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Confinement by Design ?
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The configuration space of SU(N) gauge theory is restricted to orbits with vanishing Polyakov loops of non-
trivial N-ality. A practical method of constraining to this orbit space C0 is found by implementing a certain
axial-type gauge. It is shown that the representative of an orbit in C0 is unique in this gauge up to time indepen-
dent Abelian gauge transformations. The restricted orbit space does not admit non-Abelian monopoles. As long
as C0 is thermodynamically stable, the free energy of the constrained SU(N) gauge model is of order N0 (even
in the presence of dynamical quarks) and confinement is manifest for sufficiently large N. With a free energy of
order N0 and Polyakov loops that vanish by design, there is no transition that deconfines color charge in such an
SU(N) model. However, a proliferation of massless hadronic states of arbitrary spin could lead to a Hagedorn
transition[1] if the string tension vanishes at a finite temperature TH . Constraining the orbit space to C0 can be
viewed as a particular boundary condition, and TH in general is above the first order deconfinement transition
of the full theory at Td . Between Td and TH a superheated confining phase may exist for SU(N > 2). Pertur-
bation theory in C0 is sketched. It does not suffer from the severe IR-divergences observed by Linde[2]for the
ordinary high temperature expansion. Correlations of the lowest transverse Abelian Matsubara modes develop
a renormalization group invariant pole of second order at vanishing spatial momentum transfer when T = TH .
The latter could be associated with linear confinement.
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I. INTRODUCTION

The Wilson action of SU(N) Lattice Gauge Theory (LGT)
is invariant under multiplication of all temporal links on any
particular time slice by an element of the center of the struc-
ture group. In a phase where this (global) center symmetry
(CS) is not spontaneously broken, static color charges in rep-
resentations with non-trivial N-ality have infinite free energy
and are not part of the physical spectrum. Deconfinement
above a temperature Td implies that the CS is broken spon-
taneously for T > Td . However, the CS by itself does not im-
ply confinement of static color charges in representations to
trivial N-nality. CS apparently does not explain confinement
when this symmetry is explicitly broken by dynamical fields
in representations that have non-vanishing N-ality. One possi-
bility is to include dynamical quarks in the fundamental rep-
resentation of SU(N), while another[3] is to consider enlarged
structure groups for the gluons that include generators in irre-
ducible representations of SU(N) with non-trivial N-ality[16].
In both types of extensions of an SU(N) Yang-Mills theory CS
is broken explicitly.

However, the CS of SU(N)-LGT divides gauge orbits
into those for which any (global) center transformation is
equivalent to a gauge transformation and the complemen-
tary orbit space. Within perturbation theory, the set of
CS-configurations can be constructed from a CS-symmetric
ground state. It has previously been shown[4] that the free en-
ergy of SU(N) in this case is of order N0 to arbitrary perturba-
tive order. This holds even in the presence of fields that break
the center symmetry explicitly. For sufficiently large N a free
energy of order N0 implies the absence of non-trivial SU(N)-
multiplets from the physical spectrum. One would have per-
turbative confinement at large N if the CS-symmetric vacuum
were thermodynamically stable at weak coupling. Unfortu-
nately the spontaneously broken phase generally is thermody-
namically preferred at weak coupling. The following inves-

tigation explores the possibility of accessing the metastable
”superheated” confining phase[5] by a constrained model that
may be perturbatively analyzed near a second order Hage-
dorn transition[1] where the effective string tension vanishes
smoothly.

II. THE CONFINING ORBIT SPACE C0

Consider a Euclidean SU(N)-LGT that is periodic in tempo-
ral (µ = 4) lattice direction with links Uµ(x,τ) = Uµ(x,τ+nT )
in the fundamental representation of SU(N). Polyakov loops
Ln(x),

Ln(x) = TrUn(x,τ) with (1)
U(x,τ) = U4(x,τ)U4(x,τ+1) . . .U4(x,τ+nT−1),

are non-contractible gauge invariant Wilson lines that wind
around the temporal direction. Under a global center transfor-
mation with element z∈ ZN ⊂ SU(N), Polyakov loops acquire
a phase Ln(x)→ znLn(x). All the Polyakov loops L0<n<N(x)
therefore must vanish for a center-symmetric orbit. The con-
verse generally will not hold, since all, not just straight, Wil-
son loops of non-trivial N-ality that wind about the temporal
direction vanish for a center-symmetric orbit. The Polyakov
loops of Eq.(1) are just the ”shortest” of these and correspond
to the free energy of static color charges only.

However, it is relatively straightforward to constrain the
configuration space of an SU(N)-LGT to the set of orbits C0
with vanishing Polyakov loops,

C0 = {{U};Ln(x) = 0, ∀x∧N > n > 0} ⊃ CCS . (2)

The subset C0 of the full orbit space is gauge invariant because
Polyakov loops are. This set in principle may be selected by
inserting in the lattice measure (gauge-invariant) δ-functions
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that enforce the constraints. But it is much easier to solve
them explicitly in an axial-type gauge.

Consider a representative configuration of an orbit whose
temporal links are all unity except for those on the τ = 0 slice.
Such a representative can always be found by an appropri-
ate gauge transformation[6]. Using time-independent gauge
transformations, one can exploit the temporal periodicity of
the lattice and bring all temporal links of the τ = 0 slice to di-
agonal form. Since the group of permutations of N elements
is a subgroup of SU(N), the diagonal elements of the tempo-
ral links can furthermore be conveniently ordered. The result
of this gauge fixing procedure is that any orbit may be repre-
sented by a configuration {U} of the form,

{U} = {Uµ(x,τ); U4(x,τ 6= 0) = 11,

U4(x,0) = diag(eiφ1(x), . . . ,eiφN(x))
with −π≤ φ1(x)≤ ·· · ≤ φN(x) < π} .

(3)

The gauge fixing is ambiguous since time independent
Abelian gauge transformations do not change the form of the
representative in Eq.(3). If at some point x any two of the
N phases φk(x) coincide, the ambiguity is enlarged to a non-
Abelian group. The non-Abelian gauge-fixing singularity is
physical and identifies monopoles[7].

Since all Polyakov loops of a C0-orbit vanish, we have for
its representative of the form in Eq.(3),

0 = TrUn(x,τ) = TrUn
4 (x,0) =

N

∑
k=1

einφk(x), (4)

for all x and 0 < n < N. Including the requirement that
∑N

k=1 φk(x) = 0 for U ∈ SU(N), the N-1 equations of Eq.(4)
determine the N phases at each site x. Taking into account the
ordering in Eq.(3), the phases φi(x) of a representative of an
C0-orbit are uniquely given by the N roots of unity. The rep-
resentative of an orbit in C0 in this gauge thus has the special
form,

{U}C0 = {Uµ(x,τ); U4(x,τ 6= 0) = 11,

U4(x,0) = diag(eiπ 1−N
N ,eiπ 3−N

N , . . . ,eiπ N−1
N )} .

(5)

Restricting the configuration space to orbits in C0 thus
amounts to a (unique) determination of the temporal links in
a particular axial gauge. Since none of the N phases coincide,
the residual gauge group is that of time-independent Abelian
gauge transformations only. Orbits in C0 therefore do not have
gauge-fixing singularities associated with monopoles. Con-
straining the configuration space to C0 in this sense gives a
”classical” confinement picture: Infinite free energy of static
color-electric charges and a (complete) condensation of non-
Abelian monopoles.

It perhaps is remarkable that orbits in C0 with minimal Wil-
son action are center symmetric[4]. The Wilson action is min-
imal (vanishes), if the 1×1 Wilson loop around every plaque-
tte Pµν(x,τ) is unity. For a representative of an orbit in C0 of

the form given by Eq.(5), the P0i(x,τ 6= 0)-plaquettes in this
case imply that spatial links do not depend on τ. Minimal
action of the P0i(x,τ = 0)-plaquette, then requires that,

Ui(x,0)U4(x,0)U−1
i (x,0)U−1

4 (x,0) = 11 (6)
⇔ [Ui(x,0),U4(x,0)] = 0 .

Since the temporal links are of the form given in Eq.(5),
Eq.(6) implies that all spatial links are Abelian. Together with
our previous conclusion that they do not depend on τ, we have
that configurations {U}min ⊂ C0 with vanishing Wilson action
may be represented by,

{U}min = {Uµ(x,τ); U4(x,τ 6= 0) = 11,

U4(x,0) = diag(eiπ 1−N
N ,eiπ 3−N

N , . . . ,eiπ N−1
N ) ,

Ui(x,τ) = diag(eiφi1(x), . . . ,eiφiN(x))} .

(7)

Since temporal and spatial links commute and the spatial links
do not depend on time, the minimal action orbits represented
by Eq.(7) are invariant under the global center symmetry. In-
deed, any Wilson line (not just straight ones) with non-trivial
N-ality vanishes for minimal action configurations in C0.

III. SU(N)-LGT ON C0

We have seen that restricting the configuration space of an
SU(N)-LGT with periodic boundary conditions to orbits in C0
amounts to specifying the temporal links on a particular time
slice in a certain gauge. The constraint thus is akin to im-
posing particular boundary conditions in a spin model. Con-
figurations of minimal Wilson action in C0 furthermore are
center-symmetric. Since the deconfinement transition is of
first order[8] for SU(N > 2), it thus may be possible to per-
turbatively access the superheated confining phase of SU(N)
simply by constraining the set of orbits to C0. Although only
static color charges have infinite free energy and are excluded
from the physical spectrum in C0, the free energy of any mov-
ing color charge should be even greater. It then is difficult to
see how non-trivial color multiplets could arise for configura-
tions in C0 without violating positivity. We already know[4]
that for sufficiently large N only colorless states contribute to
the pressure to all orders in perturbation theory about a CS-
configuration of minimal action. In the constrained configu-
ration space C0, the center-symmetric ground state is pertur-
batively stable by design (whereas perturbation theory in the
full LGT prefers a ground state that spontaneously breaks the
CS). Within[9] C0, the perturbative regime could be smoothly
connected to the confining one. For temperatures above the
deconfinement temperature Td of the full LGT, the constrained
model should describe the superheated confining phase up to a
second order phase transition at T = TH ≥ Td at which the ef-
fective string tension vanishes smoothly. Non-perturbatively,
TH would correspond to a Hagedorn transition at which the
entropy of colorless high-energy (bound) states overwhelms
the suppression due to the Boltzmann factor. For T > TH , the
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constrained model possibly has only a perturbative interpreta-
tion. Nevertheless, if it describes a confining phase below TH ,
the transition at TH ≥ Td is of second order[5] and should be
visible in the perturbative behavior of 1PI-vertices. The ex-
istence of such a (hidden) Hagedorn transition at large N has
also been inferred[10] by considering perturbative Yang-Mills
on S3×S1 with an infrared cutoff due to the (small) radius of
the spatial three-sphere S3.

The string tension of SU(2)-LGT vanishes smoothly at the
deconfinement transition and TH ' Td for SU(2) but TH > Td
for SU(N≥3) where the deconfinement transition is of first
order[8]. Lattice simulations in the metastable phase strongly
indicate[5] the existence of a finite Hagedorn temperature at
large N. Independent support for a Hagedorn transition in re-
stricted SU(2)-LGT is derived from the fact that the specific
entropy rises sharply at TH ∼ Td and appears to be bounded
only by the infra-red cutoff of the finite lattice[11].

Since all temporal links can be specified in a particular
gauge, LGT on C0 is best described by its transfer matrix. A
spatially constant but time-dependent Abelian gauge transfor-
mation of the configurations of Eq.(3), shows that one may
equivalently consider representatives in a slightly unconven-
tional axial gauge in which the temporal links are constant
matrices given by,

U4(x,τ) = G = e2πiθ/nT , with
θ = diag(N−1

2N , N−3
2N , . . . , 3−N

2N , 1−N
2N ) .

(8)

Two major differences to ordinary axial gauge U4(x,τ) = 11
perhaps are worth mentioning:

i) any configuration satisfying Eq.(8) represents an orbit in C0
and every orbit in C0 on a periodic lattice has a repre-
sentative whose temporal links are given by Eq.(8). By
contrast, the orbit space of ordinary axial gauge is that
with maximal Polyakov loops.

ii) The residual gauge group in the present case is that of sta-
tic gauge transformations in the (Abelian) Cartan sub-
group of SU(N) only. The residual gauge group of ordi-
nary axial gauge on the other hand includes static non-
Abelian gauge transformations.

Identifying a configuration of spatial links {Uµ(x)} on a
time slice with a basis vector |U〉 of Hilbert space, the her-
mitian transfer matrix[12] of Yang-Mills LGT constrained to
C0 has elements,

〈U ′|T |U〉 = eReTrΦ({U ′,U}) ,with (9)

Φ({U ′,U}) = βT ∑
x,i

U ′†
i (x)G†Ui(x)G+

+βs ∑
j>i

(Pi j(x)+P′i j(x))/2

where Pi j(x) =Ui(x)U j(x+aı̂)U†
i (x+aĵ)U†

j (x) is the plaque-
tte in the spatial i j-plane at x (P′i j(x) is similarly defined with
U →U ′). βT = a

g2aT
and βs = aT

g2a are inverse coupling con-
stants related to the temporal- (aT ) and spatial- (a) spacing of
the lattice by dimensional transmutation. The dependence of

the kinetic term on the matrix G of Eq.(8) ensures that only C0
configurations are generated by the transfer matrix of Eq.(9).
The transfer matrix in Eq.(9) differs from that of Creutz in
the bilinear kinetic term only. The matrix G 6= 11 of Eq.(8)
leads to vanishing Polyakov loops, whereas they are maximal
for the transfer matrix in (U4 = 11) axial gauge obtained by
Creutz[6].

The conjecture that a second order Hagedorn transition
occurs at a finite temperature TH in the constrained model
suggests that the transfer matrix of Eq.(9) is positive def-
inite for T < TH only. For T < TH , the transfer matrix of
Eq.(9) in this case defines a hermitian Hamiltonian H, with
T = e−aT H , whose spectrum and eigenstates have a physical
interpretation[12]. Above TH , the transfer matrix perhaps de-
velops negative eigenvalues and the LGT on C0 ceases to be
unitary on sufficiently large physical volumes.

IV. THE CONTINUUM MODEL ON C0

Although simulating the LGT defined by Eq.(9) may be of
interest on its own, the present motivation for restricting to
C0 is that a second order (Hagedorn) transition at TH could
make a perturbative investigation of the confining phase of
this model possible when T ' TH . The character of the per-
turbative series on C0 in fact changes dramatically at a finite
temperature TH .

In the limit of a divergent correlation length, the continuum
model on C0 can be found by formally expanding the spatial
LGT-connection U j(x,τ) = eiagV j(x,τ) in powers of the spatial
lattice spacing a. If we decompose the hermitian connection
Vj into diagonal (Abelian) and off-diagonal (coset) parts as,

Vj = A j +Wj, with (10)

W ab
j =

{
V ab

j , for a 6= b
0 , for a = b ,

the critical Yang-Mills action corresponding to Eq.(9) be-
comes,

S =
∫

dx
∫ 1/T

0 dτ Tr{(∂4Ai)2 +(D4Wi)2+
+ 1

2 Gi jGi j +η(x)(∂iAi)} .

(11)

Here

Gi j = ∂iA j−∂ jAi +
+DiWj−D jWi + ig[Wi,Wj]

DiWj = ∂iWj + ig[Ai,Wj] (12)
D4Wj = ∂4Wj +2πiT [θ,Wj] ,

with the constant diagonal connection θ given in Eq.(8). The
matrix components of the last line in Eq.(12) thus are,

(D4Wj)ab = ∂4W ab
j + iTN(a−b)W ab

j , (13)

with a rescaled temperature TN = 2πT/N. The covariant
temporal derivative in Eq.(11) thus generates color-dependent
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Matsubara-frequencies for the coset fields. Since none of
these vanish at finite temperature, Linde’s observation[2] that
the perturbative series of a non-Abelian gauge theory devel-
ops uncontrollable infra-red divergences at finite temperature,
does not hold on C0.

To have a well-defined continuum model, the residual
gauge invariance of Eq.(9) under Abelian gauge transfor-
mations was used to eliminate the τ-independent longitudi-
nal part of the Abelian connection A. In Eq.(11) a time-
independent Lagrange multiplier η(x) enforces the gauge con-
dition,

0 =
∫ 1/T

0
dτ ∂iAi(x,τ) . (14)

Note that ghosts decouple in this gauge. The representative in
this gauge is unique and the Gribov ambiguity[13] does not
arise. It is a ”physical” gauge in the sense that (the decou-
pled) unphysical degrees of freedom are not dynamical. Al-
though distinct from Coulomb-like gauges[13, 14], Eq.(14)
also preserves manifest invariance under translations and spa-
tial rotations[17].

A. Perturbative Continuum Propagators at Finite
Temperature

Since gluons at finite temperature are periodic fields in tem-
poral direction, it is convenient to consider their Fourier com-
ponents,

V ab
j (x,τ) =

∞

∑
n=−∞

∫ dk
(2π)d V ab

j (k,n)ei(2πnT τ+k·x),

with V ab
j (k,n) = V ba

j
∗
(−k,−n) . (15)

Note that the gauge condition of Eq.(14) is a constraint on the
diagonal gauge field of vanishing Matsubara frequency only.
It eliminates longitudinal modes and in Fourier space implies
that k ·A(k,0) = 0. The quadratic terms of Eq.(11) then lead
to the following non-trivial tree level propagators,

〈Ai(k,0)A j(−k,0)〉 =
δi j− kik j

k2

k2

〈Ai(k,n 6= 0)A j(−k,−n)〉 =
δi j +

kik j
(TN Nn)2

(TNNn)2 +k2

〈W ab
i (k,n)W cd

j (−k,−n)〉 =

= δbcδad
δi j +

kik j
(TN(Nn+a−b))2

(TN(Nn+a−b))2 +k2

, (16)

where the (trivial) color dependence of the Abelian propaga-
tors has been suppressed. A QED-like, Abelian Ward Identity
ensures that radiative corrections to the n = 0 part of 〈AA〉 are
transverse and that the corresponding two-point vertex func-
tion vanishes at k2 = 0 for any temperature. This Ward Iden-
tity also implies that g2〈AA〉∣∣n=0 is a renormalization group

invariant function. To one loop in a minimal subtraction
scheme that analytically continues the number of spatial di-
mensions one finds[15],

g2〈Ai(k,0)A j(−k,0)〉=
δi j− kik j

k2

k2Γ(k2)
with, (17)

Γ(k2) = β0 ln
4πT 2e

1
β0g2

N2µ2eγE+ 1
11
− N3ζ(3)k2

1920π4T 2 +O(k4) .

µ here is the renormalization scale of the scheme, γE is Euler’s
constant and β0 = 11N/(48π2) is the leading coefficient of the
β-function of purely gluonic SU(N), β(g) =−β0g3−β1g5 . . . .
At the (renormalization group invariant) temperature,

TH =
Nµe

γE
2 + 1

22− 24π2

11Ng2

2
√

π
, (18)

the Abelian correlation function of Eq.(17) develops a second
order pole at vanishing spatial momentum transfer k2 = 0 and
the long-range behavior of the model changes qualitatively.
In coordinate space, the double pole at vanishing momentum
transfer corresponds to a linearly rising potential. Contrary
to confinement of static color charges by a linearly rising in-
stantaneous Coulomb-interaction[13, 14], the present corre-
lation is between transverse components of time-independent
Abelian color-currents.

V. CONCLUSION

The configuration space C0 of orbits with vanishing
Polyakov loops defined in Eq.(2) includes all center-
symmetric orbits and may be selected by imposing the par-
ticular axial-type gauge of Eq.(8). This is to be contrasted
with the more common axial gauge U4 = 11, which in fact
constrains the configuration space to orbits with maximal
Polyakov loops. The residual gauge freedom in our case is
just that of Abelian gauge transformations that do not de-
pend on time. The latter were used to eliminate the longi-
tudinal component of static Abelian gauge fields in a linear
gauge for which ghosts decouple (see Eq.(14)). The Gribov
problem[13] does not arise and each orbit of C0 is uniquely
represented in this gauge. The gauge condition manifestly
preserves all the symmetries of the finite temperature theory.

A perturbative treatment of the continuum model at fi-
nite temperature T reveals that only gluon propagators in the
Abelian subgroup generally are truly massless. All other per-
turbative 2-point functions are finite at vanishing momentum
transfer. The severe infrared divergences of high orders of
perturbation theory observed by Linde[2] do not occur in C0
and there is no principal obstruction for constructing the fi-
nite temperature perturbative series. At extreme temperatures,
the only low-lying degrees of freedom are the Abelian gluons
and the dimensionally reduced model apparently describes a
Coulombic phase. We on the other hand know[4] that the free
energy for large N in fact is O(N0) to all orders in perturbation
theory. It evidently depends on the order the limits are taken
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whether a Coulombic phase is realized at high temperatures
and large N.

A QED-like Ward Identity implies that the time-
independent Abelian propagator is transverse and that the
anomalous dimension of gAi(k,0) vanishes. In one-loop ap-
proximation the long-range behavior of the model is charac-
terized by the renormalization group invariant temperature TH
of Eq.(18). For T > TH transverse Abelian modes are mass-
less in perturbation theory. At T = TH the time-independent
part of the Abelian gluon propagator develops a double pole at
vanishing momentum transfer. The perturbative interactions
at this point are of particularly long range. The transition be-
tween these two perturbative phases is associated with a neg-
ative norm state that becomes massless at T = TH . This tran-
sition thus is not the first order deconfinement transition of
SU(N > 2) at Td . As discussed earlier, TH ≥ Td probably is the
temperature associated with a second order Hagedorn transi-
tion from a ”superheated” confined phase to one whose string
tension vanishes, allowing the formation of low-mass gauge
invariant states of arbitrary spin. Note that for temperatures
just above TH , the series in Eq.(17) leads to a (Landau) pole
at low spatial momentum transfers – an indication, supported
by lattice simulations[11], that the model is thermodynami-
cally unstable in this regime. Below TH on the other hand, the
perturbative analysis does not show an instability due to low-
energy modes and hints at the possibility that T < TH may

be accessible by perturbing about the (marginally) confining
model at T = TH . A two-loop calculation would determine TH
in terms of an asymptotic scale like ΛMS.

Models that statistically constrain non-Abelian Coulomb
gauge to configurations within the Gribov horizon[13, 14],
also generate long-range correlations that vanish as k−4.
However, such long-range Coulomb interactions are instan-
taneous and occur in the temporal component of the correla-
tion function. Instantaneous long-range Coulomb interactions
tend to confine at all temperatures[14]. We here restricted the
orbit space ab initio to C0 and were able to avoid Gribov’s[13]
as well as Linde’s[2] problem. The analysis of primitive ver-
tices was entirely perturbative and the physical scale TH was
not introduced as a stochastic constraint parameter, but rather
represents a transition temperature.
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