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Phase Evolution of the Electronic Transmission Through a Kondo Correlated Quantum Dot
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We study the scattering phase shift of the Kondo assisted transmission through a quantum dot (QD), consid-
ering a model that includes an additional non resonant channel transmission. To compute the phase evolution
and the transmission amplitude of the QD, for different temperatures, we describe the QD employing the single
Anderson impurity model in the limit of infinity Coulomb repulsion, within the X-boson approach. Our results
are consistent with the development of an unusually large phase evolution at around 7 in the Kondo valley,
observed in recent experiments, and is consistent with others theoretical treatments.
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I. INTRODUCTION

The scattering phase shift of the Kondo effect cannot be ac-
cessed in bulk Kondo systems or in mesoscopic systems by
means of conductance measurements [1-3]. It was theoreti-
cally predicted that the Kondo scattering in the unitary limit
(the localized occupation number ny =~ 1), of the impurity An-
derson model induces a phase shift of /2 [4]. However, re-
cent experimental results for a quantum dot (QD) embedded in
a double path electronic interferometer [1, 2], presents anom-
alous behavior, as plateaus of the phase shift at around 7. Re-
cent theoretical work [5], employing the Anderson impurity
model to describe the QD and using the numerical renormal-
ization group (NRG) technique, predicts the existence of a
7t/2 plateaus for the phase evolution of the QD in the Kondo
limit. This prediction disagrees with the experimental reports
of Y. Ji et.al. [2] which measures the complex transmission
amplitude of a QD near the unitary limit and observed that
the transmission phase evolves almost linearly over a range
of about 1.57, when the Fermi energy was scanned through
a spin degenerate energy level of the QD. Another theoretical
treatment, developed to describe the same problem [6], em-
ploys the Kondo model for a single and multilevel QD and
using scale arguments obtain results that agree well with the
experiments [1, 2] in the Coulomb blockade regime, but fail to
explain the large span of the phase shift in the Kondo regime
[2]. Other argument suggested that the stochastic fluctuation
of the Kondo temperature (Tx) due to topology, finite size
effects and mesoscopic fluctuations, should originate serious
limitations to determine the transmission phase through a QD
[7].

We consider a model that includes a weak direct non-
resonant transmission through a QD, represented in Fig. 1 by
the path W as well as a Kondo-resonant transmission chan-
nel represented in the same figure by the leads connected to
the quantum dot by the hopping term V. This model was
previously discussed employing the slave boson mean field
technique (SBMFT) [8]. The importance of including more
than one resonant transmission channel is that the Fano-type

FIG. 1: Pictorial view of the embedded QD in the leads. The hop-
ping between the leads and the QD is represented by the letter V and
the tunneling amplitude W is responsible for the direct transmission
between the left and right leads.

interference between the resonant and the non-resonant trans-
mission channel can provide a possible explanation for the
anomalous phase drop accompanied by transmission zero [9—
11]. Our model is formally equivalent to a two terminal AB
interferometer containing a QD [12], but in this work the
phase shift is not computed and the reference arm is associated
with our direct transmission term W. It is necessary to high-
light, that in our treatment the non-resonant direct channel,
describes the direct transmission through the QD. The phase
shift computed, takes into account the transmission through
all the system (resonant transmission of the QD channel, and
the W-direct channel) and not only through the QD [5].

We applied the X-boson method, for the single impurity
case, to describe the transport properties of this system. As we
analyzed in our previous works [13, 14], the impurity X-boson
approach is not a reliable approximation, at very low temper-
atures, in the extreme Kondo regime but it is a good approx-
imation, at low temperatures, in the intermediate valence and
empty dot regime. At temperatures 7 ~ Tk or higher, the im-
purity X-boson approach is a good alternative to the SBMFT
in all the regimes, because the SBMFT presents a spurious
second order phase transition at Tx [17], whereas the X-boson
solution evolves to the correct thermodynamic limit at high
temperatures [13].
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II. MODEL

We employ the model Hamiltonian H = H; +Hr+Hp+ Hr
to describe the QD system, represented in a pictorial form in
Fig. 1. The Hamiltonian for the left (L) and right (R) leads
are given by

HO‘ = ZEk,(xCL%GCk,a,c (O(‘ = L7R)7 (1)
k.o

where c:( o (Ck,ac) s a creation (destruction) operator of an
electron with energy Ej o, momentum k and spin ¢ on the lead
o.. The interacting QD is described by

Hp = Z Ed,GXd.GGa 2)
c

where this term describes the Anderson impurity character-
ized by a localized d level E;s, (we employ the d letter
to indicate the localized electrons at the impurity site). We
work in the infinite correlation limit U = oo, because this
limit is able to catch all the relevant physics of the Kondo
effect and the Yang Ji et.al. experiment [1, 2] were per-
formed in a strong correlated QD (U = 1.5meV) [15]. We
shall employ the Hubbard operators [16] to project out the
doubly occupied state |d,2) from the local states of the im-
purity. The identity decomposition in the reduced space of
impurity local states is given by X; 00 + X4.06 + Xi55 = 1,
where 6 = —o, and the three X, ,, are the projectors into the
corresponding states | d,a). The occupation numbers on the
impurity ng , =< Xy 4, > satisfy the “completeness” relation
140+ nqc+ngss = 1. The tunneling Hamiltonian Hr is

Hy = Z Z(VaXJ-,OGCk,a7c+H.c.) 3)

a=L,Rk,c

+‘2: OVCZKGQH¢G+}1Q)'
kK G o

The tunneling amplitude W is responsible for the direct trans-
mission between the two leads, and V,, for the tunneling be-
tween the QD and the lead o.

For simplicity, we assume symmetric junctions (i.e. V, =
Vg = V) and identical leads. The direct tunneling matrix ele-
ment W = |W|exp(in), while the hopping matrix elements Vy,
can be kept as positive real numbers without loss of general-
ity. The m stands for the phase difference between the reso-
nant and the non resonant component and here we assume that
n=0,x[8].

Using the Friedel’s relation between the scattering matrix
and the local Green’s functions (GF) [4, 8] one can write the
transmission amplitude of the electrons with energy E from
the left to the right lead as

tR(E) = iexp(in)|ty| +iexp(in)TerrGop(E)  (4)
[[rp|cos(M) —i(tp| + sin(n)],

R. Franco et al.

where |tp| = 2x/(1 4 x?) with x = np.W is the amplitude of
the direct transmission, with p. being the conduction den-
sity of states of the leads and |rp| is obtained by the rela-
tion [t)? + |rp|> = 1. Gop(E) = V2DsG¢(E)G2(E) is the
local dressed GF, that describes a QD embedded between
the two leads, with V being the hybridization, D is a vari-
ational X-boson parameter, G¢(E) and G.(E) are the GF’s
of the QD and the conduction band, represented here by the
leads. These GF’s are obtained by the X-boson approach
[13, 14]. The effective hybridization parameter is obtained
by Lepr =T/(14x%), with ' = 21p. V2. In our approxima-
tion we employ the local GF for the QD, obtained using the
X-boson treatment for the impurity case [13, 14].

The limit of unitary direct transmission (|¢,| ~ 1), was pre-
viously investigated by us for a ballistic quantum wire coupled
to a QD [13]. At finite temperatures, we consider the thermal
average of the transmission amplitude

Z
d
IR = (_a’lEf) tir(E)dE, &)

where ny is the Fermi-Dirac distribution function.

LOE | — =10
E eff
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= T=05,

osf

FIG. 2: Magnitude of the transmission amplitude |tzg| for n =0 and
|ty| = 1070 vs. —Ef /T, ¢, for different temperatures.

III. RESULTS AND DISCUSSION

To simplify the calculations we represent the leads by
a square conduction band of half-width D and we employ
in the numerical calculations the following parameters set:
D = 100A with A = tV2/2D = 1, |t,| = 107° (figures 1-2),
|tp] = 0.2 (figures 3-6) and 1 = 0 in all the figures.

In Fig. 2 we show the magnitude of the transmission am-
plitude |fzg|, for a very low value of the direct transmission
probability |t,|> = 10712 vs. —E/T,sy (the level energy in
the QD) for different temperature values. The results are con-
sistent with the situation where we have an embedded QD, be-
cause in this case the direct transmission is W = 0. The max-
imum value of the |fzg| occurs in the Kondo limit and when
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FIG. 3: The phase shift Ay forn =0 and [t,| = 1076 vs. —E/Tff,
for different temperatures.

the temperature increases, the Kondo effect vanishes and the
maximum decreases.

In Fig. 3 we present the phase shift Ay/m vs. —Ef /Ty, for
different temperatures and the same parameter set of Fig. 2.
The results are consistent with the expected 1t/2 phase change
in the Kondo limit.
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FIG. 4: The magnitude of the transmission amplitude |fzg| vs.
—E;/T,yy, for different temperatures.

In Fig. 4 we present the magnitude of the transmission am-
plitude |z.r], for the same parameter set of Fig. 2, but now em-
ploying |#5| = 0.2 (finite transmission probability for the direct
channel). Comparing the figures 2 and 4 we can see that the
transmission |f;g| presents little variation in both figures what
agrees with the results presented in reference [8] but in Fig. 5
we present the corresponding phase shift Ay/m vs. —Ef/Toyy
and we obtain a unusually large plateau of the phase evolution
at around . As we work in the strong Coulomb correlation
limit U — o when the QD total occupation number is closest
to its maximum value ngp = 1, we describe the phase shift in
the Coulomb blockade valley regime. Our results show that in
this situation the phase shift Ay/z follows the Coulomb block-
ade regime presented in a recent experimental report [1, 2],
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FIG. 5: The phase shift Ay vs. —Ey /T, sy, for different temperatures.
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FIG. 6: The magnitude of the transmission amplitude |fzg| vs.
T /Ty, for different regimes of the QD.

and in a theoretical work [8].

In Fig. 6 we show the magnitude of the transmission am-
plitude |t;g| vs. temperature T /T sr, for different values of
Ey, associated with different regimes of the QD; empty dot,
intermediate valence and Kondo. Our results agree qualita-
tively with those expected for an embedded QD [5, 18]. In
Fig. 7 we present the phase shift Ay vs. the E level energy in
the QD. For Ef < 0; Ef = —0.5I", ¢ and Ey = —I'., (Kondo
regime) the Ay/T magnitude is closer to 0.5, at low temper-
atures, which agrees with the results for the phase shift of
the conventional impurity Kondo problem. At temperatures
greater than the Tk, for all the cases the phase shift is closest
to the value 0.8, which agrees with our result for the Coulomb
blockade regime.

IV. CONCLUSIONS

The quantum interference process between a weak proba-
bility of direct transmission |#,| and the Kondo resonant chan-
nel, is responsible for the changes into the transmission |f;g]|
and the phase shift scattering Ay, this later in a more important
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FIG. 7: The phase shift of the transmission amplitude Ayvs. T /Ty,
for different regimes of the QD.
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way, producing plateaus of Ay near T, as function of the QD
energy E. These results agree with the experimental report of
Y. Jiet.al. [1, 2] in the transition from the Kondo to Coulomb
blockade regime.
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