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Fractal Conductance Fluctuations in Electron Billiards:
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Motivated by recent experiments and theoretical works that contradict the original explanation for fractal
conductance fluctuations (FCF) in electron billiards, based on the “mixed” structure of the classical phase space,
we propose an alternative approach to investigate FCF using Random Matrix Theory (RMT). By means of a
semiclassical estimate for value of the magnetic correlation fieldBC we conclude that most of the experiments on
FCF were performed for magnetic fields around or greater thanBC. This strongly suggests that the appropriate
explanation for the observed FCF should rely on the absence of long-range correlations and not on the structure
of the classical phase space. This idea is supported by a numerical study of parametric variations within the
framework of RMT, which validates our surmise that the observed FCF actually reflect a diffusive scenario for
electronic transport.
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I. INTRODUCTION

Triggered by the pioneer theoretical prediction by Ketzm-
erick [1], fractal conductance fluctuations (FCF) have been
experimentally observed in semiconductor billiards by sev-
eral groups [2–5]. These billiards are sub-micron sized elec-
tron cavities bounded by shaped walls and connected to two-
dimensional electron gas reservoirs by quantum point contact
leads. In such devices, where electrons are typically subjected
to a “soft” potential profile [2], the classical electron dynamics
is known to be “mixed”, i.e., chaotic and regular regions coex-
ist in the phase space. In open “mixed” systems the classical
probabilityP(t) that electronic trajectories stay longer in the
cavity than a timet (survival probability) decays as a power
law P(t)∼ t−γ [7], with γ≤ 2 due to the presence of residual
stable islands in the classical phase space. This is in contrast
to purely chaotic systems in whichP(t) decays exponentially
. The slow algebraic decay of the classicalP(t) in “mixed”
systems was shown to imply, by means of semiclassical the-
ory, that quantum fluctuation patterns of the conductance as a
function of an external parameter (e.g., voltage gate or mag-
netic field) exhibit a fractal structure [1]. The associated frac-
tal dimensionDF is related to the exponentγ according to
DF = 2− γ/2.

However, recent experimental results and subsequent theo-
retical work have revealed that the physical mechanism under-
lying the origin of FCF is not completely understood. From
the theoretical point of view, there is evidence that both com-
pletely chaotic [8] and completely integrable billiards [8, 9]
may exhibit fractal fluctuations [9], a result that contradicts
the original prediction of Ref. [1]. On the other hand, re-
cent experimental results [6] demonstrate that FCF are hardly
affected by the change in the billiard geometry, and conse-
quently by the classical electron trajectories. This experimen-
tal fact constitutes an unambiguous evidence that the classical
electron dynamics is not as crucial as claimed originally [1] to
understand FCF.

In view of this scenario, it is clear that further theoretical

work is required in order to understand the physical mecha-
nism responsible for FCF. The purpose of this paper is thus
to present an alternative theoretical approach, based on Ran-
dom Matrix Theory (RMT), to investigate FCF. We semiclas-
sically estimate the magnetic correlation field and conclude
that most of recent experiments [2–5] on FCF have been per-
formed for magnetic field values beyond the magnetic cor-
relation field. This results strongly suggests that the physi-
cal origin of the observed FCF is associated with the absence
of long-range correlations related to a diffusive scenario and
not on the “mixed” structure of the subjacent classical phase
space. A numerical study of parametric variations within the
RMT is presented to validate this hypothesis.

This paper is organized as follows. In Sec. II we present
a semiclassical estimate for the magnetic correlation fieldBC.
In Sec. III we numerically study parametric variations within
the framework of RMT in order to investigate FCF. Finally,
Sec. IV is devoted to final remarks and conclusions.

II. SEMICLASSICAL ESTIMATE FOR XC

Let us start by estimating the characteristic correlation field
Xc, the magnetic field value beyond which the conductance
values are completely uncorrelated, and comparing it to the
magnetic field values involved in recent experiments. We con-
sider a quantum dot coupled to two leads, each of them sup-
porting Nc perfectly transmitting channels. For chaotic sys-
tems it is well established that the conductance autocorrela-
tion functionC(X,E) in the presence of an external parameter
X is given by [10]:

C(X,E) =
1
16

1

{1+[Xπ/(Xc
√

Nc)]2}2 +(E/Γ)2
. (1)

The correlation parameter is defined as [10]

XC ≡ (2~Γ/α)1/2 , (2)
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whereΓ = ∆Nc/2π is the energy resonance width, with∆ the
mean level spacing.α describes the diffusive time evolution
of Q(t) according to [11]

〈Q2(τ)〉= ατ. (3)

In Eq. (3) the quantityQ(τ) is defined as the derivativeQ(τ)≡
∂δS(τ)/∂X of the reduced classical actionδS(τ)

δS(τ) =
Z τ

0
dtH(t) (4)

whereH(t) is the system Hamiltonian. To estimateα semi-
classically, let us assume that the electrons (effective massm∗,
chargee) inside the billiard in the presence of an external mag-
netic fieldB are described by the general Hamiltonian:

H ∼= p2

2m∗ −
e

m∗c
p ·A +V(r), (5)

whereA is the vector potential. If we assume, without loss of
generality, that the external magnetic field is in thezdirection,
B = Bẑ, the dependence of the Hamiltonian on the magnetic
field is contained in the term

HB =
e

2m∗c
LzB, (6)

whereLz is thezcomponent of the orbital angular momentum
L = r ×p. Inserting (6) into Eq. (4) and using the definition
of Q(t) one arrives at

Q(t)≡ ∂δS
∂B

=
e

2m∗c

Z τ

0
dtLz(t). (7)

The second moment ofQ(t) is thus given by

〈
Q2(t)

〉
=

( e
2m∗c

)2
CL, (8)

with

CL ≡
〈Z τ

0
dtLz(t)

Z τ

0
dt′Lz(t ′)

〉
. (9)

Taking the limitτ→ ∞ one obtains

lim
τ→∞

CL = 2τ
Z ∞

0
dt 〈Lz(0)Lz(t)〉 . (10)

It is useful to introduce the new variables

r̃ = r/
√

A, (11)

ṽ = v/vF , (12)

wherevF is the Fermi velocity andA is the billiard area, we
can re-scale the quantityCL [Eq. (10)] as

CL = m∗2vFA3/2CL̃, (13)

whereCL̃ is defined analogously to Eq. (9) with̃L = r̃× ṽ. In-
serting relation Eq. (13) into Eq. (8) and using (10) we identify
α as

α =
1
2

(e
c

)2
vFA3/2CL̃. (14)

The final expression for the magnetic correlation fieldBC can
be obtained by plugging relation (14) into the general defini-
tion (2) for the correlation parameterXC:

BC =
2π1/4

(2π)3/2
× N1/2

n1/4
e C1/2

L̃

×
(

φ0

A

)
, (15)

with φ0 = hc/e the unit flux quantum,ne = πm∗2v2
FA/h2 the

number of electrons inside the billiard.
We now can use the semiclassical result (15) to estimate

the value of the magnetic correlation fieldBC in recent exper-
iments on FCF [2–5]. In these experiments, one has typically
Nc ∼ 2, ne ∼ 102, A∼ 1µm2 andCL̃ ∼ 10−1 so that the cor-
relation field is of the order ofBC ∼ 10−3T. Some of these
experiments [2–4] were performed with magnetic field values
around or greater thanBC∼ 10−3T, which we believe to make
the interpretation of the observed conductance fluctuations as
genuine FCF ambiguous. The situation is even more critical
in the experiments reported on Ref. [5], in which the values
of the magnetic field are far beyondBC ∼ 10−3T, where the
conductance values are completely uncorrelated and conduc-
tance fluctuations are not expected to occur. This encourages
us to consider an alternative explanation, based on RMT, for
these experimental results and which will be discussed in the
following section.

III. RMT APPROACH TO FCF: NUMERICAL RESULTS
AND DISCUSSIONS

In order to investigate FCF within the RMT, we need to
generate random Hamiltonians that depend (non-periodically)
on an arbitrary parameterX, H = H(X), according to the
Gaussian Unitary Ensemble (GUE). We shall adopt here a
modified version of the method proposed in Ref. [12] to in-
clude non-periodic parametric variations in the RMT. Accord-
ing to this method, theM×M matrix is defined according to:

[H(X)]i j =
Z

f
(
X−X′

)
wi j (X′)dX′, (16)

where f (X) is some smooth and differentiable varying func-
tion of X. In the present casewi j (X) is a Gaussian white-noise
matrix generated according to the GUE:
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〈
wi j (X)

〉
= 0, (17)〈

wi j (X)wkl(X′)
〉

= vδil δ jkδ
(
X−X′

)
, (18)

wherev=
(
M∆2/2π2

)
is the variance,∆ the mean level spac-

ing (here set∆ ≡ 1) and 〈· · ·〉 stands for ensemble average.
Regarding the choice off (X), we shall again adopt the propo-
sition of Ref. [12] and employ a Gaussian

f (X) =
(

2

πX2
0

)1/4

exp

(
−X2

X2
0

)
(19)

as the smooth function, although evidently this choice is not
unique. Using this recipe, we are able to generate smooth ma-
trix elements (16) over a wide range of parametric variations,
much larger than the correlation valueXC.

The evaluation of the conductanceG(X,E) was per-
formed using the Landauer-Bütikker formula, which relates
G(X,E) to the transmission coefficientT(X,E) according to
G(X,E) = (2e2/~)T(X,E). For a two-lead open device, the
transmission coefficientT(X,E) reads

T(X,E) =
Nc

∑
a,b=1

|Sab(X,E)|2 , (20)

whereSab(X,E) is the S-matrix that can be related to system
HamiltonianH(X) [13].

Figure 1 exhibits the transmission coefficientT(X),
calculated according the prescription described above,
as a function of the the parameterX for a two-lead
system with Nc = 2 and M = 200 resonance poles.
We consider large parametric variations, up to100Xc,
where the values ofT(X) are essentially uncorrelated.
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Fig. 1. Transmission coefficient as a function of the parameterX for
a two-lead quantum dot withNc = 2 open channels in each lead and
M = 200resonance poles. The values ofX were normalized by the
correlation valueXc

In order to check the numerical results, we calculate the
transmission autocorrelation functionC(X,0) for a two-lead

quantum dot withNc = 1 andM = 2, as exhibited in Fig. 2.
A satisfactory agreement between the numerical data and the
analytical result (1) is obtained. The only input parameter is
the number of open channels,Nc = 1.
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Fig. 2. Transmission autocorrelation functionC(X) as a function of
the parameterX for a two-lead quantum dot withNc = 1 andM = 2
(filled triangles). The solid curves represents the analytical result (1).

The issue of the fractality of conductance curves is ad-
dressed by means of the calculation of their fractal dimension
DF via the standard box-counting method [14]. The calcula-
tion of the fractal dimension of the conductance curve exhib-
ited in Fig. 1 yieldsDF

∼= 1.51, a value that is very close to the
fractal dimension associated with the random-walk process,
DF = 1.5 [15]. This result constitutes an evidence that FCF for
parametric variations much larger than the correlation value
XC, such as those calculated in Fig. 1, merely reflects a dif-
fusive scenario for electronic transport in ballistic cavities.
Curiously, the valueDF = 1.5 corresponds to the theoretical
maximum predicted by the original semiclassical theory for
FCF [1]. More important, experimental conductance curves
were shown to be fractals with corresponding fractal dimen-
sions very close to the valueDF = 1.5 [2–5], notably Ref. [5]
whereDF = 1.44and Ref. [2, 4] where, for some billiards and
parameters consideredDF ' 1.5. Remarkably, it is exactly in
one of these experiments (Ref. [5]) that we argue, based on
our semiclassical estimate for the magnetic correlation field
BC presented in Sec. II, to has been performed with mag-
netic field values much larger thanBC. This result strongly
suggests that the correct explanation for the observed FCF in
some experiments should rely on the absence of long-range
correlations associated with the diffusion process and not on
the “mixed” structure of the subjacent classical phase space.

IV. CONCLUSIONS

In conclusion, we have presented an alternative approach
to investigate FCF based on RMT. A semiclassical estimate
for the magnetic correlation field indicates that most of recent
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experiments on FCF [2–5] have been performed for magnetic
field values beyond the magnetic correlation field. This results
strongly suggests that the physical origin of the observed FCF
is associated with the absence of long-range correlations re-
lated to a diffusive scenario and not on the “mixed” structure
of the subjacent classical phase space. A numerical study of
parametric variations within the framework of RMT validates
this hypothesis.
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