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We calculate the spin gap of homogeneous and inhomogeneous spin chains, using the White’s density matrix
renormalization group technique. We found that the spin gap is related to the ration between the spin velocity
and the correlation exponent. We consider a spin superlattice, which is composed of a repeated pattern of two
spin- 1

2 XXZ chains with different anisotropy parameters. The behavior of the charge velocity as a function of
the anisotropy parameter and the relative size of sub-chains was investigated. We found reasonable agreement
between the bosonization results and the numerical ones.
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I. INTRODUCTION

The study of one dimensional spin systems has increased
in the last decade, impelled by theoretical results such as the
Haldane conjecture[1, 2], which affirms that the ground state
of isotropic Heisenberg chains with integer spin are gapful,
whereas half-integer spin ones are gapless. Also, the synthe-
sis of new materials has been crucial, because interesting phe-
nomena such as the magnetization plateaus were observed[3].
Oshikawa, Yamanaka and Affleck[4] derived the condition
p(S−mz) = integer, necessary for the appearance of the mag-
netization plateaus in 1D systems. Here, p is the number of
sites in the unit cell of the magnetic ground state, S is the mag-
nitude of the spin and mz is the magnetization per site (taken
to be in the z-direction).

The low-energy properties of spin chains with spin S in par-
tially magnetized phases are described by the one-component
Luttinger liquid theory. The first parameter of this theory
is the location of the Fermi points ±kF , given by 2kF =
2π(S−m), where m is the magnetization. The second parame-
ter, the spin velocity is just an energy scale, whereas the third
parameter determines the universality class and the critical ex-
ponents. Spin chains with S = 1/2 can be solved exactly us-
ing the Bethe Ansantz, particularly for the anisotropic model
Yang and Yang[5] found a Luttinger liquid (gapless) phase for
−1 < ∆ < 1, where ∆ is the anisotropy parameter. The validity
of the Luttinger liquid theory has also been checked numeri-
cally for S = 1[6], and in fact, it is conjectured in general for
higher S[7].

Different Inhomogeneous spin chains has been studied in
the last years[8–10]. These systems are obtained when we
consider the spatial variation of the coupling constants or an
inhomogeneous magnetic field. The special case of spin su-
perlattice (SS) composed of a repeated pattern of two long and
different spin- 1

2 XXZ chains, was considered by one of us in
a previous work[10]. We found that the magnetization curve
presents a nontrivial plateaus whose magnetization value de-
pends on the relative size of sub-chains ` = L2/L1 and is given
by Ms = 1/(1+`). For away from the plateaus gapless phases
appears, which were described in terms of Luttinger liquid su-
perlattice model parameterized by an effective velocity and an

effective correlation exponent[11]. Here we extent the pre-
vious study of the gapless region using the White’s density
matrix renormalization group technique[12, 13]. We consid-
ered lattice sizes up to 100 sites with up to m = 600 states per
block. The truncation errors were below 10−9.

II. MODEL AND RESULTS

Consider a SS whose unit cell consists of two S = 1/2 XXZ
chains with different anisotropy parameters ∆λ and sizes Lλ
(λ = 1,2) (but the same planar coupling) in the presence of
a magnetic field h applied along the anisotropy (z-)axis. Its
Hamiltonian is

H = J
L

∑
n=1

(
Sx

nSx
n+1 +Sy

nSy
n+1 +∆λSz

nSz
n+1

)

− h
L

∑
n=1

Sz
n, (1)

where Sx, Sy and Sz denote the spin- 1
2 operators and L =

Nc(L1 + L2) is the superlattice size. Here, Nc is the number
of unit cells, each of which has a basis with L1 + L2 sites.
We assume the chain is subjected to periodic boundary condi-
tions. The homogeneous situation is recovered when ∆λ = ∆,
independent of the position.

We then take advantage of the fact that each sub-chain is a
LL connected at its ends to reservoirs (the rest of the lattice)
to describe the low-energy properties of the SS in terms of a
LL superlattice (LLSL)[11] with Hamiltonian

H =
1

2π

Z
dx

{
u(x)K(x)(∂xΘ)2 +

u(x)
K(x)

(∂xΦ)2
}

. (2)

Here, we have introduced the sub-chain-dependent parameters
u(x) and K(x). For x on the sublattice λ, one has K(x) =
K(J,∆λ,h) and u(x) = u(J,∆λ,h), i.e., the usual uniform LL
parameters for each sub-chain, which can be obtained directly
from the Bethe Ansatz solution[14].

In the Hamiltonian (2), ∂xΘ is the momentum field conju-
gate to Φ: [Φ(x),∂yΘ(y)] = iδ(x−y). Φ and Θ are dual fields,
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FIG. 1: The charge velocity for a homogeneous spin chain as a func-
tion of the anisotropy parameter. The dashed line was obtained from
the exact solution using the Bethe Ansantz.

since they satisfy both

∂tΦ = u(x)K(x)∂xΘ (3)

and the equation obtained through the replacements Φ → Θ,
Θ→ Φ, and K → 1/K. These equations can be uncoupled to
yield

∂ttΦ−u(x)K(x)∂x

(
u(x)
K(x)

∂xΦ
)

= 0, (4)

and a dual equation for Θ. The equations of motion are sub-
ject to the continuity of Φ and Θ[15]. This guarantees the
continuity of the spin field. Since the time derivatives of
these functions are continuous, the right hand side of Eq. (3)
and its dual yield, as additional conditions, the continuity of
(u/K)∂xΦ and uK∂xΘ at the contacts. Physically, this reflects
the conservation of the z-axis magnetization current density
j =

√
2∂tΦ/π at the interfaces between the sub-chains, see

Eq. (3).
We diagonalize the Hamiltonian (2) through a normal mode

expansion of the phase fields

Φ(x, t) =−i ∑
p 6=0

sgn(p)
φp(x)
2√ωp

[b−peiωpt +b†
pe−iωpt ] (5)

Θ(x, t) = i ∑
p6=0

θp(x)
2√ωp

[b−peiωpt −b†
pe−iωpt ] (6)

where b†
p are boson creation operators (p > 0). Plugging (5)

into (4) we see that the normal mode eigenfunctions φp(x) and
eigenvalues ωp satisfy

ω2
pφp(x)+uK∂x

( u
K

∂xφp

)
= 0, (7)
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FIG. 2: c/K∗ as a function ∆2 for a SS with ∆1 = 0.4, ` = 1/2 and
L = 100. The continuous line was obtained using bosonization.

subject to the same boundary conditions at the contacts as be-
fore, with φp(x) replacing Φ(x). The eigenvalues are given
by

cos p(L1 +L2) = cos(
ωpL2

u2
)cos(

ωpL1

u1
)

−η
2

sin(
ωpL2

u2
)sin(

ωpL1

u1
), (8)

where η = K1/K2 +K2/K1.
For p¿ π/(L2 +L1), ωp ∼= c |p|, and the effective velocity

for the SS is

c =
u1(1+ `)√

1+η`u1/u2 +(`u1/u2)
2
, (9)

where ` = L2/L1. Clearly, c → u2 as ` → ∞, and c → u1 as
`→ 0. In terms of the bosonic fields, the spin operators read

Sz
x =

M
2
− 1√

2π
∂xΦ+

1
πα

cos
[
2Φ(x)−2φ(x)

]
,

S+
x =

1√
2πα

e−iΘ(x)
{

1+ e2iφ(x) cos [2Φ(x)]
}

,

where φ(x) = kF x−φ0 (x), the Fermi momentum kF is related
to the magnetization by kF = (1 + M)π/2 and α is a cutoff
parameter[16]. Thus, the correlation functions of the SS (for
well separated x and y) are given by

〈Sz(y)Sz(x)〉 ∼ C

2π2 |x− y|2 +A
e2i(φ(y)−φ(x))

m |x− y|2K∗ , (10)

〈
S+(y)S−(x)

〉 ∼ B1

|x− y|K/2
+B2

e2i(φ(y)−φ(x))

|x− y|K/2+2K∗
, (11)

where the LLSL effective exponent is

K∗ =

√
1+η`u1/u2 +(`u1/u2)

2

1
K1

+ ` 1
K2

u1
u2

≡ f (K1,K2), (12)
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FIG. 3: c/K∗ as a function ` for a SS with ∆1 = 0.4 and ∆2 = 0.2.

K = f (1/K1,1/K2) and C is a function of system parameters
and the sub-chain[11]. From Eqs. (10,11), we see how the
correlation functions of the homogeneous system are recov-
ered when K1 = K2 and u1 = u2. The important feature to
notice in Eqs. (9) and (12) is the fact that the effective SS
parameters represent a certain weighted average of the indi-
vidual sub-chain velocities and correlation exponents. This
weighted average is induced by the superlattice structure and
it is a feature ubiquitous in TLLS’s.[10, 11] It is straightfor-
ward to extract from the Hamiltonian (2) the finite-size spin
gap of the system. It is given by

E (Sz
tot = 1,h = 0)−E (Sz

tot = 0,h = 0) =
πc

2K∗L
. (13)

From this relation we can estimate the charge velocity, which
is given by the ration between the spin velocity and the corre-
lation exponent.

First, we will calculate the charge velocity for a homoge-
neous spin chain as a function of the anisotropy parameter. In
Fig.1 we observe that the charge velocity increases with the
anisotropy parameter and an excellent agreement between the
exact results and DMRG ones. But near the critical value we
can see a slight discrepancy.

Now we can calculate the charge velocity from the scaling
of the spin gap with the system size and to verify the predic-
tions of Eqs. (9) and (12) for the effective Tomonaga-Luttinger
parameters.

For a SS with ∆1 = 0.4, Nc = 4, L = 100 and ` = 1/2
the numerically determined ratio c/K∗ as a function of the
anisotropy parameter ∆2 is shown in Fig.2. For comparison,
we also show the TLLS prediction obtained from the ratio of
Eqs. (9) and (12) and from the known values of uλ and Kλ for
homogeneous chains. We can see that the ratio c/K∗ increases
gradually with the anisotropy parameter. When ∆2 = 0.4 the
SS becomes a homogeneous chain and the exact value, ob-
tained by Bethe Ansantz u1/K1 = 1.57 is recovered. Also we
observed a good agrement between the bosonization results
and the numerical ones for ∆2 < 0.7, but the scenario changes
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FIG. 4: c/K∗ as a function ` for a SS with ∆1 = 0.4 and ∆2 = 0.8.

for bigger values, because the parameter ∆2 is near the criti-
cal value, and we know that the results are poor in this case
(see Fig. 1). The ration c/K∗ as a function of ` for a SS
with ∆2/∆1 < 1 and ∆2/∆1 > 1 is shown in Fig.3 and Fig.4
respectively. We used Nc = 4, ∆1 = 0.4, ∆2 = 0.2 and 0.8.
The considered SS sizes were L = 100,76,100,52,76,100,
for ` = 1/2,3/4,5/4,3/2,5/2,7/2, respectively. The TLLS
predictions are shown again for comparison. Note that c/K∗
decreases (increases) with ` if ∆2/∆1 < 1 (∆2/∆1 > 1). We can
see that there is reasonable agreement, with slightly larger dis-
crepancies at larger ` for both ∆2/∆1 < 1 and ∆2/∆1 > 1. The
ratio u/K for homogeneous chains with anisotropy parameters
∆ = 0.2, ∆ = 0.4 and ∆ = 0.8 are equal to u/K = 1.28, u/K =
1.57 and u/K = 2.33, respectively ( see Fig.1). c/K∗ inter-
polates smoothly between u1/K1 and u2/K2 as ` increases, a
manifestation of the spatial averaging due to the superlattice
structure. We believe that the small discrepancies between
the curves in Fig.3 and Fig.4 are due to the finite sizes of the
sub-chains. We recall that the TLLS predictions are expected
to hold asymptotically for very long sub-chains. For a gapless
phase, the inhomogeneities created by the boundaries between
sub-chains will give rise to Friedel oscillations which die out
only as power laws.[17] These disturbances are expected to
give rise to finite-size corrections to the TLLS predictions.
We stress, however, that although the TLLS analysis predicts
a sort of weighted average for the dependence of c/K∗ on `,
the detailed form of this average is highly nontrivial. Yet, pre-
cisely this non-linear dependence is strikingly confirmed by
the numerical data. We consider this as a stringent test of the
predictions of the theory.

III. CONCLUSIONS

We found that using the scaling of the spin gap with the
system size, the Tomonaga-Luttinger parameters for homoge-
neous and inhomogeneous spin chains can be estimated. For a
spin chain with a superlattice structure the previous bosoniza-
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tion results for the effective spin velocity and effective cor-
relation exponent were recovered numerically using density
matrix renormalization group for finite systems. The ration
c/K∗ decreases (increases) with ` if ∆2/∆1 < 1 (∆2/∆1 > 1).
Thus, the low energy properties of spin superlattices are well
described in terms of Luttinger liquid superlattice theory.

Acknowledgments

We acknowledge useful discussion with A. L. Malvezzi, J.
C. Xavier and E. Miranda. This work was supported by COL-
CIENCIAS (1101-05-13619 CT-033-2004) and DIB-UNAL
(803954).

[1] F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).
[2] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[3] E. Dagotto, Rep. Prog. Phys. 62, 1525 (1999).
[4] M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett.

78, 1984 (1997).
[5] C. N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966); 150,

321 (1966); 150, 327 (1966); 151, 258 (1966).
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