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Gluon Saturation and Proton - Anti-Proton Cross Sections
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We study proton - anti-proton cross sections in the framework of an updated minijet eikonal model. We
propose a different scheme for fixing the parameters, in which we make use of the measured minijet cross
section. We compare the results obtained with the GRV98, MRST98, CTEQ6-L and KLN gluon distributions.
The latter includes gluon saturation effects. We conclude that in the very high energy regime the use of the KLN
distribution improves significantly the behavior of the cross sections. However this improvement is due to the
shape of the KLN gluon density and has little to do with saturation effects.
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I. INTRODUCTION

The growth of hadronic total cross sections was theoreti-
cally predicted many years ago [1] and observed in many ex-
periments at CERN, Fermilab [2, 3] and, more indirectly, in
cosmic rays .

Computing total cross sections as a function of the colli-
sion energy is one of the great unsolved problems of QCD.
Unlike processes which are computed in perturbation theory,
calculating total hadronic cross sections appears to be an in-
trinsically non-perturbative procedure.

In the absence of a pure QCD description, phenomenologi-
cal models have been used to compare experimental data with
theoretical schemes. For a long time the main theoretical ap-
proaches to total cross sections were the Regge-type models
and the QCD-inspired models. In the latter, the (too fast!) en-
ergy rise of the total cross sections is driven by the increasing
number of the low x gluon-gluon collisions. These models [4–
6] need to be embedded in an eikonal formalism to soften the
violent energy rise of the mini-jet cross sections. Of course,
this is only one among several unitarization methods (for a
discussion see, for example [7]). Some other QCD inspired
models based on non-perturbative physics, such as the sto-
chastic vacuum model, may lead to no energy independent
cross sections [8].

Even after eikonalisation the predicted energy rise is
stronger than the gentle one observed experimentally. At-
tempts to further tame this rise were advanced by the mini-jet
supporters in [9], invoking the increasing soft gluon emission
by valence quarks in hadron collisions at increasing energies.
Here we discuss another possible mechanism to be included
in the eikonal mini-jet model (EMM): gluon saturation due to
recombination.

The same gluon recombination which was found to be re-
sponsible for reducing the growth of the gluon distribution
might prevent the total cross section from growing too fastly
with energy, violating the Froissat bound. Of course, from

the pure idea to its implementation there is a long way. One
important result was presented in [10], where it was shown
that the cross section of a very small and neutral color dipole
colliding against a hadronic target at fixed impact parameter
follows the Froissat behavior at aymptotic energies. In this
particular case, gluon saturation in the target was enough to
unitarize the scattering amplitude. Inspite of this remarkable
result, this is a very special case and the extension to larger,
colored dipoles summed over all impact parameters still needs
some modelling. For real projectiles and targets the unitariza-
tion of the total cross section still must be done in an ad-hoc
way, as done, for example, in the eikonal formalism.

II. THE EIKONAL MINI-JET MODEL

At high energies there is a significant increase of the num-
ber of the gluons inside the hadron and hadronic cross sections
are dominated by the mini-jets coming from gluon-gluon in-
teractions.

The perturbative expression of the jet cross section is given
by:

σjet =
1
2

∫
dx1 dx2

∫
P0

d p2
T G(x1,Q2) G(x2,Q2) σ̂gg (1)

where G(x,Q2) is the gluon distribution in the proton ex-
tracted from deep inelastic scattering (DIS), x and σ̂gg are
the proton momentum fraction x and the elementary gluon-
gluon cross section respectively. There are different parame-
trizations for these distribution functions given, for example,
by the collaborations GRV [11], MRST [12] and CTEQ [13].
P0 = pT min is a parameter which defines the energy scale at
which semi-hard interactions start and perturbative QCD is
applicable. The increase of the number of gluons in the high
energy region (x << 1) makes these functions increase very
rapidly at small x and hence the cross section (1) violates the
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Froissart bound:

σpp(s → ∞) ∝ log2(s/s0) (2)

In Fig. 1 we compare the distributions GRV98, MRST98 and
CTEQ6-L. We can see that in the small x region they start to
be very different from each other. Using these parametrization
in (1) we have computed the corresponding mini-jet cross sec-
tions and compared them with the experimental data [14], as
shown in Fig. 2. In this figure we have adjusted P0 in order
to describe the data. We can see that, although all of them
are able to reproduce the data there is a clear trend of growing
too fast. The early mini-jet models tried to apply (1) directly
to the total hadronic cross sections. This exercise is updated
in Fig. 3 where a compilation of data [3] is shown and also
the Froissat limit (2). As anticipated in the introduction this
simple use of pQCD does not work.

In order to ensure unitarity, the most common procedure is
to utilize an eikonal formalism, evaluating the eikonal in the
two-dimensional transverse impact parameter space �b. The
total cross section is given by [4]:

σtot = 4π
∫ ∞

0
dbb

[
1− cosχI(b,s)e−χR

(b,s)
]

(3)

where χI(b,s) and χR(b,s) are the the imaginary and real part
of the eikonal function respectively. The function χ(b,s) is
usually split into a soft and a hard piece:

χ(b,s) = χhard(b,s) + χso f t(b,s) (4)

and each of these pieces has a real and an imaginary part. The
soft part of the eikonal comes from a parametrization valid at
lower energies, in the range 20−60 GeV [4] and the hard one
contains the mini-jet cross section and the impact parameter
dependence.

χ =
1
2

A(b)σ jet (5)

where A(b) is given by the Fourier transform of the electro-
magnetic form factor and is the same for the soft and hard
parts of χ.

III. GLUON SATURATION

In high energy experiments we expect to observe the non-
linear behavior of QCD. In this regime, the growth of parton
distributions should saturate and we should observe the state
called “Color Glass Condensate” (CGC) [15]. In fact, signals
of parton saturation have already been observed both in ep
deep inelastic scattering at HERA and in deuteron-gold col-
lisions at RHIC [16]. However, the observation of this new
regime still needs confirmation. In the saturation regime the
gluon distributions are no longer given by the parametriza-
tions used above, which only contain the DGLAP (linear) evo-
lution. Instead, they are the solutions of non-linear evolution
equations. However, these solutions are not yet known and
one has to use parametrizations. Karzeev, Levin and Nardi

(KLN) [17] developed a model for G(x) that simulates the sat-
uration effects and generates a distribution function that has
been used to describe the new data from RHIC, in studies
of multiplicity and rapidity distribution of charged particles.
A common feature of all saturation models is the existence
of a scale that separates the dense and dilute regions of the
hadrons. It is known as the saturation scale and has been para-
metrized as [18]:

Q2
s (x) = Q2

0

(
x0

x

)λ
(6)

The KLN distribution function is:

xG(x,Q2) =

{
1

αs(Q2) SQ2 (1− x)4 if Q2 < Q2
s

1
αs(Q2) SQ2

s (x)(1− x)4 if Q2 > Q2
s

(7)

where S is the proton area and x0, Q0 and λ are the parame-
ters of the model fitted from RHIC data: x0 = 0.310−4, Q2

0 =
0.3GeV 2, λ = 0.288. The distribution above contains αs
(which is small) in the denominator, which can cancel the
αs factor in σ̂. This is typical of the non-linear regime,
where we have to deal with weak couplings but strong fields.
The alluded cancellation casts some doubts on the use of the
collinear factorization formula. In fact, the collinear factor-
ization is violated in many cases in the context of saturation
physics. Fortunately, for many cases of interest, an expression
analogous to (1) is valid, in which we have to replace G(x) by
the unintegrated (in the gluon transverse momentum) gluon
distribution φ(x,k2

T ). This is called kT factorization and was
proven to hold in many cases. As shown in [19] kT factor-
ization is valid for gluon production and is violated in quark
production, especially in p-A and A-A collisions. Since we
are addressing mostly gluon-gluon interactions (with subse-
quent gluon production) and only p− p collisions we shall
assume that kT factorization holds. Moreover, as shown in
[20], kT and collinear factorization are equivalent at the lead-
ing twist level. Given the exploratory nature of this study, we
shall assume that (1) holds also for distributions like (7).

FIG. 1: The gluon distribution function given by GRV98, MRST98,
CTEQ6-L and KLN at Q2 = 104 GeV

The KLN distribution is designed to be valid at very low x
and its most interesting feature is the comparatively mild be-
havior in the low x region. It has been used to study gluon
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FIG. 2: The mini- jet cross section calculated by Eq. (1) compared
to UA1 experimental data [14]

FIG. 3: The cross section calculated by Eq. (1) compared to pp total
cross section data [14]

production through the fusion g + g → g at lower scales
Q2 � 10 GeV2. We shall use the KLN distribution at much
higher scales, Q2 = x1 x2 s, GeV2 and therefore we should per-
form the DGLAP evolution of (7). However we are going to
postpone it for a future work. The results without evolution
are nevertheless meaningful because the “effective dominant
scale”, i.e., the one which contributes the most to the integrals
in (1) and (3) is not so large, since the gluon distributions are
peaked at small values of x, which lead to relatively small val-
ues of Q2 in most of the cases. In Fig. 1 we compare Eq.
(7) with the other gluon densities. The difference seems to be
very large, of one order of magnitude already at x = 10−4. Of
course part of it is due to the lack of DGLAP evolution, which
is known to enhance the small x region of G(x). However part
of this low x behavior is really due to the physical input of (7).

Using the KLN distribution in (1) we obtain a good descrip-
tion of the mini-jet cross section, as shown in Fig.2 and we can
improve a lot the description of total cross sections, as it can
be seen in Fig. 3.

However a really good fit of data is found only using KLN
in (3), as shown in Fig. 4. Notice that here we fit first the mini-
jet cross section (in Fig. 2), fixing P0, and then fit minimum

FIG. 4: The total cross section calculated with the EMM (3) com-
pared to the experimental data [3]

FIG. 5: The mini-jet cross section calculated with the KLN distribu-
tion function, with (dashed lines) and without (solid lines) saturation
effects.

bias cross section data (in Fig. 4). This is different from what
is done in Refs. [4, 5], where the information contained in
mini-jet cross sections [14] is not used and all parameters are
fixed together fitting the total cross sections. Of course, this
conclusion should be better grounded after a least χ2 fit, which
we leave for the future.

Looking at Figs. 3 and 4 we would be tempted to conclude
that we are already observing saturation effects in the total
p− p cross section, since the KLN distribution gives the best
fits of the available data. In order to check this conjecture,
we have repeated the calculations using only the second line
of (7). When Q2 > Q2

s we are in the linear regime and no
saturation effects are present. The result obtained is shown
in Fig. 5 where we compare the cross sections obtained with
only the linear part (solid line) and with the two parts (dashed
line). The difference between them tells us how important are
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the saturation effects in this observable. The answer depends
on the cut-off P0. As it can be seen, a significant difference
appears only at very high energies and only for a small cut-
off. As expected, non-linear effects tend to deplete the cross
section, but their magnitude is small. The good agreeement
between KLN results and data, shown in the figures, can be
attributed to its initial shape rather than to saturation.

To summarize we have used an eikonal mini-jet model to
study the behavior of the total hadronic cross section with en-
ergy. We have updated previous versions of the EMM in some
aspects: we have used more recent versions of the standard
gluon parametrizations; we have used the measured mini-jet
cross sections [14] to improve the fit and we tested (for the
first time in this kind of model) the KLN distribution, which
turns out to give the best description of data. This first success
suggests that, after the proper incorporation of the DGLAP

evolution, which was not included here, the KLN distribtuion
may become competitive to the study of total hadronic cross
sections in the very high energy limit. Finally, we have ob-
served that, inspite of the phenomenological success of the
KLN distribution, saturation effects are very small in the en-
ergies considered.
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