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The influence of dimensionality on the conductance of semiconductor cross junctions is investigated in the
effective mass approximation and quantum ballistic regime. Our calculations exhibit some similar features for
both two- and three-dimensional models, namely the conductance peaks before the fundamental eigenenergy
of the quantum wire that represents the sidearms and the zero conductance dip. Despite this, we show that, in
general, the conductance and the electronic wave function are strongly affected when the third spatial dimension
is taken into account. In other words, we prove that two-dimensional models are not suitable for representing
this kind of system.
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I. INTRODUCTION

The experimental observation of conductance quantization
in semiconductor point contacts [1, 2] was one of the most im-
portant manifestations of quantum mechanics in mesoscopic
systems. The measurement of integer numbers of a quantum
of conductance (G0 = 2e2/h) is a consequence of the cur-
rent equipartition in a small number of propagating modes
[3]. Very early, this phenomenon was satisfactorily repro-
duced through two-dimensional (2D) models [4, 5].

More recently, significant attention has been devoted to
electronic conductance in quantum cross junctions [6] and
four terminal systems [7]. What is more, this geometry has
been exploited in proposals for spintronic devices [8, 9], in
which, spin is the essential property for device operation [10].
Despite the fact that spin-orbit interaction implies spin and
spatial coordinates mixing [11], the theoretical works keep on
employing 2D models [8, 9].

In this work, we show that, even in absence of spin effects,
the conductance of cross junctions obtained through three-
dimensional (3D) models isqualitatively distinct from that
given by 2D ones.

II. MODEL

We consider a cross junction limited by infinite potential
barriers. Figure 1 shows the cross-sections of the 3D system
at y=0 (a), z=0 (b) and x=0 (c) planes. The axes origin is the
center of the cross and the 3D model has specular symmetry
with respect to the xz, xy and yz planes. Figure 1-(a) repre-
sents the 2D system.

The effective mass and envelope function approximations
are used throughout this paper. We consider ballistic transport
regime and a GaAs structure, what meansm∗ = 0.067for the
channel and contacts.

Let us assume the electron incident from the left (x < 0),
with energyE0. The use of infinite barriers uncouples the
electron dynamics in the three directions. As a consequence,

a combination of quantum well and free particle eigenstates
is used to build the wave function in each junction region,
namely contacts, sidearms and central region. For exam-
ple, the electronic wave function in the source reservoir (x <
−Wx−Dx/2 ) is given by:

ΨL(~r) = eikxx+ikzzφl (y)+

+∑
n

φn(y)
Z +∞

−∞
dk′z

{
An(k′z)e

−ik′xx+ik′zz
}

, (1)

where~k = (kx,kz) is the initial wave vector andφi(y) is theith

quantum well eigenstate in the source contact (see section III).
An(k′z) are the coefficients of the reflected partial waves due to
the electron scattering at the channel entrance. Notice that
energy conservation imposes sum overall transverse states,
which means evanescent modes are also included.

Fig. 1. Schematic representation of the cross junction system. Three
cross-sections are shown: at y=0 plane (a), at z=0 plane (b) and at
x=0 plane (c). Figure (a) also represents the 2D model.

The wave function for the other regions of the cross junc-
tion are built analogously [4, 5]. By imposing the condition
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of continuity of the wave function and the flux at each inter-
face, one obtains a system of equations that determines the
wave function coefficients, like theAn(k′z) in equation 1 [12].
Considering zero temperature and a weak potential difference
between the contacts, the conductance can then be calculated
through equation 12 of reference [5]. The mathematical de-
tails will be published elsewhere.

III. RESULTS AND DISCUSSION

The dimensions of the 3D system analyzed here areWx =
500Å, Wy = 200Å, Wz = 1000Å, Dx = 1000Å andDz = 1800
Å (see figure 1). The convergence of the calculated conduc-
tance was obtained using, in the channel region, a basis set
with 8 and 3 quantum well states for the z and y directions,
respectively. In order to obtain these results, we used a wide
quantum well (>>Wy) to discretize the contacts continuum in
y direction. This allowed us to access the 2D to 3D crossover
through the increase of this quantum well width. When it is
equal toWy, we verified that the 2D results are re-obtained
just shifted in energy through the fundamentalWy quantum
well eigenvalue. It proves that this energy is the suitable one
for shifting the 2D results when comparing them with the 3D
ones. As a first result, we reproduced previous 2D calculations
for the above parameters [5].

In Figure 2 we show the calculated conductance for the
above mentioned 2D and 3D systems as a function of the elec-
tronic Fermi energy. It is important to say that our calculations
exhibit a smooth transition from 2D to 3D results (not shown),
proving that the obtainedqualitativedifferences are not model
artifacts.

At the same time, some features are present in both 2D and
3D calculations, namely the zero conductance at 16.11 meV
and the first narrow peaks. These peaks appear, in figure 2,
at 14.48 meV (3D) and 14.455 meV (2D), that is below the
fundamental eigenenergy of the quantum wire that represents
the sidearms, but above the corresponding one for the central
region of the cross junction [5]. This is an explicit indication
of evanescent modes contribution to the cross junction prop-
erties. On the other hand, the zero conductance occurs at the
same energy for both systems. This kind of interference effect
was previously observed [5, 13, 14].

Despite these similarities, figure 2 shows that, in general,
the conductance of 2D and 3D cross junctions arequalita-
tivelydifferent. This is a consequence of the extreme sensitiv-
ity of these systems to their geometric characteristics. Small
changes in their shape and dimensions will induce a tremen-
dous effect on the conductance and wave function [15]. As
an example, in figure 3, we show the|Ψ(x)|2 in the central
region of the cross junction for the 2D (dashed line) and 3D
(full line) systems considered in figure 2, where the chosen
energy is highlighted by the arrow (a), namely 15.53 meV. As
one can see, the square of the wave function for the 3D sys-
tem indicates a much more localized state if compared to the
2D case. Considering that the 2D and the 3D systems exhibit

equivalent densities of probability when the contact width in
y is equal toWy (not shown), one can conclude that the main
cause for the different behaviors of 2D and 3D cross junc-
tions is the electron scattering at the entrance and exit of the
channel, introduced in the 3D model when the contact width
becomes much bigger thanWy.
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Fig. 2. Conductance of a cross junction as a function of Fermi en-
ergy. Results for 2D (dash line) and 3D (full line) systems are shown.
The junction dimensions are :Wx = 500Å, Wy = 200Å, Wz = 1000
Å, Dx = 1000Å, Dz = 1800Å. The arrows (a) and (b) indicate the
energy values used in figures 3 and 4 respectively. The fundamen-
tal eigenenergy of theWy = 200 Å quantum well was added to the
energy scale of the 2D results.
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Fig. 3. The normalized probability density in the central region of
the cross junction as a function of x for the 2D (dashed line) and
3D (full line) systems considered in the previous figure. The chosen
energy is 15.53 meV, as indicated by arrow (a) in figure 2.

On the other hand, choosing an energy value that gives rise
to the same conductance behavior for 2D and 3D systems,
one obtains analogous densities of probability. This is shown
in figure 4, where we plot the same as figure 3, but for 16.11
meV, as indicated by arrow (b) in figure 2. One can see that
the conductance dip induces the same wave function behavior
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for 2D and 3D cross junctions, namely a strongly localized
state in the central region of the system.
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Fig. 4. The as same figure 3, but for 16.11 meV as indicated by arrow
(b) in figure 2.

Despite these similarities, we can say that, in general, cross
junctions can not be properly described through 2D models.

Consequently, the current use of 2D simulations for spintronic
devices [8, 9] must be reviewed.

IV. CONCLUSIONS

We employed the effective mass approximation to calculate
the conductance of semiconductor cross junctions in the quan-
tum ballistic regime. We obtainedqualitativelydistinct results
for the conductance and wave function when 2D and 3D mod-
els are considered. Moreover, we argue that the main reason
for these differences is the electron scattering at the entrance
and exit of the channel. To sum up, our results prove that 2D
models are not suitable for cross junction description.
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