holes can also serve as a testing ground to examine the re-
cent theories proposed in string theory, such as the relation
between physics in (A)dS spaces and Conformal Field Theory
on its boundary. Very recently, it was even argued that qua-
sinormal modes could be a way to detect extra dimensions.
String theory makes the radial prediction that spacetime has
extra dimensions and gravity propagates in higher dimensions.
Using the black string model as an example, it was shown that
different from the late time signal-simple power-law tail in
the usual four-dimensions, high frequency signal persists in
the black string [20]. These frequencies are characters of the
massive modes contributed from extra dimensions. This pos-
sible way to detect extra-dimensions needs further theoretical
examinations and it is expected that future gravitational wave
observation could help to prove the existence of the extra di-
mensions so that can give support to the fundamental string
theory.
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