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On the Infrared Behavior of Green’s Functions in Yang-Mills Theory

Axel Maas, Attilio Cucchieri, and Tereza Mendes
Instituto de Fı́sica de São Carlos, Universidade de São Paulo,

Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
(Received on 27 September, 2006)

Non-perturbative properties of QCD, such as color confinement, are encoded in the infrared behavior of
correlation functions, e.g. propagators and vertices. Various analytic predictions have been suggested for these
quantities in various gauges. Here we numerically test these predictions using lattice gauge theory. In particular,
we present results for the 2- and 3-point functions for SU(2) Landau-gauge Yang-Mills theory in three and in
four dimensions. Special attention is paid to systematic finite-volume effects. The gluon and ghost propagators
are also evaluated in the so-called interpolating gauge (between the Landau and the Coulomb gauge), in order
to study their gauge-dependence. Finally, we consider these propagators in Landau gauge at finite temperature,
with the aim of understanding the effect of the deconfinement phase transition on their infrared behavior. All
our results are compatible with the so-called Gribov-Zwanziger confinement scenario.
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I. INTRODUCTION

The confinement phenomenon in QCD is a long-range ef-
fect and one can expect its explanation to be encoded in the
infrared (IR) behavior of the QCD correlation functions. In-
deed, various confinement scenarios make predictions for this
behavior [1]. Unfortunately, a quantitative determination of
these correlation functions is a very difficult task.

Continuum methods, based e.g. on Dyson-Schwinger equa-
tions (DSEs) [1–4], on the renormalization group [5] or on ef-
fective potentials [6], lead to results that seem to agree with
the Gribov-Zwanziger confinement scenario [4, 7] and with
the Kugo-Ojima scenario [8]. These methods have the disad-
vantage of introducing approximations, which in general can-
not be controlled and verified. On the other hand, numeri-
cal studies using lattice gauge theory allow a determination of
QCD correlation functions in the IR limit using approxima-
tions that can in principle be controlled and quantified [9, 10].
In this case, since one has to work with finite volumes Nd , the
system considered has a natural IR cutoff p ∼ 1/(aN), mak-
ing difficult the study of the true IR limit. (This topic will
be discussed in more detail in Section II.) Clearly, a close
cooperation between continuum and lattice methods can be
a promising approach. In particular, lattice gauge theory al-
lows to check the approximations usually considered in con-
tinuum methods, or at least to provide constraints for possible
Ansätze. The most important test is probably the verification
of the approximations employed for the 3-point vertices when
solving DSEs. Results for the three-gluon and the ghost-gluon
vertices will be reported in Section III.

Most of the studies of QCD correlations functions, both in
the continuum and on the lattice, have been done in Landau
gauge. On the other hand, since these quantities are gauge
dependent, it is interesting to evaluate them in other gauges
too (e.g. Coulomb gauge [11] and maximally Abelian gauge
[12]). In principle, the explanation of the confinement mecha-
nism based on the IR properties of the QCD correlation func-
tion can also be gauge-dependent. Particularly important are
the so-called interpolating gauges [13, 14], since they allow
to relate different gauges and possible different confinement

mechanisms. In Section IV we report 3d results for the gauge
interpolating between the Landau and the Coulomb gauge.

Finally, a clear understanding of the confinement mecha-
nism could be useful in the study of the QCD phase diagram
and of the deconfining phase transition [15]. In particular, one
might expect to observe a modification of the IR properties
of the correlation functions at finite temperature T . As a first
step in this direction, the gluon and ghost propagators at finite
T are considered (in the 4d Landau gauge) in Section V.

II. FINITE-VOLUME EFFECTS

Confinement is induced by long-range correlations. More
precisely, the correlation length should be infinite [1]. Thus,
when considering QCD correlation functions in momentum
space, confinement should be related to their IR properties.
This is the case for the Gribov-Zwanziger and the Kugo-
Ojima confinement scenarios. Indeed, they predict a specific
IR behavior for the gluon and the ghost propagators in Landau
gauge: the gluon propagator should be IR suppressed — and
it is expected to vanish at zero momentum — while the ghost
propagator should be IR enhanced compared to the one of a
massless particle.

As said above, the IR-cutoff 1/(aN) makes it difficult to
study the IR properties of the correlation function and one
should pay attention to possible finite-size effects. Of course,
this analysis can be computationally very demanding. In this
case, the consideration of three-dimensional lattices can be
useful in order to access large lattice volumes. Let us note
that the Gribov-Zwanziger scenario applies also to the three-
dimensional case [4] and that results for the IR behavior of the
propagators using DSEs are available for d = 3 [4, 16].

In Figure 1 we report the comparison of DSE results with
lattice data for the gluon and the ghost propagators. In the first
case, finite-volume effects are evident for the smallest mo-
menta. In particular, as the volume increases, the propagator
becomes more and more IR suppressed. At the same time, the
difference between two different lattices with a given volume
ratio moves further and further into the IR limit with increas-
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FIG. 1: Comparison of lattice data and DSE results for gluon D(p) (left) and ghost DG(p) (right) propagators in the 3d case in Landau gauge
as a function of the momentum p. The solid line is from DSE results [16]. Lattice simulations have been done at β = 4.2 considering various
lattice volumes. Open circles correspond to lattice volume 203 [V ≈ (3.5 fm)3] [18], open squares represent 303 [V ≈ (5.2 fm)3] [18], open
triangles are used for 403 [V ≈ (6.9 fm)3] [19], full circles correspond to 803 [V ≈ (14 fm)3] [20] and full triangles represent lattice volume
1403 [V ≈ (24 fm)3] [21].

ing volume. Thus, momenta of the order of 2sin(π/N)/a ≈
2π/(aN) are affected by finite-volume effects. From Figure 1
one also sees that DSE and lattice results are in qualitatively
agreement. Let us remark that DSE studies predict [17] that
the true IR regime is reached only below a certain momen-
tum scale ΛI . 200 MeV, i.e. on a finite volume one should
have a sufficient number of non-zero momenta in the range
2π/(aN) ¿ p . ΛI . With a lattice spacing a of order of 1
GeV−1 one needs N À 50. Unfortunately, this regime is just
reached by the lattices in the 3d case but not yet in 4d.

The ghost propagator is much less affected by finite-volume
effects, even though small effects can be found for the dress-
ing function at small momenta [19]. Moreover, the compar-
ison of the lattice data to DSE results is quite good (see Fig.
1). One should however recall that the IR enhancement of
the ghost propagator seems to be related to an appropriate
sampling of the so-called exceptional configurations [10, 18].
Thus, results obtained considering a relatively small statistics
are likely underestimating this IR enhancement.

We conclude that the smallest non-zero lattice momenta –
of the order of 2π/(aN) — are probably not reliable in lattice
studies and should be treated with great care. A more thor-
ough discussion of finite-size effects will be presented in [19].

III. THREE-POINT VERTICES

Besides the propagators, also the vertices are of great im-
portance in understanding the IR properties of QCD. In par-
ticular, assumptions on their IR behavior are crucial inputs for
the analytic methods [1–3]. At the same time, predictions for

their IR behavior have been obtained using continuum meth-
ods [22–24]. As stressed in the Introduction, lattice gauge
theory provides us with the possibility of verifying these re-
sults as well as the assumptions considered in analytic stud-
ies. The simplest of these vertices are the 3-point ones. In
Landau-gauge pure Yang-Mills theory one can consider the
ghost-gluon vertex and the three-gluon vertex. Kinematically
these vertices are much more complicated than the propaga-
tors, since they depend on three independent kinematic vari-
ables. In addition, they have a complex tensor structure (espe-
cially the three-gluon vertex).

In order to simplify the presentation, we consider here only
one specific kinematic configuration, namely the one in which
two of the incoming momenta are orthogonal with respect to
each other (see [18, 25] for details and for other possible kine-
matic configurations). Furthermore, instead of the various ten-
sor elements we evaluate the quantity [18]

G =
Γtl,abcGabc

Γtl,abcDadDbeDc f Γtl,de f . (1)

Here the indices a, . . . , f are generic multi-indices, encom-
passing field-type, Lorentz and color indices. Also, Dab are
the propagators of the fields, Gabc represent the full Green’s
functions and Γtl,abc are the corresponding tree-level vertices.
This quantity is defined such that it becomes equal to one if
the full and the tree-level vertex coincide. Furthermore, the ra-
tio (1) corresponds to the kernel of a one-loop not-amputated
self-energy diagram in DSEs over the same kernel with full
vertices replaced by the bare ones. Thus, the quantity G is a
direct measure of how good the approximations in DSE cal-
culations are when the bare vertices are used.
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FIG. 2: Top-left panel: ghost-gluon vertex at zero gluon momentum; open triangles are used for V = 303 [25] and open circles for V = 303 (in
both cases β = 4.2), full triangles are used for V = 203 [18] and full circles for V = 303 (in both cases β = 6.0). Top-right panel: ghost-gluon
vertex with the gluon and the ghost momenta orthogonal to each other; the graph interpolates data obtained from a 403 lattice at β = 4.2
[25]. The spike at zero momentum is an artifact, as the vertex function cannot be evaluated there. Bottom-left panel: 3-gluon vertex with
one external momentum vanishing [18]; full symbols correspond to β = 4.2 and open symbols to β = 6.0; circles are used for V = 203 and
triangles for V = 303. Bottom-right panel: 3-gluon vertex with two external momenta orthogonal to each other [18]; the graph interpolates
data obtained from a 303 lattice at β = 4.2 and at β = 6.0. Note that the spike at zero momentum is an artifact of the interpolating algorithm,
since the vertex cannot be evaluated there.

Results for the quantity (1) in three and in four dimensions
for both vertices are shown in Figures 2 and 3, respectively.
The ghost-gluon vertex is essentially constant for all momenta
studied here as well as for other kinematic configurations [18,
25, 26], both in 3d and in 4d. In particular, there is no sign of

enhancement or suppression even for the smallest momenta
available. This is in agreement with results obtained using
continuum methods [23, 24]. In addition, the constancy of this
vertex confirms the most important assumption made in DSE
studies, i.e. the use of a bare ghost-gluon vertex [1, 2, 16, 24].
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FIG. 3: Same as Figure 2 but in the four-dimensional case. Here the lattice volume is 164 and simulations have been done at β = 2.2 [25].

The evaluation of three-gluon vertex is numerically much
more demanding than that of the ghost-gluon vertex. In par-
ticular, very large statistics are required for its investigation
[18, 25], especially in the three-dimensional case. Our results
show that this vertex is suppressed at intermediate momenta,
especially for d = 3. On the other hand, with our data, it is dif-
ficult to understand completely its precise IR behavior. Let us
note that, if this suppression were to be confirmed by studies
using larger lattices, this result would contradict predictions
obtained from DSE studies [22, 24]. Nevertheless, it would
not invalidate the assumptions usually made in the continuum

calculations of the propagators [1, 2, 16, 24].

IV. INTERPOLATING GAUGES

All results presented so far have been obtained in the
(minimal) Landau gauge. As said in the Introduction, it is
eventually desirable to understand confinement in a gauge-
independent way, if this is possible. Thus, the IR properties
of the QCD correlation functions in other gauges are also in-
teresting. Among other possible gauge-fixing conditions, the
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FIG. 4: The spatial (top) and temporal (bottom) gluon propagator in
the interpolating gauge (2) at λ = 1/2 as a function of the temporal p0
and spatial |~p| momenta, from a 603 lattice at β = 4.2 [29]. Results
have been interpolated; the spike at zero is an artifact of the missing
point there.

so-called interpolating gauges allow to interpolate smoothly
between specific gauge conditions. One example is given by
the gauge condition [13, 27]

λ∂0Ab
0 +~∂~Ab = 0. (2)

This gauge interpolates between the Landau gauge (λ = 1) and
the Coulomb gauge (λ = 0), even though the Coulomb gauge
limit itself is likely not to be a smooth one [28]. Nonethe-
less, this gauge allows one to study the Gribov-Zwanziger
scenario when moving away from the Landau gauge. Since
for λ 6= 1 the O(4)-invariance is explicitly broken, it is natural
to consider two scalar gluon propagators [28], i.e. the time-
time component Daa

00/(N2
c − 1) and the 3-dimensional trans-

verse one Dtr = Daa
ii /((d−1)(N2

c −1)). In addition, the prop-
agators depend independently on the temporal momentum p0
and on the spatial momentum |~p|.
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FIG. 5: The ghost dressing function DG(p)(p2
0 +~p2) in the inter-

polating gauge (2) at λ = 1/2 as a function of the temporal p0 and
spatial |~p| momenta, from a 203 lattice at β = 4.2 [29]. Numerical
data have been interpolated.

Results at λ = 1/2 are shown in Figure 4 for these two
gluon propagators and in Figure 5 for the scalar ghost dress-
ing function DG(p)(p2

0 +~p2). Note that D00(p0,0) vanishes
exactly for any p0 due to the gauge condition, even though
(due to technical reasons) this is not clear from Figure 4. Both
gluon propagators are found to be IR suppressed when con-
sidered as a function of p2

0 +~p2. Also, both propagators ex-
hibit a clear maximum. Furthermore, both propagators are
not suppressed as long as either p0 or |~p| are not sufficiently
small. At the same time, the ghost propagator is IR enhanced.
The difference in behavior at large pure-temporal and at large
pure-spatial momenta is a direct consequence of how λ ap-
pears in the tree-level propagators. Thus, the IR behavior of
these propagators is (qualitatively) the same as that found in
Landau gauge. This is in agreement with results from DSE
studies [28]. On the other hand, since the limit λ → 1 is
smooth, one wouldn’t expect a strong deviation from the Lan-
dau behavior for a value λ = 1/2. Results for the non-smooth
limit λ→ 0 will be presented elsewhere [29].

V. FINITE TEMPERATURE

Yang-Mills theory undergoes a deconfining phase transition
at finite temperature [15] and one expects this transition to
change the confining properties of the theory. At the same
time, if confinement is manifest in the IR properties of the
QCD propagators, these might also change across the phase
transition. At finite temperature, the gluon propagator can no
longer be described by a single tensor structure and one needs
two independent structures [30]:

Dab
µν = PT

µνDTab +PL
µνDLab.
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at T = 0 on a 204 lattice, full triangles are at T ≈ 149 MeV on a
10× 263 lattice, open circles are at T ≈ 298 MeV on a 4× 343 lat-
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results have been obtained using β = 2.3.

Here, PT
µν is purely spatial and transverse while PL

µν = Pµν−
PT

µν, i.e. PL
µν complements PT

µν to a four-dimensional-transverse
O(4)-invariant tensor-structure Pµν = δµν − pµ pν/p2. In ad-
dition, PL

µν is longitudinal in the spatial sub-space. Further-
more, all functions depend on the spatial momentum |~p| and
on the energy p0 separately. The latter is discrete with values
p0 = 2πT n, where n is an integer. Infrared or soft modes are
those with zero energy, i.e. n = 0.

Results for the soft modes of the two gluon propagators
and of the (scalar) ghost propagator are shown in Figures 6
and 7 for temperatures above and below the phase transition.
Clearly, as expected, all propagators coincide with the zero-
temperature perturbative tail for momenta p large compared
to the temperature T . At the same time, each of the three
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FIG. 7: Same as figure 6, but for the ghost propagator. Also the
symbols are the same except for full circles, which refer to a 324

lattice at β = 2.3 (T = 0).

propagators shows a different temperature dependence at low
momenta. In particular, the 3d-transverse propagator DT (p)
decreases smoothly (in the IR) with increasing temperature.
At the same time, for the highest temperature considered here
(T ≈ 597 MeV), one sees a clear IR suppression with a maxi-
mum for p≈ 600 MeV. Let us stress that, while at T = 0 one
does not see a decreasing propagator DT (p) even for a lat-
tice volume of 524 [31], for this temperature above the phase
transition the IR suppression is already manifest for a spatial
volume of 423. This suggests that, at high temperature, ei-
ther the infrared suppression is stronger or that finite-volume
effects are smaller, compared to the zero-temperature case.
In the case of the 3d-longitudinal propagator DL(p) we ob-
serve an increase as the temperature is turned on starting from
T = 0. However, the propagator decreases (in the IR region)
when going from the second-highest to the highest tempera-
ture. A possibility would be a propagator increasing (respec-
tively decreasing) when the temperature rises for temperatures
below (respectively above) the phase transition. Let us note
that DL(p) does not seem to be IR suppressed, even though
in the IR limit it does not grow as strongly as the propaga-
tor of a massless particle [19]. Finally, the ghost propagator
does not show any visible temperature dependence. Let us
also stress that these results should be taken with care, es-
pecially when considering the 3d-longitudinal gluon propa-
gator DL(p), since we find strong volume and discretization
effects[19].

These results are in agreement with previous lattice [32]
and continuum results [33] and they can be interpreted con-
sidering a Gribov-Zwanziger-type scenario [19]. In particu-
lar, they suggest that this confinement scenario prevails at all
temperatures, i.e. not only for small temperature, but also in
the high-temperature phase.
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VI. SUMMARY

Summarizing, we have presented results for gluon and
ghost propagators considering the 3- and the 4-dimensional
cases for various gauges at zero temperature. In all cases our
results are in qualitatively agreement with the Kugo-Ojima
and with the Gribov-Zwanziger scenarios. Moreover, an in-
vestigation of the propagators in the interpolating gauge (2)
suggests that the Gribov-Zwanziger scenario is stable when
moving away from the Landau gauge condition.

At zero temperature, in Landau gauge, we have also eval-
uated the ghost-gluon and the 3-gluon vertices. This study
provides additional hints and constraints for the assumptions
usually considered in continuum studies.

Finally, we have presented results for the two propagators
at finite temperature around the deconfining phase transition.

These results fit into an extension of the Gribov-Zwanziger
scenario at finite temperature [19, 32, 33].

In all cases considered, the analysis of finite-volume effects
should be done very carefully, especially for the gluon prop-
agator. Thus, a complete understanding of the IR behavior
of the QCD correlation functions and a confirmation (or dis-
proof) of the available confinement scenarios will be obtained
only when extending these studies to larger lattices.
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