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Motivated by recent experiments and theoretical works that contradict the original explanation for fractal
conductance fluctuations (FCF) in electron billiards, based on the “mixed” structure of the classical phase space,
we propose an alternative approach to investigate FCF using Random Matrix Theory (RMT). By means of a
semiclassical estimate for value of the magnetic correlationBghMe conclude that most of the experiments on
FCF were performed for magnetic fields around or greater BgarThis strongly suggests that the appropriate
explanation for the observed FCF should rely on the absence of long-range correlations and not on the structure
of the classical phase space. This idea is supported by a numerical study of parametric variations within the
framework of RMT, which validates our surmise that the observed FCF actually reflect a diffusive scenario for
electronic transport.
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I. INTRODUCTION work is required in order to understand the physical mecha-
nism responsible for FCF. The purpose of this paper is thus
Triggered by the pioneer theoretical prediction by Ketzm-t0 present an alternative theo_retical_ approach, based on Ran-
erick [1], fractal conductance fluctuations (FCF) have beerflom Matrix Theory (RMT), to investigate FCF. We semiclas-
experimentally observed in semiconductor billiards by seySically estimate the magnetic correlation field and conclude
eral groups [2-5]. These billiards are sub-micron sized electhat most of recent experiments [2-5] on FCF have been per-
tron cavities bounded by shaped walls and connected to twdormed for magnetic field values beyond the magnetic cor-
dimensional electron gas reservoirs by quantum point conta¢glation field. This results strongly suggests that the physi-
leads. In such devices, where electrons are typically subjectet! 0rigin of the observed FCF is associated with the absence
to a “soft” potential profile [2], the classical electron dynamics ©f long-range correlations related to a diffusive scenario and
is known to be “mixed”, i.e., chaotic and regular regions coex-10t on the “mixed” structure of the subjacent classical phase
ist in the phase space. In open “mixed” systems the classic&Pace: A numerical study of pqrametnc va_natlons within the
probability P(t) that electronic trajectories stay longer in the RMT is presented to validate this hypothesis.
cavity than a time (survival probability) decays as a power ~ 1his paper is organized as follows. In Sec. Il we present
law P(t) ~ t~Y [7], with y < 2 due to the presence of residual & semiclassical estlmate for the magnet|c.c0rre_lat_|on B@!d .
stable islands in the classical phase space. This is in contra® Sec. Il we numerically study parametric variations within
to purely chaotic systems in whid¥(t) decays exponentially the framework of RMT in order to investigate FCF. Finally,
. The slow algebraic decay of the classi®4t) in “mixed” Sec. IV is devoted to final remarks and conclusions.
systems was shown to imply, by means of semiclassical the-
ory, that quantum fluctuation patterns of the conductance as a
function of an external parameter (e.g., voltage gate or mag-
netic field) exhibit a fractal structure [1]. The associated frac- o o S
tal dimensionDg is related to the exponentaccording to Let us start by estimating the characteristic correlation field
Df =2-y/2. X, the magnetic field value beyond which the conductance
However, recent experimental results and subsequent the¥@lues are completely uncorrelated, and comparing it to the
retical work have revealed that the physical mechanism undeff@gnetic field values involved in recent experiments. We con-
lying the origin of FCF is not completely understood. From Sider & guantum dot coupled to two leads, each of them sup-
the theoretical point of view, there is evidence that both comPorting Ne perfectly transmitting channels. For chaotic sys-
pletely chaotic [8] and completely integrable billiards [8, 9] tems it is well estab_llshed that the conductance autocorrela-
may exhibit fractal fluctuations [9], a result that contradictsfion functionC(X, E) in the presence of an external parameter
the original prediction of Ref. [1]. On the other hand, re- X is given by [10]:
cent experimental results [6] demonstrate that FCF are hardly
affected by the change in the billiard geometry, and conse- C(X,E) = 1 1 1)
quently by thg classical elect_ron trajec'Forles. This experimen- ’ 16 {1+ X1/ (Xev/No)|2}2 + (E/T)2
tal fact constitutes an unambiguous evidence that the classmﬁxhe correlation parameter is defined as [10]
electron dynamics is not as crucial as claimed originally [1] to P
understand FCF.
In view of this scenario, it is clear that further theoretical Xc = (2h|’/a)1/2, 2

II. SEMICLASSICAL ESTIMATE FOR Xc
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wherel" = AN./2mtis the energy resonance width, wittthe wherevg is the Fermi velocity and\ is the billiard area, we
mean level spacinga describes the diffusive time evolution can re-scale the quanti§ [Eq. (10)] as
of Q(t) according to [11]

CL = m2ve AY2C;, (13)
(Q*(1) =ar. €) o s

whereC; is defined analogously to Eqg. (9) with=T x V. In-

In Eg. (3) the quantity)(t) is defined as the derivati@(1) =  serting relation Eq. (13) into Eq. (8) and using (10) we identify
00S(1) /0X of the reduced classical actid®(1) aas
Zx l/en2 a5
3S(T)=  dtH(t) @) a=3(2) veA¥c:. (14)
0 2\c

whereH (t) is the system Hamiltonian. To estimatesemi- The final expression for the magnetic correlation fig¢dcan
classically, let us assume that the electrons (effective mass be obtained by plugging relation (14) into the general defini-
chargee) inside the billiard in the presence of an external mag-tion (2) for the correlation parameti:

netic fieldB are described by the general Hamiltonian:

(15)

B 2-,-[1/4 y N1/2 y @
~ P e (emE2 T A2 T A
H o m*cp A+V(r), (5) L

¢with @ = hc/e the unit flux quantumpe = Tm**v2A/h? the

whereA is the vector potential. If we assume, without loss o o -
number of electrons inside the billiard.

generality, that the external magnetic field is in titirection, Wi th iclassical It (15) t timat
B = BZ, the dependence of the Hamiltonian on the magnetic%h € anW fctarl]n use et' semic ?stslcaf_ resu (15) to estimate
field is contained in the term e value of the magnetic correlation fieBg in recent exper-

iments on FCF [2-5]. In these experiments, one has typically
Ne ~ 2, Ne ~ 10, A ~ 1um? andC; ~ 10~ so that the cor-
Hg = ——L,B, (6) relation field is of the order oBc ~ 10~°T. Some of these
2mrc experiments [2—4] were performed with magnetic field values
around or greater thaBc ~ 10-3T, which we believe to make
the interpretation of the observed conductance fluctuations as
genuine FCF ambiguous. The situation is even more critical
in the experiments reported on Ref. [5], in which the values
of the magnetic field are far beyori&t ~ 10-3T, where the
conductance values are completely uncorrelated and conduc-
tance fluctuations are not expected to occur. This encourages
us to consider an alternative explanation, based on RMT, for
The second moment @J(t) is thus given by these experimental results and which will be discussed in the
following section.

wherelL; is thez component of the orbital angular momentum
L =r x p. Inserting (6) into Eq. (4) and using the definition
of Q(t) one arrives at

s et

T
=38 = 3o, Ot @)

Q(t)

2
(@) = (52) O ®)
. RMT APPROACH TO FCF: NUMERICAL RESULTS
: AND DISCUSSIONS
with
7 7 In order to investigate FCF within the RMT, we need to
CL= < Tdth(t) Tdt’Lz(t’)> ) generate random Hamiltonians that depend (non-periodically)
“\o 0 ' on an arbitrary parametet, H = H(X), according to the
Gaussian Unitary Ensemble (GUE). We shall adopt here a
Taking the limitt — c one obtains modified version of the method proposed in Ref. [12] to in-
clude non-periodic parametric variations in the RMT. Accord-
VA ing to this method, th& x M matrix is defined according to:
JmCL =21 . dt(L,(0)L,(t)). (10)
Z
It is useful to introduce the new variables HX) = f(X=X)w;(X")dX, (16)

. where f(X) is some smooth and differentiable varying func-
F=r/VA (11)  tion ofX. Inthe present casgj (X) is a Gaussian white-noise
V=V/Vg, (12)  matrix generated according to the GUE:
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guantum dot witiN; = 1 andM = 2, as exhibited in Fig. 2.
A satisfactory agreement between the numerical data and the
(wij(X)) =0, (17)  analytical result (1) is obtained. The only input parameter is
<Wij (X)wk|(X’)> = v 5jk5(x — x’) , (18) the number of open channelg; = 1.

wherev = (MA?/212) is the variance) the mean level spac-
ing (here sefA = 1) and (- - -) stands for ensemble average. 0.7
Regarding the choice df(X), we shall again adopt the propo-
sition of Ref. [12] and employ a Gaussian

- () el ) o

as the smooth function, although evidently this choice is not
unique. Using this recipe, we are able to generate smooth ma-
trix elements (16) over a wide range of parametric variations,
much larger than the correlation valXe.

The evaluation of the conductand8(X,E) was per-
formed using the Landauertiikker formula, which relates
G(X,E) to the transmission coefficiefit(X,E) according to
G(X,E) = (2¢?/h)T(X,E). For a two-lead open device, the rig o Transmission autocorrelation functiofX) as a function of

transmission coefficient (X, E) reads the parameteX for a two-lead quantum dot with; = 1 andM = 2
(filled triangles). The solid curves represents the analytical result (1).

C(X,0)

Ne
2

T(X.E) = Z |San(X, E)I°, (20) The issue of the fractality of conductance curves is ad-

2p=1 dressed by means of the calculation of their fractal dimension

whereSip(X, E) is the S-matrix that can be related to systemDF via the standard box-counting method [14]. The calcula-
HamiltonianH (X) [13]. tion of the fractal dimension of the conductance curve exhib-

Figure 1 exhibits the transmission coefficiefit(X), itedinFig. 1yieldDg = 1.51, a value thatis very close to the

calculated according the prescription described abovefractal dimension associated with the random-walk process,
as a function of the the parametet for a two-lead p. =1 5[15]. Thisresult constitutes an evidence that FCF for

;s/\;//gtecnc: 0 s\,liv(;tgr ’\:%1 rg:e 2 0 e?rgcrincle\{lric: V%?%tiroenssonahn;em%)czles. parametric variations much larger than the correlation value

where the values ofT (X) are essentially uncorrelated. Xc, such as those calculated in Fig. 1, merely reflects a dif-
fusive scenario for electronic transport in ballistic cavities.

Curiously, the valudr = 1.5 corresponds to the theoretical

18 - - - - maximum predicted by the original semiclassical theory for
= otey T FCF [1]. More important, experimental conductance curves
& 14l were shown to be fractals with corresponding fractal dimen-
£ 2] ! sions very close to the vali®- = 1.5 [2-5], notably Ref. [5]
§ 10l whereDg = 1.44and Ref. [2, 4] where, for some billiards and
S o0s parameters consider&t ~ 1.5. Remarkably, it is exactly in
F7 R ] one of these experiments (Ref. [5]) that we argue, based on
E ol 1 our semiclassical estimate for the magnetic correlation field
% 0’2 i ] Bc presented in Sec. Il, to has been performed with mag-
= netic field values much larger thd&. This result strongly

0ot 20 0 00 80 100 suggests that the correct explanation for the observed FCF in

X/X some experiments should rely on the absence of long-range

correlations associated with the diffusion process and not on
the “mixed” structure of the subjacent classical phase space.

Fig. 1. Transmission coefficient as a function of the parameter

a two-lead quantum dot witN. = 2 open channels in each lead and
M = 200resonance poles. The valuesXofvere normalized by the
correlation valuexg

IV. CONCLUSIONS

In conclusion, we have presented an alternative approach
In order to check the numerical results, we calculate thdo investigate FCF based on RMT. A semiclassical estimate
transmission autocorrelation functi@{(X,0) for a two-lead  for the magnetic correlation field indicates that most of recent



382 F. A. Pinheiro and C. H. Lewenkopf

experiments on FCF [2-5] have been performed for magnetiécknowledgments

field values beyond the magnetic correlation field. This results

strongly suggests that the physical origin of the observed FCF

is associated with the absence of long-range correlations re-

lated to a diffusive scenario and not on the “mixed” structure

of the subjacent classical phase space. A numerical study of This work was supported by the Brazilian founding
parametric variations within the framework of RMT validates agencies CNPq, FAPERJ and Instituto do &iib de

this hypothesis. Nanocgncias.
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