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Monte Carlo Simulations of Ultrathin Magnetic Dots
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In this work we study the thermodynamic properties of ultrathin ferromagnetic dots using Monte Carlo simu-
lations. We investigate the vortex density as a function of the temperature and the vortex structure in monolayer
dots with perpendicular anisotropy and long-range dipole interaction. The interplay between these two terms in
the hamiltonian leads to an interesting behavior of the thermodynamic quantities as well as the vortex density.
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I. INTRODUCTION

Magnetism at nanoscale, when the size of the structure is
comparable to or smaller than both the ferromagnetic (FM)
and antiferromagnetic (AF) domain size, offers a great po-
tential for new physics. In the last decade there has been an
increasing interest in ultrathin magnetic dots from research
groups as well as technological industries. Such an interest
is due to numerous unique phenomena related to the low-
dimension of these systems.

The modern technology demands techniques capable of
producing nanometer-sized structures over large areas. A
good perspective is the use of nanodots of nickel that could
store terabyte of data in a computer chip just a few centime-
ters wide. In particular, ferromagnetic nanodots have been
widely studied by use of experimental techniques such as
MFM (magnetic force microscopy). In addition, some theo-
retical models were proposed to explain the physical phenom-
ena observed in the experiments, among them the transition
from perpendicular to in-plane ordering and the magnetore-
sistence effect.

Regarding the perpendicular to in-plane ordering transition,

experiments were done using epitaxial films to investigate its
transition temperature and thickness dependence [2] [3]. In
addition, many theoretical approaches were developed, for ex-
ample, treating a two-dimensional layer by renormalization
group [4]. Some lattice models were proposed to take into ac-
count long-range dipolar interactions and surface anisotropy
[5].

Based on such models, Monte Carlo simulations have been
widely used to study the phase diagram of very thin films [6],
the nature of this transition [7] as well as its dependence on the
magnetic history of the system [8]. On the other hand, mag-
netic domains [9] and magnetic structures [10] have also been
investigated by using computational methods. A topological
excitation, the spin vortex, has been found in experiments and
also detected in simulations. Vortex structures are believed
to drive a Bereziinski-Kosterlitz-Thouless (BKT) phase tran-
sition in the two dimensional planar-rotator (PR) model [11].
Although vortices are present in thin films with long range in-
teractions, it is not clear if they play any role in the transition.

The model we study is described by the Heisenberg spin
hamiltonian with exchange and long-range dipolar interac-
tions as well as single-ion anisotropy
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where we use classical spins |S| = 1. Here the first sum
is performed over nearest neighbors with exchange coupling
strenght, J > 0 , while the second sum runs over all spin pairs
in the lattice. The constant of dipole coupling is D, rik is
a vector connecting the i and k sites and A is the single-site
anisotropy constant along the z-axis[5].

The main task in this work is to study the importance of
vortices in the physics of the model. Although preliminary,
our results indicate an anomalous behavior of the vortex
density at the transition temperature for δ = D

A ¿ 1. In the
following we present a brief background on the simulation,

our results and the conclusions.

Method

The simulations are done in a square lattice of volume
L× L with L = 20,40,60 by using the Monte-Carlo method
with the Metropolis algorithm [12, 13]. Since nanodots are
finite per nature we have to use open boundary conditions in
our simulations. However, we want to emphasize the long
range effects of the dipolar term of the model at the boundary
of the structure. For that, we have used periodic boundary
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conditions in the non dipolar terms while for the dipolar term
we have used open conditions.

We have studied the model for three different values of the
parameters A and D, δ = D

A = 0.1,1.0 and 9.0 for fixed J = 1.
Energy is measured in units of JS2 and temperature in units
of JS2/kB, where kB is the Boltzman constant. For every tem-
perature the first 105 MC steps per spin were used to lead the
system to equilibrium and the next 105 configurations were
used to calculate thermal averages of thermodynamical quan-
tities of interest.

II. RESULTS

In the case where δ = 0.1, we measured the out-of-plane (z)
and in-plane (xy) magnetizations (Shown in Fig. 1).
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FIG. 1: Out-of-plane and in-plane magnetization (open and full sym-
bols) for δ = 0.1

The system comes from an ordered state at low tempera-
ture to a disordered state at high temperature. That behav-
ior indicates an order-disorder phase transition at Tc ≈ 0.55.
The in-plane magnetization, Mxy, grows presenting a maxi-
mum close to the order-disorder critical temperature Tc. How-
ever, the height of the peak diminishes as L grows, in a clear
indicative that it is a finite size artifice.

The magnetic susceptibility is shown in Fig. 2. The posi-
tion of the maxima give us an estimate for Tc(≈ 0.55).

We also measured the vortex density in the xy plane as a
function of the temperature. Starting from the highest temper-
ature, T = 1.2, the number of vortex decreases and reaches a
minimum. Then it starts to increase as the system is cooled
down. This behavior is shown in Fig.3 and the graphics indi-
cate that the ground state of the system has a significant num-
ber of vortices and anti-vortices in the xy plane. Apparently,
the minimum of the vortex curve is connected with the transi-
tion to in-plane magnetization, however, we were not able to
establish that connection.

For δ = 1.0 the behavior of the in-plane and out-of-plane
magnetizations (See Fig. 4), suggest that the ground state is
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FIG. 2: Out-of-plane (open symbols) and in-plane (full symbols) sus-
ceptibilities for δ = 0.1.
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FIG. 3: Vortex density in the xy plane for δ = 0.1.
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FIG. 4: Out-of-plane (open symbols) and in-plane (full symbols)
magnetization for δ = 1.0.
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disordered in contrast to earlier works of Santamaria [6] and
Vedmedenko [10] that argue that the ground state is for spins
ordered in the xy plane. A plot of the susceptibility is shown
in Fig. 5 as a function of temperature. Although some authors
[6, 10] concluded that this transition is of second order, the
curves show well defined maxima that do not seem to indicate
any critical behavior.
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FIG. 5: In-plane susceptibility for δ = 1.0. The lines are only a guide
to the eye.

The vortex density curve in the xy plane is shown in Fig. 6.
We see that the number of vortices increases monotonically
from zero as a function of temperature. As temperature grows
we observed that the spins in the lattice start to disorder, so
that pairs vortices-anti-vortices can unbind inducing a BKT
transition. However our results are not refined enough to de-
cide that. In Fig. 7 we show two typical configurations for
T = 0.8 and 1.2 where the vortices are indicated by circles
and the anti-vortices by squares.
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FIG. 6: Vortex density in the xy-plane for δ = 1.0.
For systems with larger δ, for example, δ = 9.0, the spins

are preferentially in the xy plane but it does not present any

FIG. 7: Configurations of the system with δ = 1.0 for T = 0.8 e
T = 1.2. The vortices are indicated by spheres and the anti-vortices
by cubes.
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FIG. 8: Out-of-plane and in-plane magnetization (open and full sym-
bols) for δ = 9.0.

magnetic ordering (See Fig. 8). The vortex density curve is
similar to the case where δ = 1.0 (See Fig. 9).
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FIG. 9: Vortex density in the xy-plane for δ = 9.0.

III. CONCLUSION

In summary, we investigated the Heisenberg spin model
with exchange J and dipolar interactions D and an anisotropic

term A for different parameters δ = D
A . For small δ, (0.1), we

observed that the vortex density has a minimum and is non-
zero for low temperatures. Apparently, this minimum is con-
nected with the order-disorder phase transition but this con-
nection has to be studied more carefully. For larger values
of δ (1.0 and 9.0) the vortex density and the configurations
of vortices in the system led us to suspect of a phase transi-
tion of the BKT type involving the unbinding of vortices-anti-
vortices pairs. However our results are not refined enough to
decide that.
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