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The Role of the Boundary Conditions on the Critical Properties of Superconducting Rings Under
the Action of a Tranversal Magnetic Field
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In the framework of the Ginzburg-Landau (GL) theory in the limit of a GL parameter much larger than unity,
we study theoretically the critical behavior of a mesoscopic superconducting ring with negligible width in the
presence of a magnetic field applied perpendicularly to the ring plane. It is assumed that the inner ring edge is in
contact with a material whose properties are accounted in the de Gennes boundary condition with a parameter
b (de Gennes extrapolation length), while the outer edge is in contact with vacuum. Special attention is devoted
to the influence of the different materials contacting the inner ring edge of the superconductor on the features of
the phase diagram, as well as the effect of the confinement on such thermodynamic property.
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I. INTRODUCTION

In either of the semiconductor and superconductor systems,
the concept of mesoscopics is directly related to that of low-
dimensionality. In superconductors there are two fundamental
length scales characterizing the confinement of the charge car-
riers. One is the penetration length A over which an externally
applied magnetic field is screened into the superconducting
condensate. The other one is the coherence length & which
limits the distance over which the superconducting order para-
meter can vary appreciably [1]. The ratio between the former
length and the latter, known as the Ginzburg-Landau (GL) pa-
rameter K, strongly affects the behavior of these systems under
external magnetic fields.

Fluxoid quantization in superconducting systems has been
known since many years ago. However, a resurgence of inter-
est for the study of mesoscopic superconducting samples (for
which their typical size is comparable to the coherence length
and the magnetic field penetration length) such as rings [2,3]
and disks [4,5] has been noted in the last decade. This interest
can be due to the recent impressive progress in nanostructur-
ing techniques such as e-beam lithography, single atom ma-
nipulation with a scanning tunneling microscope tip, etc. In
particular, special attention has been paid to quantum coher-
ence effects in superconducting rings and their arrays, which
can be important for potential applications in quantum com-
puting. The basic physics of such rings is governed by flux
quantization, as in the Little-Parks experiment [6].

One of the remarkable effects observed in small supercon-
ducting samples is the paramagnetic Meissner effect (PME),
for which the sample energy decreases upon increasing mag-
netic field [7]; as a consequence of this fact the sample
presents paramagnetic behavior in certain domain regions of
the phase diagram which alternates with the conventional dia-
magnetic behavior.

The superconducting condensate confined within these
non-trivial topologies is subjected to severe constraints and
the properties of such samples are strongly affected by the
boundary conditions. In particular, for mesoscopic cylindri-
cal superconductors, the influence of boundary conditions has
been discussed in Ref. [8].

In this paper we use the Ginzburg-Landau theory in order
to study the critical behavior of a mesoscopic superconducting
ring with negligible thickness, under the action of a magnetic
field applied perpendicularly to the ring plane. It is assumed
that the inner ring edge is in contact with a material whose
properties are accounted in the de Gennes boundary condition
with a parameter b (de Gennes extrapolation length), while the
outer edge is in contact with vacuum. Special attention will be
paid to the influence of such conditions on the PME.

II. MODEL

We consider a circular ring in the plane z= 0, centered on
the z axis, with external radius R and hole radius Rj under
an uniform magnetic field H normal to the plane of the film
sample. The ring is considered mesoscopic in the sense that
its characteristic size R satisfies the condition d;;&;/R; A, in
which d is the thickness of the superconducting film. In this
range we can neglect the screening of the magnetic field [2]
and the vector potential of the applied field is given by A =
JHXT.

In cylindrical coordinates p y ¢, the normalized GL para-

meter y = ‘P/, /|| /B, where o and B are the usual GL co-
efficients, satisfies the equation:
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Here x=p/R, ® is the flux quantum, ®=n R*His the mag-
netic flux through the disk of radius Rin the absence of any
flux expulsion and b is the de Gennes extrapolation length.
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In order to obtain the upper critical field H.3 for the meso-
scopic ring, using the linearized GL equation [9], we search
for solutions of definite angular momentum n of the form
W (x,0) = fu(x) exp(in®). The solution of the linear ver-
sion of Eq. (1) satisfying the first boundary condition (at the
external ring edge), can be expressed in the form:

2 .
W, (x,9) = x"exp (—"7% —I—ln(p) X

)
[M (Y,n—l— 1,x2%> — AU (Y,n—i— l,xz%)]

in which M and U are the independent solutions of the Kum-
mer equation [10],
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The quantity
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is determined by the non-linear equation
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which results from the boundary condition at the inner edge
of the ring.

For a given flux &, the critical line T.(®) is obtained by
choosing the angular momentum value which minimizes the
dimensionless quantity R? / 2.

III. NUMERICAL RESULTS

The trascendental equation (5) was solved in order to obtain
R? / £2 as a function of the dimensionless flux given by ® / D
for various values of the de Gennes extrapolation length b and
different ratios R, / R. The H 3phase transition line is made up
of the envelope line of the curves R? / E2vs @ / d for differ-
ent number nof flux quanta entering the ring.

The H_slines for a ring with R,=0.5R and for different val-
ues of the de Gennes extrapolation length are shown in Fig. 1.

When the inner hole is filled with a perfect insulator (b = )
the H zphase transition line is made up of the envelpoe of a
set of curves with n=0, 1, 2,...starting at &/®y=0 and show-
ing three paramagnetic domains located above the transitions
n=0— n=1, n=1— n=2, n=2— n=3 (Fig. 1(a)). The numeri-
cal analysis shows that this picture remains qualitatively un-
changed for finite values of b satisfying b;R. But for bjR
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FIG. 1. The upper critical field H,3 (thick line) for a ring with R,=0.5R
and for different values of the de Gennes extrapolation length b:
(@) b=oo, (b)b=R, (c)b=0.5R,(c)b=0.1R. For finite bH_3intersects
the upper critical field H., (dashed line) at &/dy =T

considerable qualitative changes in the phase diagram are ob-
served. In order to illustrate them, in Fig. 1(b) we took an ex-
trapolation length comparable with the external radius of the
ring (b = R). The following remarcable features are observed:
(i) the envelope line defining H,3 does not include the n=0
curve; (ii) the paramagnetic domains are located above the
transitions n=1— n=2, n=2— n=3; (iii) the H.3 line intersects
the H., line at a nonzero value I" of & / ®(. This means that
for magnetic fields satisfying ® / @I the transition to the
normal phase is not mediated by the superconducting states
associated to the presence of the ring edges. When the de
Gennes extrapolation length bfurther decreases, I' shifts to-
wards greater values of the applied magnetic field, as can be
seen from Fig. 1(c — d). This means that at the inner edge the
supercondincting current is supressed for more values of the
flux quanta.

In order to understand the role of the radial confinement
on the behavior of the phase diagram, we have considered in
Fig. 2 a ring with a hole radius R;=0.75R for the same set
of values of b as in Fig. 1. It is seen that the increasing of
the radial confinement causes an increment of the number of
domains exhibiting PME. Additionally, it is noted that the ef-
fect of the medium contacting with the internal edge of the
ring is more notorius, than in the ring of Fig. 1. This can
be understood if we consider the relation between two areas:
(i) The area of the region where the order parameter extrapo-
lates outside the inner edge and (ii) the superconducting ring
area. With the increasing of the radial confinement, this rela-
tion also increases, which leads to the fact that the value of I
at which the H.3 line intersects the H., line exhibits a faster
desplacement along the H,; line as b diminishes.

In Fig. 3 we have represented the H,3 field (in units of ®y/(1t
Rz)) as a function of the reduced temperature 7/T;o, (T obeing
the transition temperature at zero magnetic field of a disk of a
radius R) for a fixed value 5#=0.5R and for different values of
the hole radius. For reference we have plotted in Fig. 3(a) the
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FIG.3. Temperature behavior of the upper critical field H.3 (in units
of (Hy = <I>0/(7tR2)) for rings with a fixed de Gennes extrapola-
tion length b=0.5R and different hole radii: (a)R,=0, (b)R,=0.25R,
(¢)R4=0.5R,(d)R;=0.75R.
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case of a disk. We see that in the ring the superconductivity
can not be preserved up to 7/To=1, caused by the proximity
effect at the inner edge, which affects the superconducty in the
ring region. The corresponding critical temperature at which
the superconductivity associated to the presence of edges dis-
appears diminishes as the radial confinement increases. A
similar conclusion with relation of the role of the proximity
effect on the superconducting properties of long cylinder sam-
ples in an external magnetic field has been pointed out in Ref.
[7].
IV. CONCLUSIONS

We have studied (in the frame of the GL theory) the upper
critical field of a type Il mesoscopic superconducting ring with
negligible width in the presence of a transversal magnetic field
under the assumption that the order parameter at the inner ring
edge extrapolates outside the boundary at a distance b. For a
given value of the de Gennes extrapolating length, the oscillat-
ing behavior of the H,3 is controled by the size of the hole and
has been observed to be more pronounced as the radial con-
finement in the ring increases, which causes an increment of
the number of domains exhibiting the Paramagnetic Meissner
effect.

For a given hole radius, we have shown that the character-
istics of the material filling the hole area strongly influence
the behavior of the upper critical field, which manifests in the
appearance of a nonzero point at which the H.3 line intersects
the H., line.

The obtained relations can be used to consider the influence
of the radial confinement on the so called enhanced supercon-
ductivity [11]. Additionally, these results can be extended in
order to discuss the influence of boundary conditions at the
outer edge. A further extension can take into account also the
effect of eccentricity; for semiconductor rings such problem
has been discussed recently in Ref. [12]
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