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Effects of Plasma Interaction on a Random Array of Quantum Dots
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We calculated optical absorption coefficients for linear and monolayer arrays of ionized quantum dots (QD)
of spherical or cylindrical shape with random dimensions and occupation numbers, obtained by Monte Carlo
simulation. When submitted to an oscillating electric field each ionized QD behaves as a dipole and the interac-
tion of them changes the form of the light absorption. The effect of the many electron system is considered by
Density Functional Theory. The results obtained show a shift of the absorption peak to the right for increasing
densities of QD’s, whatever kind of shape or array of QD. Also absorption only, occurs when the electric field
has a normal component to the array.
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I. INTRODUCTION

The great progress in solid-state physics in the last two
decades made it possible to reduce the dimensions of elec-
tronic systems, creating structures such as quantum wells, dots
and wires and giving rise to important applications such as
lasers, infrared detectors, etc [1]. In this article we deal with a
random array of quantum dots (QD), distributed along a line
or in a monolayer, Fig. 1, or in a multilayer in a semiconduc-
tor material, and submitted to an oscillating electric field. The
QD’s then act as electric dipoles and the interaction between
then modify the free QD spectrum.

FIG. 1: (a) One-dimensional and (b) two-dimensional random arrays
of cylindrical quantum dots.

The shapes of QD’s studied here are cylindrical and spheri-
cal and the electronic wave functions are calculated using the
method of Gangopadhyay and Nag[2], that may be used to cal-
culate the envelope wave function of a QD of whatever shape.

The absorption coefficient is calculated via the method de-
veloped by Metzner et al [3,4], where the effect of the many
electron system is considered by the Density Functional The-
ory[5].

The random aspect of this study is treated by Monte Carlo
simulation [6].

II. THEORY

The wave function of a single QD can be obtained in the
effective mass approximation as a solution of the Hamiltonian
eigenvalue equation due to Ben-Daniel and Duke [7]:
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Ψ(r) = EΨ(r), (1)

where the effective massm∗ (r)and the potentialV(r)present
discontinuities in the limits of the QD. The method of Gan-
gopadhyay and Nag is the expansion of the envelope function
Ψ(r)in the base of functions formed by the eigenfunctions of
a larger cubic QD of infinite potential barriers, Fig. 2.
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For a system of QD’s the interaction between them is taken 

into account by the Density Functional Theory, in which 
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consistent potential 
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is the Hartree potential, e being the elementary charge. As 

in the case of a single QD the method of Gangopadhyay is 

used again while the self-consistency is completed. 
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where K is dielectric constant of semiconductor in which 

are immersed the QD’s. 

The coupling strength between the J
th

 and I
th

 QD’s, which 

corresponds to dipole-dipole interaction, is given by the 

matrix element 
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In a analogous way is defined the strength of the exchange 
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where, in the local density functional approximation, 
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For each QD is defined a response function in terms of the 
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The amplitudes of oscillation 
( ) ( )I

A  for the QD are 

solutions of a linear system of equations that presents 

couplings between oscillators: 

 

Fig.2 A cylindrical QD in the center of a larger cubic QD. FIG. 2: A cylindrical QD in the center of a larger cubic QD.

For a system of QD’s the interaction between them is taken
into account by the Density Functional Theory, in which the
potentialV(r)is replaced by the sum of it and a self-consistent
potentialV(sc)(r), function of the electronic densityn(r), writ-
ten as:
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The plasma interaction is then the direct and the exchange
correlation interaction between the QD’s. As one of them (J)
performs the transition from the excited to the fundamental
state it releases energy that is transferred to another one (I),
which becomes excited.

Defining
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whereKis dielectric constant of semiconductor in which are
immersed the QD’s.
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For each QD is defined a response function in terms of the
angular frequency of incident lightω, the transition energy

to the excited state∆E(I)
10 and a parameterΓthat accounts for

homogeneous broadening of the resonance line:
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The amplitudes of oscillationA(I)(ω) for the QD are solu-
tions of a linear system of equations that presents couplings
between oscillators:

∑
J
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A(J)(ω) =

E0µI R(I)(ω)
(12)

whereE0is the amplitude of the incident electric field.
The absorption coefficient [8,9] is calculated from these

amplitudes. Since

α(ω) = Re(σ(ω)) =
ω
4π

Im(ε(ω)) , (13)

ε(ω)−1 = 4π
P(ω)
E(ω)

(14)

and

P(ω) ∝ ∑
I

A(I)(ω), (15)

whereσis the optical conductivity,εis the complex dielectric
function andPis the electric polarization, we finally have

α(ω) ∝ ω∑
I

Im[A(I)(ω)] (16)

III. SPECIFICATIONS OF THE SYSTEM

We consider arrays of cylindrical InAs QD’s immersed in
GaAs, with effective masses given by 0.040 and 0.0665 re-
spectively and confining potential of 450 meV [10] due to the
difference between the conduction band edges of the two ma-
terials. The parameterΓwas chosen to be equal to 1.0 meV
while the dimensions of the QD’s to have gaussian randomic
dispersion so that the broadening in the absorption line is 20
meV.

The radius and the height of a QD of finite potential barrier
are chosen in a way there is at least one excited state that could
be populated by the action of the oscillating electric field, fur-
thermore the dipole moment (5) must be not zero in order that
the absorption occurs. For a linear array grown in the z di-
rection it was considered a disk-type QD with an electric field
applied in the x direction. The medium radius and height were
10.8 nm and 2.1 nm respectively, being 3.2 nm the mean dis-
tance between them. For a mono-layer of QD’s placed in the
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xy it was used a can-type QD with an electric field normal
to the layer. This simulation was made with medium radius,
height and distance between them equal to 3.1 nm, 30.0 nm
and 7.2 nm respectively.

The randomness in these arrays is taken into account of the
dimensions of QD’s, the distance between them, the occupa-
tion number of bound electrons, here taken as zero or one. The
algorithm used was Monte Carlo Simulation [6] that consists
in generation of pseudo random numbers to simulate different
configurations of the system.

IV. RESULTS AND CONCLUSIONS

In Fig. 3 is represented the Hartree (8) and exchange (9)
interaction energy between QD’s in a linear array in function
of their distance showing the major effect of the Hartree po-
tential. This energy is positive and its effect on the absorption
coefficient is to shift the peak to the right and narrowing it as
the electronic density increases, see Figs. 4 and 5. It seems to
be an universal property that does not depend on the type of
array, the shape of the QD or the materials that form the sys-
tem. The results are the same when the GaAs spherical QD’s
are formed in AlAs [11] as it should be since the shape and di-
mensions of a QD are responsible for the energy levels while
the shift on the peak occurs due to the interaction between the
QD’s.
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Fig. 4 Absorption coefficient for a linear array of QD’s in

function of density of QD’s 
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Fig. 5 Absorption coefficient for a mono-layer of QD’s in

function of the density of QD’s. 
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FIG. 3: Hartree and exchange energy between QD’s.

It should be noted that the electric field must have a normal
component to the array because the QD’s dimensions in that
direction could be greater than the ones in the plane or line of
QD’s so that the fundamental and at least some excited states
are present and the resonance could take place.

Although this effect occurs in linear and planar arrays of
QD’s the response to the applied field is more intense in planar
arrays since it depends on the total number of QD’s in the
material.

It is interesting to note that the classical interaction between
dipoles (p1andp2) is given by
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FIG. 4: Absorption coefficient for a linear array of QD’in function
of density of QD’s.
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FIG. 5: Absorption coefficient for a mono-layer of QD’in function
of the density of QD’s.

U12 =
p1 ·p2

r3 − 3r ·p1r ·p2

r5 (17)

wherer is the vector joining the two dipoles. For the case in
which

p1 = p2 = p (18)

andθ is the angle betweenrandp

U12 =
p2

r3 (1−3cosθ) (19)
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soU12may be positive or negative in an apparent contradiction
the results of this work. This fact can be explained remember-
ing that the dipole moments are parallel to the electric field
and it must have a normal component to the array, thenU12is
always positive justifying this calculation.

Although this effect is subtle we hope it will be possible to

be measured in the not too distant future.
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