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We discuss a few recent results for the equation of state of strongly interacting matter and the dynamics of
chiral phase transition. First, we consider the cases of very high densities, where weak-coupling approaches may
in principle give reasonable results, and very low densities, where we use the framework of heavy-baryon chiral
perturbation theory. We also speculate on the nature of the chiral transition and present possible astrophysical
implications. Next, we discuss the kinetics of phase conversion, through the nucleation of bubbles and spinodal
decomposition, after a chiral transition within an effective field theory approach to low-energy QCD. We study
possible effects resulting from the finite size of the expanding system for both the initial and the late-stage growth
of domains, as well as those effects due to inhomogeneities in the chiral field which act as a background for
the fermionic motion. We also argue how dissipation effects might dramatically modify the picture of explosive
hadronization.
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I. INTRODUCTION

During the last decade, the investigation of strongly inter-
acting matter under extreme conditions of temperature and
density has attracted an increasing interest. In particular, the
new data that started to emerge from the high-energy heavy
ion collisions at RHIC-BNL, together with an impressive
progress achieved by finite-temperature lattice simulations of
Quantum Chromodynamics (QCD), provide some guidance
and several challenges for theorists.

In fact, lattice QCD results [1] suggest that strongly in-
teracting matter at sufficiently high temperature undergoes a
phase transition (or a crossover) to a deconfined quark-gluon
plasma (QGP). Despite the difficulties in identifying clear sig-
natures of a phase transition in ultrarelativistic heavy ion col-
lisions, recent data from the experiments clearly point to the
observation of a new state of matter [2].

All this drama takes place in the region of nonzero temper-
ature and very small densities of the phase diagram of QCD.
On the other hand, precise astrophysical data appear as a new
channel to probe strongly interacting matter at very large den-
sities. Compact objects, such as neutron stars, whose interior
might be dense enough to accomodate deconfined quark mat-
ter, may impose strong constraints on the equation of state for
QCD at high densities and low temperatures [3]. Moreover,
several preliminary results from the lattice at nonzero values
for the quark chemical potential, µ, start to appear [1].

In this paper we briefly review a few recent results for the
equation of state of strongly interacting matter and for the dy-
namics of the chiral phase transition. First, we consider the
case of cold and dense QCD. In the extreme cases of very high
densities, where weak-coupling approaches may in principle
give reasonable results, and very low densities, where we use
the framework of heavy-baryon chiral perturbation theory, we
can draw a reasonably clear picture of the equation of state.
At the end, we discuss results that point to important correc-
tions brought about by a nonzero strange quark mass. We
also speculate on the nature of the chiral transition and present

possible astrophysical implications. Next, we discuss the ki-
netics of phase conversion, through the nucleation of bubbles
and spinodal decomposition, after a first-order chiral transi-
tion within an effective field theory approach to low-energy
QCD. We study possible effects resulting from the finite size
of the expanding system for both the initial and the late-stage
growth of domains, as well as those effects due to inhomo-
geneities in the chiral field which act as a background for the
fermionic motion. We also consider dissipation effects which
might dramatically modify the picture of explosive hadroniza-
tion.

II. EQUATION OF STATE FOR COLD AND DENSE QCD

A. High-density limit

Let us first consider the case of cold and very dense strongly
interacting matter. For high enough values of the quark chemi-
cal potential, there should be a quark phase due to asymptotic
freedom. In this regime of densities, one is in principle al-
lowed to use perturbative QCD techniques [4–8], which may
be enriched by resummation methods and quasiparticle model
descriptions [8–11], to evaluate the thermodynamic potential
of a plasma of massless quarks and gluons (see Figure 1, for
the perturbative result). Different approaches seem to agree
reasonably well for µ>> 1 GeV, and point in the same direc-
tion even for µ ∼ 1 GeV and smaller, where we are clearly
pushing perturbative QCD far below its region of applica-
bility. However, at some point between µ ≈ 313 MeV, and
µ≈ 1 GeV, one has to match the equation of state for quark
matter onto that for hadrons.

As we argued in [6, 7], depending on the nature of the chi-
ral transition there might be important consequences for the
phenomenology of compact stars. For instance, in the case of
a strong first-order chiral transition, a new stable branch may
appear in the mass-radius diagram for hybrid neutron stars,
representing a new class of compact stars (see Figure 2). On
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FIG. 1: Pressure in units of the free gas pressure as a function of the
quark chemical potential from finite-density perturbative QCD.
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FIG. 2: Mass-radius diagram.

the other hand, for a smooth transition, or a crossover, one
finds only the usual branch, generally associated with pulsar
data. This is an important issue for the ongoing debate on the
radius measurement of the isolated neutron star candidate RX
J1856.5-3754, which might be a quark star [14]. For details,
see Refs. [6] and [7].

B. Low-density limit

For pure neutron (asymmetric) matter, which will play the
role of hadrons at “low” density here, Akmal, Pandharipande
and Ravenhall [15] have found that to a very good approxima-
tion we have, up to ∼ 2n0, the following energy per baryon:

E
A
−mN =

ε
n
−mN ≈ 15 MeV

(
n
n0

)
, (1)

which is approximately linear in the baryon density, n. Here,
n0 ∼ 0.16 baryons/fm3 is the saturation density for nuclear

matter. From this relation, we can extract the pressure:

phadron

pf ree
=

n2

pf ree

∂
∂n

( ε
n

)
≈ 0.04

(
n
n0

)2

. (2)

From these results, we see that: (i) even at “low” densities we
have a highlynonideal Fermi liquid, since free fermions would
give ε/n−m∼ n2/3; (ii) energies are very small on hadronic
scales (if we take fπ, as a “natural scale”); (iii) energies are
small not only for nuclear matter (nonzero binding energy),
but even for pure neutron matter (unbound). Then, this might
be a generic property of baryons interacting with pions, etc.,
and not due to any special tuning.

In order to investigate the pion-nucleon interaction at
nonzero, but low, density, we considered the following chiral
Lagrangian [16] (see also [17] and [18])

L = ψi

[
i/∂−mN +µγ0 − gA

2 fπ
γ5γµ�τ · (∂µ�π)

]
ψi

+ L0
π +

[
other meson

terms

]
+

[
higher-order

terms

]
, (3)

where L0
π is the free Lagrangian for the pions,�π, ψi represent

nucleons (in ns species), and µ is the chemical potential for
the nucleons. From the Goldberger-Treiman relation we have:

gA =
(

fπ

mN

)
gπNN (4)

and, from the Particle Data Group, mN = 939MeV, mπ =
135MeV, fπ = 130MeV, and gπNN = 13.1(gA = 1.81)

The goal is to compute the nucleon and the pion one-loop
self-energy corrections due to the medium up to lowest order
in the nucleon density (only nonzero µ contributions) by us-
ing the technique of heavy-baryon chiral perturbation theory.
Therefore, we adopt a non-relativistic approximation:

ωp ≈ mN +
�p2

2mN
+ · · · (5)

µ≈ mN +
p2

f

2mN
+ · · · (6)

Moreover, we assume that external legs are near the mass-
shell (p0 + µ)2 −ω2

p ≈ 0, that pions are dilute, that we have
small values of Fermi momentum, and consider only leading
order in (pf /mN), (pf / fπ), etc.

One-loop calculations within this framework provide the
following result for fπ: as the Fermi momentum, pf , increases
– restoring chiral symmetry – fπ must go down. Indeed, from
chiral perturbation theory, we obtain (a≡ (g2

A/48π2)):

fπ(pf )
fπ

= 1−a
p3

f

mN f 2
π

+ · · · =
= 1− (15/939)(n/n0)+ · · · (7)
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Then, from Brown-Rho scaling [19] one would expect that all
quantities should scale in a uniform fashion. However, we
obtain the following result for the nucleon mass [16]:

mN(pf )
mN

= 1+a
p3

f

mN f 2
π
− (8)

− a
8

m2
π pf

mN f 2
π

{
1+

(
m2

π + p2
f − p2

4p2
f

)
log

[
m2

π +(pf + p)2

m2
π +(pf − p)2

]}

We can draw some tentative conclusions about the hadronic
pressure. To leading order, the non-ideal terms in the pres-
sure are proportional to Σ0, defined through the nucleon self-
energy on mass shell Σ(p0

ms, p) ∼ −[(ip0
ms+ µ)γ0 + iγi pi +

m]Σ0(p), which is very small [18]. At higher order, even if
corrections to the pion propagator are large, their effect on the
nucleon propagator, and the free energy, can still be small, as
a large correction to a small number. Thus the possibility of a
hadronic phase with a small pressure, required for a new class
of quark stars, remains viable.

In order to be able to make clear predictions for the phe-
nomenology of compact stars, and to have a better understand-
ing of this region of the QCD phase diagram, one has to find
a way to describe the intermediate regime of densities in the
equation of state, where perturbative calculations do not work.
The study of effective field theory models might bring some
insight to this problem.

C. Role of nonzero quark mass

For almost twenty years the effects of a nonzero strange
quark mass on the equation of state of cold and dense QCD
were considered to be negligible (less than 5%), thereby yield-
ing only minor corrections to the mass-radius diagram of com-
pact stars. Even the most recent QCD approaches [6, 8–11]
generally neglected quark masses and the presence of a color
superconducting gap as compared to the typical scale for the
chemical potential in the interior of compact stars, ∼ 400 MeV
and higher. However, it was recently argued that both effects
should matter in the lower-density sector of the equation of
state [13]. In fact, although quarks are essentially massless in
the core of quark stars, the mass of the strange quark runs up,
and becomes comparable to the typical scale for the chemical
potential, as one approaches the surface of the star.

By computing the thermodynamic potential to first order in
αs, and including the effects of the renormalization group run-
ning of the coupling and strange quark mass, we showed that
the corrections can be very large (up to 25%), and dramati-
cally affect the structure of compact stars, as can be seen from
the modifications of the mass-radius diagram [20].

The effects of the finite strange quark mass on the total pres-
sure and energy density for electrically neutral quark matter
(plus electrons) are given in Fig. 3. There we show results
for 3 light flavors and running coupling, corresponding to the
case considered in [6], and for 2 light flavors and one mas-
sive flavor, with both running coupling and strange quark mass
(which reaches ms ∼ 137 MeV at µ= 500 MeV).
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FIG. 3: Pressure and energy density scaled by Fermi values for Λ̄ =
2
3 (µu +µd +µs). We show results without renormalization group
improvements (dash-dotted lines), running coupling (dashed lines),
both for ms = 0, and results with running mass and coupling (full
lines).

As can be seen from this Figure, there is a sizable differ-
ence between zero and finite strange quark mass pressure and
energy density for the values of the chemical potential in the
region that is relevant for the physics of compact stars. As has
been noticed by several authors [6, 10, 13], the resulting equa-
tion of state, ε = ε(P), can be approximated by a non-ideal bag
model form

ε = 4Be f f +aP . (9)

Here a∼ 3 is a dimensionless coefficient while Be f f is the ef-
fective bag constant of the vacuum. Concentrating on the low-
density part of the equation of state, one finds for massless

strange quarks the parameters B1/4
e f f � 117 MeV and a� 2.81

while the inclusion of the running mass raises these values to

B1/4
e f f � 137 MeV and a � 3.17 (all values having been ob-

tained by including a running αs in the equations of state).
Therefore, we expect important consequences in the mass-
radius relation of quark stars due to the inclusion of a finite
mass for the strange quark.
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III. FIRST-ORDER CHIRAL TRANSITION AND
DYNAMICS OF HADRONIZATION

A. Effective Model

To model the mechanism of chiral symmetry breaking
present in QCD, and to study the dynamics of phase conver-
sion after a temperature-driven chiral transition, one can re-
sort to low-energy effective models. In particular, to study
the mechanisms of bubble nucleation and spinodal decompo-
sition in a hot expanding plasma, it is common to adopt the
linear σ-model coupled to quarks, where the latter comprise
the hydrodynamic degrees of freedom of the system [21–26].
The gas of quarks provides a thermal bath in which the long-
wavelength modes of the chiral field evolve, and the latter
plays the role of an order parameter in a Landau-Ginzburg
approach to the description of the chiral phase transition. The
gas of quarks and anti-quarks is usually treated as a heat bath
for the chiral field, with temperature T. The standard proce-
dure is then integrating over the fermionic degrees of freedom,
using a classical approximation for the chiral field, to obtain a
formal expression for the thermodynamic potential of an infi-
nite system.

Let us consider a chiral field φ = (σ,�π), where σ is a scalar
field and πi are pseudoscalar fields playing the role of the pi-
ons, coupled to two flavors of quarks according to the La-
grangian

L = q[iγµ∂µ+µqγ0 −M(φ)]q+
1
2

∂µφ∂µφ−V(φ) . (10)

Here q is the constituent-quark field q = (u,d) and µq = µ/3
is the quark chemical potential. The interaction between the
quarks and the chiral field is given by M(φ) = g(σ+ iγ5�τ ·�π) ,

and V(φ) = λ2

4

(
σ2 +�π2 −v2

)2 − hqσ is the self-interaction
potential for φ.

The parameters above are chosen such that chiral SUL(2)⊗
SUR(2) symmetry is spontaneously broken in the vacuum.
The vacuum expectation values of the condensates are 〈σ〉 =
fπ and 〈�π〉 = 0, where fπ = 93 MeV is the pion decay con-
stant. The explicit symmetry breaking term is due to the finite
current-quark masses and is determined by the PCAC relation,
giving hq = fπm2

π, where mπ = 138 MeV is the pion mass.
This yields v2 = f 2

π −m2
π/λ2. The value of λ2 = 20 leads to a

σ-mass, m2
σ = 2λ2 f 2

π +m2
π, equal to 600 MeV. For g > 0, the

finite-temperature one-loop effective potential also includes a
contribution from the quark fermionic determinant. In what
follows, we treat the gas of quarks as a heat bath for the chi-
ral field, with temperature T and baryon-chemical potential
µ. Then, one can integrate over the fermionic degrees of free-
dom, obtaining an effective theory for the chiral field φ. Using
a classical approximation for the chiral field, one obtains the
thermodynamic potential

Ω(T,µ,φ) = V(φ)− T
V

lndet{[G−1
E +W(φ)]/T} , (11)

where V is the volume of the system and GE is the fermionic
Euclidean propagator. From the thermodynamic potential one
can obtain all the thermodynamic quantities of interest.

B. Inhomogeneities in the Chiral Field

To compute correlation functions and thermodynamic
quantities, one has to evaluate the fermionic determinant
within some approximation scheme. In 1D systems one can
usually resort to exact analytical methods[27]. In practice,
however, the determinant is usually calculated to one-loop
order assuming a homogeneous and static background chi-
ral field. Nevertheless, for a system that is in the process of
phase conversion after a chiral transition, one expects inhomo-
geneities in the chiral field to play a role in driving the system
to the true ground state.

We propose an approximation procedure to evaluate the
finite-temperature fermionic determinant in the presence of a
chiral background field, which systematically incorporates ef-
fects from inhomogeneities in the chiral field through a deriv-
ative expansion. The method is valid for the case in which
the chiral field varies smoothly, and allows one to extract in-
formation from its long-wavelength behavior, incorporating
corrections order by order in the derivatives of the field.

The Euler-Lagrange equation for static chiral field config-
urations contains a term which represents the fermionic den-
sity ρ(�x0) = (νq/V )

〈
�x0

∣∣(G−1
E +M(x̂))−1

∣∣�x0
〉

, where |�x0〉 is
a position eigenstate with eigenvalue �x0, and νq = 12 is the
color-spin-isospin degeneracy factor. In momentum represen-
tation:

ρ(�x0) = νqT ∑
n

Z
d3k

(2π)3 e−i�k·�x×
1

γ0(iωn +µ)−�γ ·�k+M(x̂)
ei�k·�x . (12)

We can transfer the �x0 dependence to M(x̂) through a uni-
tary transformation, expand M(x̂ +�x0) around �x0, and use
x̂i = −i∇ki to write

ρ(�x0) = νqT ∑
n

Z
d3k

(2π)3

1

γ0(iωn +µ)−�γ ·�k+M(�x0)
×

[
1+∆M(−i∇ki ,�x0)

1

γ0(iωn +µ)−�γ ·�k+M(�x0)

]−1

,(13)

where �x0 is a c-number, not an operator, and ∆M(x̂,�x0) =
∇iM(�x0)x̂i + 1

2 ∇i∇ jM(�x0)x̂i x̂j + · · · .
If we focus on the long-wavelength properties of the chi-

ral field and assume that the static background, M(�x), varies
smoothly and fermions transfer a small ammount of momen-
tum to the chiral field, we can expand the expression above in
a power series:

ρ(�x) = νqT ∑
n

Z
d3k

(2π)3

1

γ0(iωn +µ)−�γ ·�k+M(�x)
×

∑
�

(−1)�
[

∆M(−i∇ki ,�x)
1

γ0(iωn +µ)−�γ ·�k+M(�x)

]�

,

(14)
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∆M(−i∇ki ,�x) = ∇iM

(
1
i

)
∇ki + (15)

+
1
2

∇i∇ jM

(
1
i

)2

∇ki ∇kj + · · · ,

which provides a systematic procedure to incorporate correc-
tions brought about by inhomogeneities in the chiral field to
the quark density, so that we can calculate ρ(�x) = ρ0(�x) +
ρ1(�x)+ρ2(�x)+ · · · order by order in powers of the derivative
of the background, M(�x). The leading-order term in this gra-
dient expansion for ρ(�x) can be easily calculated and yields
the well-known mean field result for ρ. The net effect of this
leading term is to correct the potential for the chiral field to
Ve f f = V(φ)+Vq(φ), where

Vq ≡−νqT
Z

d3k
(2π)3 ln

(
e[Ek(φ)−µq]/T +1

)
+(µq →−µq) ,

(16)

where Ek(φ) =
√

�k2 +M(φ). This sort of effective poten-
tial is commonly used as the thermodynamic potential in
a phenomenological description of the chiral transition for
an expanding quark-gluon plasma created in a high-energy
heavy-ion collision [22–26]. However, the presence of a non-
trivial background field configuration, e.g. a bubble, can in
principle dramatically modify the Dirac spectrum, hence the
determinant[27, 28]. Results for the correction of the Lapla-
cian term will be presented elsewhere[29].

C. Finite-Size Effects on Nucleation of Hadrons

In the process of phase conversion through bubble nucle-
ation in a QGP of finite size, the set of all supercritical bubbles
integrated over time will eventually drive the entire system to
its true vacuum. The scales that determine the importance
of finite-size effects are the typical linear size of the system,
the radius of the critical bubble and the correlation length.
For definiteness, let us assume our system is described by
a coarse-grained Landau-Ginzburg potential, U(φ,T), whose
coefficients depend on the temperature. For the case to be con-
sidered, the scalar order parameter, φ, is nota conserved quan-
tity, and its evolution is given by the time-dependent Landau-
Ginzburg equation

∂φ
∂t

= γ
[
∇2φ−U ′(φ,T)

]
, (17)

where γ is the response coefficient which defines a time scale
for the system. The equation above is a standard reaction-
diffusion equation, and describes the approach to equilibrium.

If U(φ,T) is such that it allows for the existence of bubble
solutions (taken to be spherical for simplicity), then super-
critical (subcritical) bubbles expand (shrink), in the thin-wall
limit, with the following velocity:

dR
dt

= γ(d−1)
[

1
Rc

− 1
R(t)

]
, (18)

where Rc = (d − 1)σ/∆F and ∆F is the difference in free
energy between the two phases. The equation above relates
the velocity of a domain wall to the local curvature. The re-
sponse coefficient, γ, can be related to some characteristic col-
lision time. One can measure the importance of finite-size ef-
fects for the case of heavy-ion collisions by comparing, for
instance, the asymptotic growth velocity (R>> Rc) for nucle-
ated hadronic bubbles to the expansion velocity of the plasma.
In the Bjorken picture, the typical length scale of the expand-
ing system is L(T) ≈ (vztc)(Tc/T)3 = L0(Tc/T)3, where vz is
the collective fluid velocity and L0 ≡ L(Tc) is the initial linear
scale of the system for the nucleation process which starts at
T ≤ Tc.

The relation between time and temperature provided by the
cooling law that emerges from the Bjorken picture suggests
the comparison between the following “velocities”:

vb ≡ dR
dT

= −
(

3b�L0

2vzσT2
c

)(
Tc

T

)5 (
1− T

Tc

)
, (19)

the asymptotic bubble growth “velocity”, and the plasma ex-
pansion “velocity” vL ≡ (dL/dT) = −(3L0/Tc)(Tc/T)4. The
quantity b is a number of order one to first approximation, and
comes about in the estimate of the phenomenological response
coefficient γ(T) ≈ b/2T. Using the numerical values adopted
previously and σ/T3

c ∼ 0.1, we obtain[30]

vb

vL
≈ 20

vz

(
Tc

T
−1

)
. (20)

One thus observes that the bubble growth velocity becomes
larger than the expansion velocity for a supercooling of order
θ ≈ vz/20 ≤ 5%. A simple estimate points to a critical radius
larger than 1 fm at such values of supercooling[24]. There-
fore, finite-size effects appear to be an important ingredient in
the phase conversion process right from the start in the case of
high-energy heavy-ion collisions[30].

D. Effects from dissipation

Recently, we have considered the effects of dissipation in
the scenario of explosive spinodal decomposition for hadron
production [31–34] during the QCD transition after a high-
energy heavy ion collision in the simplest fashion [35]. Using
a phenomenological Langevin description for the time evolu-
tion of the order parameter in a chiral effective model [24],
inspired by microscopic nonequilibrium field theory results,
we performed real-time lattice simulations for the behavior of
the inhomogeneous chiral fields. It was shown that the effects
of dissipation could be dramatic in spite of very conservative
assumptions: even if the system quickly reaches this unstable
region there is still no guarantee that it will explode.

The framework for the dynamics was assumed to be given
by the following Langevin equation

�φ+Γ
∂φ
∂t

+V ′
e f f(φ) = ξ(�x, t) (21)
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FIG. 4: Average value of the chiral field, φ, in units of its vacuum
value, φvac, as a function of time for Γ/T = 0,2,4.

where φ is a real scalar field, V ′
e f f(φ) is a Landau-Ginzburg

effective potential and Γ, which can be seen as a response
coefficient that defines time scales for the system and encodes
the intensity of dissipation, is usually taken to be a function of
temperature only, Γ = Γ(T). The function ξ(�x, t) represents
a stochastic (noise) force, assumed Gaussian and white, so
that 〈ξ(�x, t)〉= 0 and 〈ξ(�x, t)ξ(�x′, t ′)〉= 2ΓTδ(�x−�x′)δ(t− t ′),
according to the fluctuation-dissipation theorem.

Results for the average value of the chiral field, φ, in units
of its vacuum value, φvac, as a function of time for Γ/T =
0,2,4 are shown in Fig. 4, where one can see the large delay
introduced by dissipation effects.

IV. FINAL REMARKS

In the discussion above, we reviewed a few aspects of the
physics of the chiral transition and the quark-gluon plasma.

Within the issues that have been considered, two points clearly
stand out as important challenges for field theorists. The first
one is related to the behavior of the equation of state at fi-
nite density and zero temperature close to the critical region.
There, neither perturbative QCD, improved or not, nor low-
density chiral perturbation theory are of great help. Since re-
liable lattice results are still lacking in this sector of the phase
diagram, one could possibly try to incorporate nonperturba-
tive information into a quasiparticle description of the ther-
modynamics [36] to achieve a more realistic picture. Because
this is the most relevant region of the equation of state for the
physics of compact stars, astrophysical constraints will cer-
tainly be very welcome. The second is a proper understand-
ing of the dynamics of the phase transition and thermalization.
Besides the question of the nature of the phase transition as
one varies temperature and chemical potential, which still be-
longs to an equilibrium analysis, one must also provide a sat-
isfactory nonequilibrium description of the phase conversion
process. In the case of heavy ion collisions, where relevant
scales differ from the cosmological analog by several orders
of magnitude, one has to consider in detail a combination of
effects coming from dissipation, noise, expansion and finite
size of the system, as well as transient non-Markovian correc-
tions [37]. All these challenges, together with so many others
not even mentioned here, make the study of the phase diagram
of QCD a fascinating subject.
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