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Transport Properties of a Ga1−xMnxAs/Ga1−yAlyAs Double-Barrier
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We study the transport properties of a spin filter consisting of a double-barrier resonant tunneling device in
which the well is made of a semimagnetic material. Even if the device could be made of several materials,
we discuss here the case of a Ga1−xMnxAs/Ga1−yAlyAs system because it can be integrated into the well
known AlAs/GaAs technology. We solve the Hamiltonian H = HK +HP +HE +HM +Hh−i +Hh−h. Its terms
represent the kinetic energy, the double-barrier profile, the applied bias, the magnetic interaction, the hole-
impurity attraction and the hole-hole repulsion, respectively. A very simple one-dimensional Green function is
introduced to solve self-consistently the Poisson equation for the profile due to the charge distribution. A real
space renormalization formalism is used to calculate exactly the currents. In a previous work we have shown
that the Rashba effect is weak. Therefore the results show very well defined spin-polarized currents. Our results
confirm that this system is a good device for spintronics.
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I. INTRODUCTION

The system studied here consists of a double-barrier in
which the well is made of a diluted magnetic semiconduc-
tor (DMS). The magnetization of the well produces resonant
peaks that have well defined spin polarization. Therefore the
current tunneling through the structure is also spin polarized.
The device could be made of several materials. We discuss
here the case of a Ga1−xMnxAs/Ga1−yAlyAs system because
it can be integrated into the well known AlAs/GaAs technol-
ogy.

The Mn2+ cations have a magnetic moment due to their
spin S = 5

2~. In addition, The Mn ion binds a hole to satisfy
charge neutrality. Homogeneous samples of Ga1−xMnxAs al-
loys with x up to 10% have been produced by molecular beam
epitaxy at low temperatures, avoiding the formation of MnAs
clusters that could turn the material to be non-magnetic [1–3].
This kind of DMS introduces an interesting problem from the
physical point of view: Mn in the alloy is a strong p dopant,
the free hole concentration reaching even p = 1020−21cm−3.
At small Mn concentrations, the alloy is a paramagnetic in-
sulator. As x increases, it becomes ferromagnetic, going
through a non-metal/metal transition for higher concentrations
(x ≈ 0.03) and keeping its ferromagnetic phase. For x above
5%, the alloy becomes a ferromagnetic insulator. In the metal-
lic phase, the ferromagnetic transition is observed in the range
of 30− 110K, depending on the value of x. In samples of
Ga1−xMnxAs with selective p−doping [12] it was reported a
Curie temperature Tc ∼ 172K. Today it is possible to make
semiconductors that are ferromagnetic at room temperature
[4–7]. Several spintronic devices like spin valves, spin filters,
polarizers and analyzers have been made using heterostruc-
tures including DMS [8–11].

II. SELF-CONSISTENT PROFILE AND LEVELS

Our tight-binding Hamiltonian is

H = HK +HP +HE +HM +Hh−i +Hh−h. (1)

where HK is the kinetic energy, HP describes the double-
barrier profile and HE represents the electric field due to
the applied bias. The magnetic HM , the hole-impurity Hh−i
and the hole-hole Hh−h terms are included in the mean field
approximation. The profile and the charge distribution are
calculated self-consistently by solving the Poisson equation
∇2φ = −ρ/ε, where ρ = ρi + ρh includes both the impurity
and hole contributions. This potential gives a contribution

Hh−i +Hh−h = eφ. (2)

As the Hamiltonian is modified by this term so are modified
its wave functions, from which the hole charge density ρh is
calculated.

Usually the Poisson equation is solved in the momentum
space because it becomes an algebraic equation. On the other
side, to solve the Hamiltonian (1) in the reciprocal space re-
quires a big computational effort. In the context of a tight-
binding calculation it is natural to express the Poisson equa-
tion in a finite difference formalism, in which it turns out to
be a simple N×N matricial equation,

φ j−1−2φ j +φ j+1 =−a2

ε
ρ j, (3)

where a is the distance between layers. The inverse operator
of the discretized one-dimensional Laplacian (its Green func-
tion) is obtained easily as

Gi j =− 1
(N +1)

i(N +1− j) for i≤ j (4)
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and it is symmetric. Using this Green function it is easy to
obtain the potential as

φ j =− ε
a2

N

∑
k

G jkρk .

Let us discuss now the mean field approximation used for
the magnetic term. The hole interaction with the magnetic
impurities is described through the contact potential,

HM(r) =−I
Ni

∑
i=1

s(r).S(Ri)δ(r−Ri),

where I is the p− d exchange coupling constant, Ri denotes
the positions of the Ni impurities of Mn, S(Ri) is the (clas-
sical) spin of the impurity, and s(r) is the spin of the hole.
We assume the layer in its metallic and ferromagnetic phase.
Thus, the spin of the hole is well defined in that direction, be-
ing polarized either up (parallel) or down (anti-parallel). In
order to write the magnetic term in the new basis we have to
integrate over r. To do that, the magnetic impurities are as-
sumed to be uniformly distributed in the Ga1−xMnxAs DMS
layer, having the same magnetization < M >. Therefore, a net
Mn magnetization < M > polarizes the hole gas by introduc-
ing an additional effective confining potential given by

HM(z) =−N0βx(σ/2) < M >,

for z inside the well. Here σ = ±1 for the hole spin and
N0β = I/v0.

III. THE SPIN POLARIZED CURRENTS

We are dealing here with an open system, but the Hamil-
tonian given by equation (1) is first solved in a finite region
including the double barrier and a small part of the contacts
where the band bending, due to charge accumulation, occurs.
This region can be seen in Fig. 1.

Outside this region the profile is flat. Therefore the solu-
tions are plane waves for energies above the Fermi level and
evanescent modes below it. The total Hamiltonian can be writ-
ten as H = H0 + H1, where H0 = HL + HS + HR describes
three uncoupled regions: the left contact, the scattering region
and the right contact. Thus each part of H0 can be diagonal-
ized exactly.

The diagonalization of HS yields the spin polarized reso-
nant levels shown in Fig. 2. Besides, other non-resonant states
are obtained that are necessary to get the exact solution.

We shall connect the three regions depicted in Fig.3 to get
the exact solution for the open system. This method is the
extension of the standard procedure described in elementary
quantum text books, to the tight binding formalism.

For this device the scattering region for each spin is de-
picted in Fig. 4. To relate the plane wave amplitudes at right
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FIG. 1: The self-consistent potential for an applied bias V = 54mV
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FIG. 2: The resonant levels.

and left of the double barrier we reconnect the three regions
using the Hamiltonian

H1 = v(c+
−1c0 + c+

0 c−1)+ v(c+
N−1cN + c+

N cN−1)

where v is the hopping that gives the effective mass m∗. Here
the left region goes from−∞ to−1, the N sites from 0 to N−1
belong to the scattering region and labels from N to ∞ corre-
spond to the right region. By labeling m = 0, . . . ,N − 1 the
scattering region eigenstates, that come out from the numer-
ical diagonalization of HS, we can represent the reconnected
regions by the diagram of Fig.5.
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FIG. 3: The scheme for solving a tight-binding Hamiltonian for an
open system.
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FIG. 4: The scattering region profile.

FIG. 5: The scheme for reconnection.

Here, v1̄m = 〈1̄|H1|m〉 = v〈1̄|m〉 are the hoppings from the
left contact to the levels of the scattering region. In similar
way we get vm1 = v〈m|1〉. It is easy to see that 〈m|1〉 = uNm,
i. e., the last component of the m-th eigenvector.

Now it is easy to decimate all the states in the well. The
result is a renormalization of the energies at sites -1 and N
and the effective hopping between them. We get

ε̃1̄ = ε1̄ +∑
m

v2
1̄m/(~ω−Em)

ε̃N = εN +∑
m

v2
mN/(~ω−Em)

ṽ1̄N = ∑
m

v1̄mvmN/(~ω−Em)

where we denote the site −1 as 1̄ to simplify the notation.
After that, we obtain directly the transmittance and there-

fore the current.
We emphasize that this procedure is non-perturbative. Thus

the results are exact. The diagram representing the renormal-
ized equations is shown in Fig. 6, where we have renamed the
layers from N to ∞ as 1,2, . . . ,∞.

Now the solutions at the emitter (layers 1̄ and 2̄) can be
easily connected with the solutions at the collector (Layers 1
and 2) to obtain the transmittance. Finally we get the current
using the Landauer-Bütiker formalism.

12... ...

v

−
1
−

v

~ε

−
11

v
~

2

1
−

~ε
1

ε
2

−
2

ε
FIG. 6: The renormalized diagram.

IV. RESULTS

Due to the very high hole density inside the well, a simple
iterative procedure to get selfconsistency does not converge.
Instead, a quasi-Newton procedure for solving non-linear sys-
tems is used. It requires to diagonalize HS many times for
each applied potential. However the diagonalization of HS is
very fast because it is a finite tridiagonal matrix.
After this process, the selfconsistent profile and the spin po-
larized levels shown in Fig.2 are obtained. Through the pro-
cedure described in the previous section we get the electronic
current as a function of the applied bias shown in Fig.7.
It is easy to see that the three polarized levels above the Fermi
in Fig.2 begin to descend. When one of these levels is in be-
tween the Fermi level and the bottom of the band a current
peak appears.
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FIG. 7: The spin polarized currents.

V. CONCLUSIONS

Using a decimation technique in a tight binding model we
obtained the transmission probability and the current as a
function of the bias. The strong spin-polarization inside the
quantum well gives rise to a separation of the resonant peaks
for each spin polarization of the order of 0.15eV , providing
an excellent diode for applications in spin filtering [16–20].
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As discussed in previous works [13–15] the device described
here produces a current strongly polarized. Without taken
into account the Rashba effect, the polarization is almost
total. The only spin mixture is due to the very small tail of a
−σ transmittance peak at the central region of a σ peak.
In a previous work [21] the peaks were not completely
polarized because we considered the Rashba effect at the well
walls that flip the spin of the carriers. Nevertheless this effect
is quadratic in the small Rashba parameter α. Therefore the
depolarization is small.
We conclude that a double-barrier heterostructure with a

diluted ferromagnetic semiconductor at the well can be a very
effective spin polarizer. Other effects, such as the disordered
distribution of magnetic impurities have to be studied to
confirm this prediction.
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