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†Inst. de Fı́sica, Univ. do Estado de Rio de Janeiro,

Rua S. F. Xavier 524, 20550-013, Rio de Janeiro, Brazil

Received on 4 April, 2005

A double barrier resonant tunneling device in which the well is made of a semi-magnetic material can work as
an efficient spin filter. Today it is possible to make semiconductors that are ferromagnetic at room temperature.
Therefore the device studied here has a great potential to be used as a polarizer, an analyzer and other spintronic
applications. We discuss here the case of a Ga1−xMnxAs/Ga1−yAlyAs system because it can be integrated
into the well known AlGaAs/GaAs technology. Our tight-binding Hamiltonian includes the kinetic energy, the
double-barrier profile, the electric field, the magnetic term, the hole-impurity and the hole-hole interactions.
The profile and the charge distribution are calculated self-consistently. In previous works we studied this system
by solving the Hamiltonian in the reciprocal space, in order to simplify the treatment of the Poisson equation
for the charge distribution. Here we introduce a simple one dimensional Green function that permits to solve
all terms in the real space. Besides, a real space renormalization formalism is used to calculate exactly the
electronic currents for each spin polarization. The results confirm that the proposed system is a good device for
spintronics.
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I. INTRODUCTION

In the last years were developed diluted magnetic semicon-
ductors (DMS), such as Ga1−xMnxAs [1, 2] that are easily
integrated in the AlGaAs/GaAs heterostructures technology.
Today many electronic and opto-electronic devices such as
leads, lasers are industrially produced using this technology.
Besides, some semiconductors are ferromagnetic at room tem-
perature [3– 6].

Heterostructures using DMS can be tailored in order to
make spintronic devices [7– 10], such as spin polarizers and
analyzers, spin valves and spin filters. By manipulating the
electron spin degree of freedom we can produce smaller and
faster processors and perhaps elements for quantum comput-
ing.

The device presented here was studied using Ga1−xMnxAs
due to its potential applications. However, it is easy to extend
our results for a variety of different DMS. It is important to
search for devices operating at high temperatures, and in the
absence of an external magnetic field. Homogeneous sam-
ples of Ga1−xMnxAs alloys with x up to 10% have been pro-
duced by molecular beam epitaxy at low temperatures, avoid-
ing the formation of MnAs clusters [1, 2]. In Ga1−xMnxAs
the Mn2+ cations have the 3d shell partially filled with five
electrons, in such a way that they carry a spin of S = 5

2�. In
addition, the Mn ion binds a hole to satisfy charge neutrality.
This kind of DMS introduces an interesting problem from the
physical point of view: Mn in the alloy is a strong p dopant,
the free hole concentration reaching even p = 1020−21cm−3.
At small Mn concentrations, the alloy is a paramagnetic in-
sulator. As x increases, it becomes ferromagnetic, going
through a non-metal/metal transition for higher concentrations
(x ≈ 0.03) and keeping its ferromagnetic phase. For x above
5%, the alloy becomes a ferromagnetic insulator. In the metal-

lic phase, the ferromagnetic transition is observed in the range
of 30− 110K, depending on the value of x. In samples of
Ga1−xMnxAs with selective p−doping [11] it was reported a
Curie temperature Tc ∼ 172K.

II. THE HAMILTONIAN

We consider a double barrier heterostructure made of
Ga1−yAlyAs in the middle of which lies a Ga1−xMnxAs quan-
tum well in its metallic ferromagnetic phase.

As in previous works [12– 14], the system is described by a
tight-binding Hamiltonian

H = HK +HP +HE +HM +Hh−i +Hh−h. (1)

In those works the emitter and the collector had an aluminium
content in order to rise the left and right Fermi levels above the
fermi level of the well. This was done to prevent the holes to
escape the well. As holes mediates ferromagnetism that could
modify strongly the properties of the device. In this work we
consider that the holes that escapes the well remain close tho
the barriers due to the electrostatic attraction. The results of
the present article confirm this assumption.

In expression (1) HK is the kinetic energy and HP describes
the double-barrier profile. The term HE , which represents the
potential energy due to the applied bias, together with Hh−i
and Hh−h, that take into account the interaction of the carriers
with the potentials generated by the negative Mn impurities
and the holes itself are calculated self-consistently. The po-
tentials generated by the impurity and hole distributions are
calculated by solving the Poisson equation,

∇2φ = −ρ
ε
, (2)
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where ρ= ρi +ρh includes both the impurity and hole contri-
butions. This potential gives a contribution

Hh−i +Hh−h = eφ. (3)

As the Hamiltonian is modified by this term so are modified
its wave functions, from which the hole charge density ρh is
calculated.

Usually equation (2) is solved in the momentum space be-
cause it becomes an algebraic equation. On the other side,
to solve the Hamiltonian (1) in the reciprocal space requires
a big computational effort. In the context of a tight-binding
calculation it is natural to express the Poisson equation in a fi-
nite difference formalism, in which it turns out to be a simple
N ×N matricial equation,

φ j−1 −2φ j +φ j+1 = −a2

ε
ρ j,

where a is the distance between layers. The inverse operator
of the discretized one-dimensional Laplacian (its Green func-
tion) is obtained easily as

Gi j = − 1
(N +1)

i(N +1− j) for i ≤ j

and it is symmetric. Using this Green function it is easy to
obtain the potential as

φ j = − ε
a2

N

∑
k

G jkρk.

Let us discuss now the mean field approximation used for
the magnetic term. The hole interaction with the magnetic
impurities is described through the contact potential,

HM(r) = −I
Ni

∑
i=1

s(r).S(Ri)δ(r−Ri),

where I is the p− d exchange coupling constant, Ri denotes
the positions of the Ni impurities of Mn, S(Ri) is the (clas-
sical) spin of the impurity, and s(r) is the spin of the hole.
We assume the layer in its metallic and ferromagnetic phase.
Thus, the spin of the hole is well defined in that direction, be-
ing polarized either up (parallel) or down (anti-parallel). In
order to write the magnetic term in the new basis we have to
integrate over r. To do that, the magnetic impurities are as-
sumed to be uniformly distributed in the Ga1−xMnxAs DMS
layer, having the same magnetization < M >.

Therefore, a net Mn++ magnetization < M > polarizes the
hole gas by introducing an additional effective confining po-
tential given by

HM(z) = −N0βx(σ/2) < M >,

for z inside the well. Here σ=±1 for the hole spin and N0β=
I/v0.

III. THE SPIN POLARIZED CURRENTS

We are dealing here with an open system, but the Hamil-
tonian given by equation (1) is first solved in a finite region
including the double barrier and a small part of the contacts
where the band bending, due to charge accumulation, occurs.
This region can be seen in Fig. 1. Outside this region the
profile is flat. Therefore the solutions are plane waves for
energies above the Fermi level and evanescent modes below
it. The total Hamiltonian can be written as H = H0 + H1,
where H0 = HL + HS + HR describes the uncoupled regions
corresponding to the left contact, the scattering region and the
right contact, respectively. Thus each part of H0 can be diag-
onalized exactly. We shall connect the three regions depicted
in Fig.2 to get the exact solution for the open system. This
method is the extension of the standard procedure described
in elementary quantum text books, to the tight binding for-
malism.
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FIG. 1. The self-consistent potential profile and the spin polarized
levels.

FIG. 2. The scheme for solving a tight-binding Hamiltonian for an
open system.

To relate the plane wave amplitudes on right and left of the
double barrier we reconnect the three regions using the Hamil-
tonian

H1 = v(c+
−1c0 + c+

0 c−1)+ v(c+
N−1cN + c+

N cN−1)

where v is the hopping that gives the effective mass m∗. Here
the left region goes from −∞ to −1, the N sites from 0 to
N − 1 belong to the scattering region and labels from N to ∞
correspond to the right region. By labeling m = 0, . . . ,N −
1 the eigenstates inside the scattering region, that come out
from the numerical diagonalization of HS, we can represent
the reconnected regions by the diagram of Fig. 3.
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FIG. 3. The scheme for reconnection.

Here v1̄m = 〈1̄|H1|m〉 = v〈1̄|m〉 are the hoppings from the
left contact to the levels of the scattering region. In similar
way we get vm1 = v〈m|1〉. It easy to see that 〈m|1〉 = uNm, i.
e., the last component of the m-th eigenvector.

Now it is easy to decimate all the states in the well. The
result is a renormalization of the energies at sites -1 and N
and the effective hopping between them. We get

ε̃1̄ = ε1̄ +∑
m

v2
1̄m/(�ω−Em)

ε̃N = εN +∑
m

v2
mN/(�ω−Em)

ṽ1̄N = ∑
m

v1̄mvmN/(�ω−Em)

where we denote the site −1 as 1̄ to simplify the notation. Af-
ter that, to obtain the transmittance and therefore the current,
is direct.

We emphasize that this procedure is non-perturbative. Thus
the results are exact. The diagram representing the renormal-
ized equations is shown in Fig. 4, where we have renamed the
layers from N to ∞ as 1,2, . . . ,∞

v

v v

~

FIG. 4. The renormalized diagram.

Now the solutions at the emitter (layers 1̄ and 2̄) can be
easily connected with the solutions at the collector (Layers 1
and 2) to obtain the transmittance. Finally we get the current
using the Landauer-Bütiker formalism.

IV. RESULTS

We describe here a device in which the contacts are made
of GaAs, the barriers of AlAs and the well of MnxGa1−xAs
with x ≈ 0.05 that correspond to a hole concentration p =
1020cm−3. The calculation is made at T = 0. Only heavy
holes are considered here.

Due to the very high hole density inside the well, a simple
iterative procedure to get selfconsistency does not converge.

Instead, a quasi-Newton procedure for solving non-linear sys-
tems is used. It requires to diagonalize HS many times for
each applied potential. However the diagonalization of HS is
very fast because it is a finite tridiagonal matrix.

After this process, the selfconsistent profile and the spin po-
larized levels shown in Fig. 1 are obtained. Through the pro-
cedure described in the previous section we get the electronic
current as a function of the applied bias shown in Fig. 5.

When a bias is applied, it is easy to see that the three polar-
ized levels above the Fermi in Fig.1 begin to descend. When
one of these levels is in between the Fermi level and the bot-
tom of the band a current peak appear.
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FIG. 5. The spin polarized currents.

V. CONCLUSIONS

Using a decimation technique in a tight binding model we
obtained the transmission probability and the current as a
function of the bias. The strong spin-polarization inside the
quantum well gives rise to a separation of the resonant peaks
for each spin polarization of the order of 0.15eV , providing an
excellent diode for applications in spin filtering [15– 19].

As discussed in previous works [12– 14] the device de-
scribed here produces a current strongly polarized. Without
taken into account the Rashba effect, the polarization is al-
most total. The only spin mixture is due to the very small tail
of a −σ transmittance peak at the central region of a σ peak.

In a previous work [20] the peaks were not completely po-
larized because we considered the Rashba effect at the well
walls that flip the spin of the carriers. Nevertheless this effect
is quadratic in the small Rashba parameter α. Therefore the
depolarization is small.

We conclude that a double-barrier heterostructure with a di-
luted ferromagnetic semiconductor at the well can be a very
effective spin polarizer. Other effects, such as the disordered
distribution of magnetic impurities have to be studied to con-
firm this prediction.
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