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Influence of Interaction Energy in Fluid-Fluid Phase Transitions
on Langmuir Monolayers
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A pure lattice model for Langmuir monolayers is presented where only nearest neighbor interactions are con-
sidered. The flexibility of hydrophobic tails laying on the surface is taken into account but the segments above
the surface are taken as upstanding rigid rods without contribution to the entropy. The numerical calculations
show that to obtain more than one phase transition the flexibility of these tails has to be taken into account.
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I. INTRODUCTION

Langmuir monolayers have been the subject of research for
many years. Although most studies involve the elucidation of
some experimental features of these systems, the number of
theoretical papers dealing with the topic is increasing. The
aim of most of these models is to describe the structure and
phase transitions in Langmuir monolayers and to elucidate
the different mechanisms involved in phase transitions. To
achieve this aim the strategy is to reproduce the surface pres-
sure vs. mean molecular area isotherms and compare them
with experimental results. In a strict sense, theoretical models
can be subdivided in two different classes: computer simula-
tion models and molecular models.

The first class includes models that attempt to reproduce
phase transitions in Langmuir monolayers in different ways:
by including all atoms of the molecule forming the monolayer
[1,2,3] and by including only some selected degrees of free-
dom of these molecules [4,5].

The second class contains molecular models that attempt
to reproduce phase transitions (inclusive tilting phase tran-
sitions) treating the molecules as cylindrical rods grafted on
a two-dimensional lattice. An important restriction of these
models is the use of lattices which imply the assumption that
the mass center of the molecules are fixed on a hexagonal lat-
tice. These models aim to explain the mechanism of succes-
sive fluid-fluid phase transitions and it is this problem that lays
the main focus of interest of this paper.

Different assumptions have been made to explain the occur-
rence of more than one fluid-fluid phase transition. Some of
them are based in a mean-field analysis using a lattice. Wang
and Rice [6] employed a model similar to that of Scheutjens
and Fleer [7]. They derived a system of nonlinear equations
for the chain density profile normal to the surface and solving
this system obtained the equation of state of the monolayer. In
the model developed by Popielawski-Rice [8], different con-
formations of the molecules are treated as different species of
molecules whose concentrations can be determined from the
conditions of chemical equilibrium. They only obtained one
fluid-fluid phase transition and it seems that the main reason
that no more transitions showed up was the neglect of inter-

actions between portions of the chains that are located at the
space above the surface. Shin et al. [9] included those in-
teractions in this model and obtained two transitions, which
they interpreted as being due to a condensation of the por-
tions of the amphiphilic molecules in the surface and due to a
condensation of a “gas of tails” to a “liquid of tails” respec-
tively. Cantor and McIlroy [10] improved the method devel-
oped by Flory [11] to determine the number of distinguish-
ably different arrangements of the chains on the surface by
accounting for the effects of orientational anisotropy. Even
with this improvement, considering other models, they were
not able to obtain two fluid-fluid phase transitions. Recently,
Rusanov [12] proposed an equation of state based on the ex-
cluded area and obtained good agreement with experiments
in a limited temperature range. Good agreement with exper-
imental data were also obtained with the generalized Volmer
equation [13,14]. By taking into account chain conformation
and dipole-dipole interactions Ruckenstein and Li [15] were
able to reproduce some characteristic features of isotherms of
phospholipids.

In this work, we develop a lattice model in order to repro-
duce the fluid-fluid phase transitions in Langmuir monolayers
adapting Flory’s methodology to Langmuir monolayers. This
implies in the inclusion of chain connectivities among the seg-
ments of the amphiphilic molecules that remain on the sur-
face. The segments of the hydrophobic tail that remain above
the surface are taken as rigid rods as shown in Fig. 1. Calcula-
tions show that flexibility of the tails is one of the main mech-
anisms responsible for fluid-fluid phase transitions as will be
shown.

FIG. 1: Rigidity of chain segments on the air.
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II. THE MODEL

The model considers the whole system composed of sur-
face, water and air as a cubic lattice. By hypothesis, each
head group, water molecule, segment of the hydrophobic tail
or air molecule may occupy only one lattice site. The sites be-
longing to the surface may be occupied by head groups, chain
segments or water molecules. The polar head groups neces-
sarily lay on one surface site. Each site of the layer located be-
low the surface is occupied by one water molecule, and in the
space above the surface are located the tail segments and/or
the air molecules. For simplicity, we consider only nearest
neighbors interactions.

A. Analysis of the surface

The surface is considered as a bidimensional lattice occu-
pied by water molecules, hydrophobic segments and all polar
head groups. The total number of surface lattice sites is N0 and
the total number of amphiphilic molecules is denoted by M.
The molecules are assumed have ν segments (including the
head group) and Ni is the number of molecules that contain i
segments on the surface while the remaining ν− i are lifted on
the space above the surface. The number of water molecules
is denoted by Nw. The hydrophilic heads and the hydropho-
bic tail segments laying on the surface are considered alike
at the counting of the different arrangements on the surface.
The isothermal compression is done by stages: at each stage
the number of sites is diminished by an amount of ∆N0. After
each stage of compression the number of molecules remains
the same, i.e.,

ν

∑
i=1

Ni = M (1)

And all sites of the surface are filled up,

ν

∑
i=1

iNi +Nw = N0 (2)

The total number of arrangements of the molecules on the
surface is given by the expression developed by Flory:

ΩT =
N0!

Nw!∏ν
i=1 Ni!

[
z−1
N0

] ν
∑

i=2
(i−1)Ni

(3)

where z is the coordination number of the lattice.
The total entropy, differently of many authors [6,7,8,9,10]

can not be done by applying Stirling’s approximation, since
during compression, some molecular species, given by Ni’s,
may assume small values invalidating this procedure that
makes the approximation very poor. The proper way to calcu-
late the entropy, is the evaluation of Boltzmann’s expression
without any simplification, i.e., the evaluation of

∆STotal = kB lnΩT (4)

The interaction energy on the surface is obtained by a mean-
field analysis which includes interactions only between near-
est neighbors. The total interaction energy on the surface is
given by:

∆US = ∆Uw +
ν

∑
i=1

∆Ui (5)

where ∆Uw and ∆Ui are given by:

∆Uw =
Nwz
2N0

(εhhNw + εph

ν

∑
i=1

iNi) (6)

∆Ui =
iNi

2N0
(εphNw + εpp

ν

∑
i=1

iNi) (7)

The parameters εhh, εph and εpp denote the interaction en-
ergy between water molecules, water molecules and the am-
phiphile molecules and amphiphile molecules, respectively.

B. Analysis of the layer below the surface

The layer below the surface contains only water molecules
and they interact with the molecules laying on the surface
yielding

∆Udown = Nwεhh + εph

ν

∑
i=1

iNi (8)

C. Analysis of the layer above the surface

As shown in Fig. 1, above the surface the hydrophobic tails
are assumed as upstanding rigid rods. The interactions be-
tween these segments and the air molecules are not taken in
account. Only rod-rod interactions are considered and

UAir = UAir1 +UAir2 + ...+UAir(ν−1) (9)

where

UAir j = εpp(M−
j−1

∑
k=0

Nν−k)

[
1+

z
2N0

(M−
j−1

∑
k=0

Nν−k)

]
(10)

The variables UAir j, j= 1,2,3,. . . denote the energy of a seg-
ment in the jth layer above the surface due to its interaction,
εpp, with the segment in the layer just below it (belongs to the
same molecule), and due to its interaction with the segments
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in the same layer belonging to other molecules. This last in-
teraction is taken into account via a mean field approximation
similar to what was done for the segments laying on the sur-
face. Therefore, if the segment under consideration belongs to
layer j=1 the segments in this layer will necessarily belong to
molecules of the species N1,N2, ...,Nν−1; if it belongs to layer
j=2, in this layer will be segments belonging to molecules of
the species N1,N2, ...,Nν−2, and so on.

D. Calculations

The total interaction energy of the system and Helmholtz’s
free energy are given by, respectively:

UTotal = ∆US +∆Udown +UAir (11)

FTotal = UTotal −T ∆STotal (12)

The surface pressure is calculated using:

p =−(
∂FTotal

∂A
) =−[

FTotal(N0)−FTotal(N0−∆N0)
wN0

] (13)

where w is the area of one site. To determine the equilibrium
distribution, i.e,. the Ni’s that satisfy Equations 1 and 2 and
minimize Equation (12), we developed an algorithm for each
value of N0. The following steps are taken:

1) The first value of N0 must be equal to M, i.e., only the
head groups must lay on the surface.

2) The value of N0 must be increased by a small amount
∆N0 (instead a compression we perform an expansion). The
key reasoning behind this procedure is that the values of the
variables Ni’s must change in a small amount for each stage
of expansion. So, instead calculating all possible values of
the Ni’s that satisfy Equations (1) and (2), it is possible to
establish a range of feasible values for each Ni given the val-
ues of the former step. For this reason (less time consuming
calculations), this procedure diminishes enormously the com-
putational effort to calculate the equilibrium distribution for
all possible values of the number of sites.

III. RESULTS

Results show that for any size, i.e, different values of ν, of
the molecules there is at most one phase transition depending
strongly on the energy parameters. Fig. 2 shows a typical re-
sult where the calculation was done for 600 molecules, each
one with two segments (ν = 2; molecules having larger num-
ber of segments showed similar results). When the area of the
surface corresponds to about 800 sites, the van der Waals kind
loop shown in Fig. 2 indicates that a first order phase transi-
tion takes place. This conclusion is supported by the plateau
present by the Helmholtz free energy of the system around
this number of sites as can be seen in the same Figure.

In Fig. 3 we show the number of molecules of each species
(Nw,N1 and N2) at each step of the compression with energy
parameters close to those employed in Fig. 2. The hydropho-
bic segments lift continuously with diminishing area while the
water molecules are driven continuously out of the surface
down into the bulk of water. When the site number is close
to 2300 half of the molecules have their hydrophobic tail ex-
pelled from the interface and as the number of sites dimin-
ishes, the number of molecules having two segments, N2, be-
comes smaller while those having only one segment increases.
At the phase transition (number of sites, N0, approximately
800) about 85% of the molecules have their hydrophobic tail
lifted.

FIG. 2: Surface pressure, p, and Helmholtz free energy, F, in units of
kT, vs. number of sites, N0, for molecules of size ν = 2. w is the size
of the lattice cell. The values of the energy parameters employed are
given in the Figure.

FIG. 3: Number of molecules of each different molecular species,
Nw, N1, N2, vs. number of sites, N0, for molecules of size ν = 2.
The parameters employed are close to those employed in Fig. 2.

As already mentioned, molecules of larger size, i.e., ν > 2,
or larger number of molecules, i.e., M > 600, show similar
results under compression. This leads to the conclusion that
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the phase transition is from a phase in which the hydrophobic
tails are laying on the surface to a phase where they are lifted
above the surface into the air.

IV. CONCLUSIONS

The model presented in this paper is able to reproduce only
one fluid-fluid phase transition. The mechanism responsible
for this transition is due to the interaction among the hy-
drophobic segments that at compression are gradually lifted
above the surface. There are two reasons to consider concern-
ing the absence of a second phase transition. All models that

reproduced two phase transitions are hybrid models, i.e., they
cannot be considered as pure lattice models, since additional
hypothesis besides the lattice hypothesis, like the tilt angle of
the hydrophobic tails, are used. The second reason may be
the assumption of rigid rods for the hydrophobic tails driven
out of the surface into the air under compression. Schmid and
Schick [16] and Schmid [17] showed that the two phase transi-
tions occur only for two sufficiently flexible chains above the
surface and that the increase of rigidity gives rise to only a sin-
gle transition from a gaseous to a condensed phase. Therefore
one may conclude that pure lattice models are able to predict
only one fluid-fluid phase transition on Langmuir monolayers.
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