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Exchange Energy in Coupled Quantum Dots
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In this work, the exchange energy J for a system of two laterally-coupled quantum dots, each one with an
electron, is calculated analytically and in a detailed form, considering them as hydrogen-like atoms, under the
Heitler-London approach. The atomic orbitals, associated to each quantum dot, are obtained from translation
relations, as functions of the Fock-Darwin states. Our results agree with the reported ones by Burkard, Loss and
DiVincenzo in their model of quantum gates based on quantum dots, as well as with some recent experimental
reports.
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I. INTRODUCTION

In the last decade, a great interest in quantum dots[1] has
arouse, due to their potential use as hardware for the im-
plementation of a scalable quantum computer[2, 3]. In this
scheme, the electron spin in these quantum dots is used as the
basic element for the transport of information (qubit). Con-
sidering the fact that 1-qubit and 2-qubit gates are sufficient
to make any quantum algorithm [4, 5], a quantum comput-
ing device, based on quantum dots, must have a mechanism
by which two specific qubits could be entangled to produce
a fundamental 2-qubit quantum gate, such as the Controlled-
NOT gate XOR[2]. This process is achieved through single
qubits rotations and an adequate switching of exchange en-
ergy J(t) between the electronic spins S1 and S2 described
by the Heisemberg spin exchange hamiltonian for a system
of two laterally quantum dots, under the influence of a mag-
netic field, perpendicular to their surface. This is the reason
for the studies of quantum gates with coupled quantum dots
are reduced to get experimental control of the single qubits
rotations[6] and the exchange energy. In this work, consid-
ering the Heitler-London[7] approach, we present the process
to obtain an expression of J for this system as a function of
parameters that allow its experimental control, with a detailed
description which is not available in the work of Burkard[8].

II. THEORY MODEL OF TWO LATERALLY COUPLED
QUANTUM DOTS

Let us consider a system of two laterally coupled quantum
dots, each one with an electron, constituted by electrical gat-
ing of two-dimensional electron gas (2DEG), under the action
of a z-axis parallel magnetic field B, and an electric .efield E
in x-direction. Its physical representation is given by

Ht = H1 +H2 +V12 +W, (1)

where H j is the Hamiltonian for the 1 and 2 quantum dot, and
this is

H j =
1
2µ
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The Coulomb interaction is given by V12 , and W =W1 +W2
represent a quartic potential for each quantum dot and it is
written as

Wi =
µω2

0
2

[
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4a2 (x2
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]2

; i = 1,2, (3)

This potential models the effect of tunneling between the two
quantum dots and its choice is motivated by experimental
evidence[9, 10]. Considering a low-temperature description,
where the system is in a condition kT < ~ω0, we can only as-
sume the two lower orbital states of the Hamiltonian Ht , which
are singlet and triplet states. With these conditions, and with-
out considering Zeeman effect and spin-orbit coupling, it is
possible to translate this physical picture into the Heisenberg
spin Hamiltonian, which is

Ht = J S1 ·S2 (4)

This Hamiltonian is the scalar product between the spin oper-
ators and the factor J, which is the exchange energy between
the spin triplet and singlet states[11].

III. WAVE FUNCTIONS OF COUPLED QUANTUM DOTS

In order to apply the Heitler-London approach[7], it is
primarily necessary to determine the wave function of each
quantum dot, that constitutes our laterally coupled system, on
which an xy-axis electric field and a z-axis magnetic field act.

Considering symmetric translation operations on a quan-
tum system, through an scheme similar to the one used in the
solution of a charged harmonic oscillator in a uniform elec-
tric field[12], it is possible to get the eigenfunctions of (1) for
j = 1,2. To do this, we write (1) as a momentum translation
p jy of the Fock-Darwin hamiltonian plus a constant depend-
ing of the electric field. The ground state of the Hamiltonians
H1 and H2 are,
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for j=1,2, where
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with x± = x± a + qeE
mω0 , qe is the electron charge, c is the

light speed, E = (E,0,0), B = (0,0,B), Ω represents the
Fock-Darwin frequency, ω0 the confinement frequency, and
A(r) = B

2 (−y,x,0) the vector potential. These wave func-
tions correspond to Fock-Darwin states[1] translated a certain
amount of momentum p jy = p jy + q2

eBE
2mω2

0c
± eBa

2c .

IV. THE HEITLER-LONDON APPROACH

A technique that allows to determine the exchange energy
factor is to adapt the Heitler-London method[7] (also known
as valence orbit approximation) to our system, considering
that it behaves as a pair of hydrogen-like artificial atoms. The
symmetric (singlet) and antisymmetric (triplet) states are rep-
resented by

|ψ±〉=
|A(1)B(2)〉± |A(2)B(1)〉√

2(1±S2)
. (7)

Applying the Heitler-London method on our system, we
have

A( j) = φ(1)
0 (x j,y j)

B( j) = φ(2)
0 (x j,y j)

}
j = 1,2. (8)

The parameter S represents the overlapping between left
and right orbital in each dot. This term is given by

S =
〈

φ(2)
0 |φ(1)

0

〉
, (9)

with

b =
Ω
ω0

, d = a
√

mω0/~, (10)

where a is half the distance between the centers of the dots,
aB =

√
~/mω0 is the effective Bohr radius of a single isolated

harmonics well, d is the dimensionless distance, and b is a
magnetic compression factor of the quantum dots orbitals.

V. EXCHANGE ENERGY

According to the magnetism theory[11], the exchange en-
ergy is represented by

J = εt − εs = 〈ψ−|Ht |ψ−〉−〈ψ+|Ht |ψ+〉 , (11)

where εt represents the triplet energy, εs singlet energy, and
Ht is described by (1). Introducing this term in (11), and re-
grouping common terms we obtain

J =
S2

1+S4

[
ϒ1− ϒ2

S2 +ϒ3− ϒ4

S2 +ϒ5
]
, (12)

where

ϒ1 = 〈A(1)|H1 |A(1)〉〈B(2)|B(2)〉
+ 〈B(2)|H2 |B(2)〉〈A(1)|A(1)〉
+ 〈B(1)|H1 |B(1)〉〈A(2)|A(2)〉

〈A(2)|H2 |A(2)〉〈B(1)|B(1)〉 , (13)

ϒ2 = 〈A(1)|H1 |B(1)〉〈B(2)|A(2)〉
+ 〈B(2)|H2 |A(2)〉〈A(1)|B(1)〉
+ 〈B(1)|H1 |A(1)〉〈A(2)|B(2)〉

〈A(2)|H2 |B(2)〉〈B(1)|A(1)〉 , (14)

ϒ3 = 〈A(1)B(2)|V12 |A(1)B(2)〉
+ 〈A(2)B(1)|V12 |A(2)B(1)〉 , (15)

ϒ4 = 〈A(1)B(2)|V12 |A(2)B(1)〉
+ 〈A(2)B(1)|V12 |A(1)B(2)〉 , (16)

ϒ5 = 〈A(1)B(2)|W1 +W2 |A(1)B(2)〉
+ 〈A(2)B(1)|W1 +W2 |A(2)B(1)〉

− 1
S2

[〈A(2)B(1)|W1 +W2 |A(1)B(2)〉
+ 〈A(1)B(2)|W1 +W2 |A(2)B(1)〉]. (17)

The solution of the term ϒ1 (13) does not have higher difficult
if we take that 〈A( j)|A( j)〉 = 〈B( j)|B( j)〉 = 1. For the next
term ϒ2 (14) it is easily to demonstrate that 〈A( j)|B( j)〉 =
〈B( j)|A( j)〉= S. The solutions of ϒ3 (15) and ϒ4 (16) are ob-
tained using the center of mass and relative coordinates. The
next step is to make a change from cartesian coordinates to
polar coordinates. In this process, four kind of quadratures
of many special functions appear, which are resolved making
use of the expansions given in [13] and [14]. In order to de-
termine ϒ5 (17) we write 〈A(2)B(1)|W1 +W2 |A(2)B(1)〉 in
terms of 〈A(1)B(2)|W1 +W2 |A(1)B(2)〉 and the rest of terms
are calculated considering translation operations in py and x.
Finally, replacing (9), and the solutions of (13) - (17) in (12)
we find
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This is the exchange energy, and as we can notice, it
presents dependence of external parameters such as B, E and
d.
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VI. RESULTS

Eq. (18) describes the exchange energy J and is constituted
by four terms. The first and second terms are result of ϒ3 and
ϒ4, in which the Coulomb interaction V12 acts. The third term,
in spite of having a polynomial behavior, avoids an abrupt
decline that the two first terms offer. Since there is a difference
of sign between the first and second term of Eq. (18), there
exists a value of B = B∗ for which J switches from positive to
negative.

FIG. 1: Exchange energy J(B) in meV plotted against the magnetic
field for different electric fields, for a = 0.7ab and c = 2.36. The
most remarkable feature of J is the change of its sign from positive
to negative.

In Fig.1 we present the transition from antiferromagnetic
(J > 0) to ferromagnetic (J < 0) spin-spin coupling, that oc-
curs with the increasing of the magnetic field and is caused by
long-range Coulomb interaction, in particular by the second
term in Eq. (18) . For B > B∗, a compression of the orbitals
appears, which reduces the overlap of the wavefunctions ex-
ponentially. In addition, in Fig.1 it is shown the behavior of
J(B) for some values of E. The fourth term in Eq. (18) reveals
the dependence of J with E. The increasing of the electric
field produces a raise on the exchange energy. The increment
of E creates a displacement of the value B∗, in which the sign
switch of J takes place. Thus, the most efficiency to tune the
exchange energy J is acquired for E = 0.
Fig.2. shows the behavior of J(E), for B and d fixed. Here,

it is observed that it is possible to produce a sign switch, but
the transition is now from ferromagnetic (J < 0) to antifer-
romagnetic (J > 0) and only with an acting B ≥ 1.35T field
over the system. This feature yields to think in a two quantum
dots scheme, operating as a quantum gate, it could return to
its initial state without eliminating the magnetic field interac-
tion after the J switching. If we consider that the transition is
initially from antiferromagnetic to ferromagnetic, varying B
and fixing E (Fig.3A-B), to return to its initial state we keep B
constant and increase E until the system presents a transition
from ferromagnetic to antiferromagnetic (Fig.3C-D).

FIG. 2: Transition of exchange energy for J(E). Instead of J(B) and
J(d), the transition in this case is from ferromagnetic to antiferro-
magnetic.

FIG. 3: Switching system for two laterally coupled quantum dots
operating as a quantum gate.

The behavior of the exchange energy as a function of d is
showed in Fig. 4. In this representation, for diverse values of
B, and with E = 0, if we vary d between 0 and 1.5 a transition
antiferro - ferro of J is evident for B > 1T . Similarly to Fig.
1, for d > 1, the overlapping between the wave functions de-
creases exponentially. Another important characteristic which
uncover the efficiency of this model is exhibited when an in-
crease of the B field is made, producing a diminution of the
separation distance between the dots at which J changes its
sign.

In the last years, experiments of inelastic cotunneling for two
electrons in a single gated quantum dots have led to carry
out measurements of the exchange energy J[15], showing a
high concordance with the already described in the theoretical
model.
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FIG. 4: Behavior of the exchange energy J(d) as a function of the
quantum dots separation, keeping the electric field constant, E = 0V .
We observe that the increasing of the magnetic field produces a
diminution of the separation distance between the dots at which J
changes its sign.

VII. CONCLUSIONS

We achieve a detailed description of a satisfactory model
which let us calculate the exchange energy factor J analyt-

ically, for a system of two laterally coupled quantum dots,
applying the Heitler-London formalism.

The calculation of J as a function of parameters such as E, B
and d, and an adequate variation of them allows us to describe
a control scheme in the sign of the exchange energy, which
will help to produce qubits entanglement in the arquitecture
of Loss and DiVincenzo.

Using a constant magnetic field over the two quantum dots
it is possible to switch the exchange energy sign, by means of
a changeable electric field, whose increase allows an antifer-
romagnetic to ferromagnetic transition.

A switching scheme of J is also presented, which allows
to a quantum gate reaching its initial state after computing
certain operation, without eliminating the interactions of the
electric and magnetic fields on the system.
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