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Exploring the Infrared Structure of QCD with the Gribov-Zwanziger Lagrangian

J. A. Gracey
Theoretical Physics Division, Department of Mathematical Sciences,

University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom
(Received on 21 July, 2006)

We review recent one and two loop MS Landau gauge calculations using the Gribov-Zwanziger Lagrangian.
The behaviour of the gluon and Faddeev-Popov ghost propagators as well as the renormalization group invariant
effective coupling constant is examined in the infrared limit.
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I. INTRODUCTION

Quantum Chromodynamics (QCD) is the quantum field
theory describing the physics of the strong nuclear force. In
the ultraviolet régime the theory describes asymptotically free
quarks and gluons, [1, 2], which at high energies behave as
fundamental particles with propagators of the form 1/p2 as
the momentum p increases. However, free quarks and glu-
ons are not observed in nature as isolated units due to the
confinement mechanism. Moreover, there is a wealth of ev-
idence to indicate that at low energies the behaviour of the
gluon propagator differs significantly from that in the ultra-
violet. (For example, see the recent reviews of [3, 4].) For
instance, both Dyson Schwinger equations (DSE) and lattice
regularization observe that the gluon propagator vanishes at
zero momentum, [5–10]. This property is referred to as gluon
suppression. Whilst it has been established in the Landau
gauge several other features emerge in the infrared. The prop-
agator of the associated Faddeev-Popov ghost field diverges
at zero momentum more rapidly than its 1/p2 ultraviolet be-
haviour. Again this ghost enhancement has been observed in
DSE and lattice studies where both approaches obtain good
agreement on the value of the exponent in the power law form
of the propagator, [5–8]. Another infrared property which is
not fully resolved by DSE and lattice analyses is that of the
freezing of a particular definition of the effective strong cou-
pling constant. Whilst it is accepted that the particular quan-
tity does not diverge at zero momentum, it is not clear whether
it freezes to a finite or zero value. Given that these infrared
properties of Landau gauge QCD have been well established
by the numerically intensive DSE and lattice regularization
techniques, one natural question to pose is, can such phenom-
ena be probed from a Lagrangian point of view, and if not ini-
tially quantitatively, can it be accessed and understood qual-
itatively? This is therefore the purpose of this article, which
is primarily to review recent activity in this area, [11, 12], by
using Zwanziger’s elegant study on the Gribov problem, [13–
16].

Briefly, Gribov pointed out in [17] that one cannot uniquely
fix the gauge globally in a non-abelian gauge theory. Specifi-
cally for some gauge configurations one can construct one or
more copies which can be related by a gauge transformation.
To resolve this Gribov proposed that the path integral be re-
stricted to the region defined by the first zero of the Faddeev-
Popov operator which is defined as the Gribov volume. Whilst
one can still have gauge copies inside the Gribov horizon,

[18–20], within it there is a smaller region known as the funda-
mental modular region where there are no Gribov copies. The
key feature of the restriction to the first Gribov region is the
introduction of the Gribov mass scale, γ, which can be related
to the volume of the first Gribov region. The restriction of the
path integral significantly modifies the behaviour of the gluon
and ghost propagators in the infrared, [17]. For instance, the
(non-local) Gribov Lagrangian contains a gluon which is in-
frared suppressed and an enhanced Faddeev-Popov ghost. The
latter derives from the one loop ghost 2-point function where
the gap equation satisfied by the Gribov mass is central to the
one loop enhancement. Whilst Gribov’s Landau gauge analy-
sis gave significant insight into the infrared properties, one dif-
ficulty was the inability to easily perform practical computa-
tions since Gribov’s approach effectively amounted to using a
Lagrangian with a non-locality. The breakthrough in this area
came with Zwanziger’s construction of a localised Lagrangian
in [13–16]. Significantly that Lagrangian is renormalizable,
[21, 22], and therefore allows one to carry out calculations.

II. GRIBOV-ZWANZIGER LAGRANGIAN

The Gribov-Zwanziger Lagrangian involves two pieces,
[14]. One is the usual Landau gauge fixed QCD Lagrangian
and the other part involves additional fields which we will
refer to as Zwanziger ghosts. These are {φab

µ , φ̄ab
µ ,ωab

µ , ω̄ab
µ }

where the latter pair are anticommuting. The full localised
renormalizable Lagrangian is, [14],

LGZ = LQCD + φ̄abµ∂ν (Dνφµ)
ab − ω̄abµ∂ν (Dνωµ)

ab

− g f abc∂νω̄ae
µ (Dνc)b φecµ

+
γ2
√

2

(
f abcAaµφbc

µ + f abcAaµφ̄bc
µ

)
− dNAγ4

2g2 (1)

where LQCD denotes the usual Lagrangian involving the gluon
Aa

µ and Faddeev-Popov ghost fields ca and c̄a, Dµ is the usual
covariant derivative, f abc are the colour group structure func-
tions, NA is the dimension of the adjoint representation, g is
the coupling constant, and d is the spacetime dimension. The
commuting Zwanziger ghosts φab

µ and φ̄ab
µ implement the Gri-

bov horizon condition which in the Gribov formulation is de-
fined by the vacuum expectation value, [17],

〈
Aa

µ(x)
1

∂νDν
Aaµ(x)

〉
=

dNA

CAg2 . (2)
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The equivalent definition in (1) is, [14],

f abc〈Aaµ(x)φbc
µ (x)〉 =

dNAγ2
√

2g2
(3)

and these two equations define the gap equation satisfied by
the Gribov mass γ. The relation between both definitions of
the horizon conditions is made manifest from the equation of
motion of the Zwanziger ghost

φab
µ =

γ2
√

2
f abc 1

∂νDν
Ac

µ . (4)

Further, focusing on the part of the Lagrangian involving
purely gluons and using (4) then the non-locality of the origi-
nal formulation of Gribov becomes apparent

L = − 1
4

Ga
µνGaµν +

CAγ4

2
Aa

µ
1

∂νDν
Aaµ − dNAγ4

2g2 . (5)

As with any Lagrangian one needs to determine the explicit
values of the renormalization constants and hence anomalous
dimensions in order to perform practical calculations. As was
demonstrated in [21, 22] the Landau gauge Gribov-Zwanziger
Lagrangian has an interesting renormalization structure. In
addition to the renormalization constants of the usual QCD
Lagrangian the new fields and parameters each have a renor-
malization constant

φabµ
o =

√
Zφ φabµ , ωabµ

o =
√

Zω ωabµ , γo = Zγγ (6)

where the subscript o denotes the bare quantity. However, it
was demonstrated in [21, 22] by the algebraic renormaliza-
tion programme that to all orders in perturbation theory in the
Landau gauge

Zc = Zφ = Zω (7)

and

Zγ = Z1/4
A Z1/4

c (8)

where ZA and Zc are respectively the gluon and Faddeev-
Popov ghost renormalization constants. Hence, no new renor-
malization constants are required and, moreover, the original
QCD anomalous dimensions for the gluon, Faddeev-Popov
ghost and quark as well as the β-function remain unchanged.
So the presence of the localising fields does not alter the ul-
traviolet running. For completeness we note that the anom-
alous dimension of γ is known to three loops in MS for arbi-
trary colour group and at four loops for SU(Nc) in the Landau
gauge, [23].

Whilst this article primarily deals with the Landau gauge,
as an aside one can begin to address what happens in other lin-
ear covariant gauges aside from the Landau gauge by restor-
ing the usual α dependent part to LQCD in (1). In [24] the
construction of the horizon function has been examined for
small α where α is the gauge fixing parameter in a linear co-
variant gauge. In this approximation one can repeat some of
the Landau gauge construction and establish a gap equation.

In this context one can examine the renormalization of (1)
where LQCD is replaced by the α dependent Lagrangian. It is a
straightforward exercise to examine the three loop renormal-
ization for non-zero α which has not been determined before.
The machinery to do this involves the application of the MIN-
CER algorithm, [25, 26], written in the symbolic manipulation
language FORM, [27], and the intensive use of computer al-
gebra. The full three loop renormalization of the α extended
Gribov-Zwanziger Lagrangian has been performed in the MS
scheme and the following α dependent anomalous dimensions
emerged for the additional fields and γ to three loops

γc(a) = γφ(a) = γω(a)

γγ(a) = [16TF Nf − (35+3α)CA]
a
48

+ [(3α−449)C2
A +280TF NfCA +192TF NfCA]

a
192

+ [(1512α−15552ζ(3)+89008)TF NfC2
A

− 3456TF NfC2
F −8448T 2

F N2
f CF −12352T 2

F N2
f CA

+ (20736ζ(3)+19920)TF NfCACF

− (81α3−162ζ(3)α2 +162α2−648ζ(3)α+918α

− 486ζ(3)+75607)C3
A]

a3

6912
+ O(a4) (9)

where a = g2/(16π2), ζ(n) is the Riemann zeta function and
the group Casimirs are defined by

T aT a = CF I , f acd f bcd = CAδab , Tr(T aT b) = TF δab

(10)
where T a are the generators of the Lie algebra of the colour
group. Throughout we use dimensional regularization in
d = 4 − 2ε dimensions. To establish γγ(a) we have used the
version of the Gribov-Zwanziger Lagrangian where the γ de-
pendent terms are regarded as being part of the interaction
Lagrangian. Therefore, the gluon and φab

µ fields are regarded
as massless. This is the form required for applying the MIN-
CER algorithm which determines massless 2-point functions
to three loops and the finite part in ε. Thus γγ(a) is deter-
mined by renormalizing the Green’s function where the op-
erator associated with γ2 in (1) is inserted at zero momentum
into the Aa

µ-φbc
ν Green’s function. This involved 2 one loop, 43

two loop and 1082 three loop Feynman diagrams which were
generated with the QGRAF package, [28].

Clearly the first Slavnov-Taylor identity, (7), appears to
hold for all α and is central to the observation that like the
Landau gauge the other anomalous dimensions (and the β-
function) are equivalent to their α dependent values with or
without the localising features. By contrast the Gribov mass
parameter is not only α dependent but is not proportional to
the sum of the gluon and Faddeev-Popov ghost anomalous di-
mensions as was the case in the Landau gauge. Therefore, for
non-zero α an extra independent renormalization constant is
required to render (1) finite unlike the Landau gauge.
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III. GAP EQUATION

Having established the Gribov-Zwanziger Lagrangian as a
tool to perform calculations one can begin to address the prob-
lem of what its properties are at zero momentum, returning to
the Landau gauge. First, one can construct the gap equation
satisfied by γ at two loops by evaluating the vacuum expecta-
tion value (3). This requires the Feynman rules of (1) as well
as the propagators. Due to the mixed 2-point term in (1) the
Aa

µ and φab
µ sector propagators are

〈Aa
µ(p)Ab

ν(−p)〉 = − δab p2

[(p2)2 +CAγ4]
Pµν(p)

〈Aa
µ(p)φ̄bc

ν (−p)〉 = − f abcγ2
√

2[(p2)2 +CAγ4]
Pµν(p)

〈φab
µ (p)φ̄cd

ν (−p)〉 = − δacδbd

p2 ηµν

+
f abe f cdeγ4

p2[(p2)2 +CAγ4]
Pµν(p) (11)

where Pµν(p) = ηµν − pµ pν/p2. Therefore using these to
evaluate the 1 one loop and 17 two loop Feynman graphs con-
tributing to (3), we arrive at the two loop MS gap equation sat-
isfied by the running Gribov mass γ, for Nf massless quarks,
[11],

1 = CA

[
5
8
− 3

8
ln

(
CAγ4

µ4

)]
a

+
[
C2

A

(
2017
768

− 11097
2048

s2 +
95

256
ζ(2)− 65

48
ln

(
CAγ4

µ4

)

+
35
128

(
ln

(
CAγ4

µ4

))2

+
1137
2560

√
5ζ(2)− 205π2

512

)

+ CATF Nf

(
− 25

24
−ζ(2)+

7
12

ln
(

CAγ4

µ4

)

− 1
8

(
ln

(
CAγ4

µ4

))2

+
π2

8

)]
a2 + O(a3) (12)

where s2 = (2
√

3/9)Cl2(2π/3) with Cl2(x) the Clausen func-
tion and µ is the scale introduced in dimensional regulariza-
tion which ensures a dimensionless coupling constant in d-
dimensions. This calculation also required the use of the
QGRAF package, [28], to generate the electronic version of
the Feynman diagrams as well as the use of FORM to handle
the algebra. Additionally the two loop master vacuum bubble
integral

I(m2
1,m

2
2,m

2
3) =

∫

kl

1
[k2−m2

1][l2−m2
2][(k− l)2−m2

3]
(13)

where m2
i ∈ {0, i

√
CAγ2,−i

√
CAγ2} was required to the finite

part in ε.

IV. INFRARED PROPERTIES

As Gribov was able to establish the one loop Faddeev-
Popov ghost enhancement by evaluating the ghost 2-point
function and applying the one loop gap equation, [17], it is
now viable to extend that calculation. At two loops there are
31 Feynman diagrams to evaluate. If we write the Faddeev-
Popov form factor as

Dc(p2) =
1

[1+u(p2)]
(14)

where Dc(p2)/p2 represents the propagator itself, then u(p2)
represents the radiative corrections. So ghost enhancement
then translates into the Kugo-Ojima confinement criterion of
u(0) = − 1, [29]. Hence, to consider this in the Gribov-
Zwanziger context one needs to evaluate the two loop ra-
diative corrections in the small p2 expansion. In practical
terms this means carrying out the vacuum bubble expansion
of the Feynman diagrams and using the master integral (13),
for instance, and the cases where the propagators have inte-
ger powers larger than unity. Completing this one finds that
u(0) = − 1 at two loops precisely when γ satisfies the gap
equation of (12), [11]. In extending the one loop result of
Gribov to two loops means that the Kugo-Ojima confinement
criterion is consistent at two loops in (1) as well as being a
check on the actual explicit computation of (12). Moreover,
the fact that the condition is precisely satisfied at two loops is
also consistent with the all orders proof given in [15]. There
general arguments established that the ghost propagator be-
haves as 1/(p2)2 as p2 → 0 in (1).

Repeating the analysis for the gluon propagator is more in-
volved due to the mixing of Aa

µ with φab
µ in the quadratic part of

the Lagrangian. If one formally writes the one loop correction
to the 2 × 2 matrix of 2-point functions as, [12],
(

p2δac −γ2 f acd

−γ2 f cab −p2δacδbd

)
+

(
Xδac U f acd

M f cab Nabcd

)
a + O(a2)

(15)
where the common factor of Pµν(p) in the Landau gauge has
been factored off, Nabcd = Qδacδbd + W f ace f bde + R f abe f cde

+ Sdabcd
A and

dabcd
A = Tr

(
T (a

A T b
A T c

A T d)
A

)
(16)

where T a
A is the colour group generator in the adjoint represen-

tation. The 14 one loop Feynman graphs contributing to the
2-point function matrix have been evaluated both exactly and
in the vacuum bubble expansion and are in agreement when
the exact expression is expanded in powers of p2. Inverting
the 2-point matrix gives the propagator matrix and formally
we find the propagators to one loop are given by, [12],




p2

[(p2)2+CAγ4]δ
cp − γ2

[(p2)2+CAγ4] f cpq

− γ2

[(p2)2+CAγ4] f pcd − 1
p2 δcpδdq + γ4 f cdr f pqr

p2[(p2)2+CAγ4]




+
(

Aδcp C f cpq

E f pcd Φcd pq

)
a + O(a2) (17)
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where

Φcd pq = Gδcpδdq + J f cpe f dqe +K f cde f pqe +Ldcd pq
A (18)

and

A =
(−1)

[(p2)2 +CAγ4]2
[
(p2)2X−2CAγ2 p2U

+ CAγ4 (
Q+CAR+ 1

2CAW
)]

. (19)

The first entry in this matrix corresponds to the correction to
the gluon propagator and in terms of the 2-point functions is

A =
(−1)

[(p2)2 +CAγ4]2
[
(p2)2X−2CAγ2 p2U

+ CAγ4 (
Q+CAR+ 1

2CAW
)]

. (20)

Hence, if one writes the form factor of the gluon as DA(p2)
where DA(p2)Pµν(p)/p2 is the propagator, then one finds that
DA(p2) → 0 as p2 → 0 at one loop, [12]. Hence, one has
gluon suppression at this order in (1) consistent with DSE and
lattice studies.

We close this section on the propagators by noting that for
the other fields one and two loop calculations reveal parallel
behaviour. For the ωab

µ field it too has a completely similar
enhancement at two loops if one computes the two loop 2-
point function, in a similar way to that of the Faddeev-Popov
ghost, and applies the two loop gap equation. So the Kugo-
Ojima confinement criterion is satisfied by both sets of anti-
commuting fields. However, it is worth noting that the origi-
nal Kugo-Ojima analysis was for a non-abelian gauge theory
with only Faddeev-Popov ghosts and not with the additional
Zwanziger ghosts. Therefore, for completeness it would seem
that the study of [29] needs to be extended to the case of (1).
Equally at one loop the exact expressions for both the ωab

µ and
Faddeev-Popov ghost form factors are the same. Explicitly
we have

Dc(p2) = Dω(p2)

=
[[

5
8

+
πp2

8
√

CAγ2 +
3
√

CAγ2

4p2 tan−1
[√

CAγ2

p2

]

− 3
8

ln
[

1+
(p2)2

CAγ4

]
+

CAγ4

8(p2)2 ln
[

1+
(p2)2

CAγ4

]

− 3π
√

CAγ2

8p2 − p2

4
√

CAγ2 tan−1
[√

CAγ2

p2

]]
CAa

]−1

.

(21)

Moreover, these facts suggest that there is an all orders equal-
ity which, if so, could possibly be established by general sym-
metry arguments. Also, whilst the φab

µ 2-point function is
more complicated due to the appearance of the colour group
tensors, the channel corresponding to the tree term in the La-
grangian is equivalent at one loop in MS to the gap equation.
This suggests that in this channel there is a change in its in-
frared behaviour.

V. EFFECTIVE COUPLING CONSTANT

One quantity which receives wide attention in both DSE
and lattice studies is the renormalization group invariant def-
inition of the effective strong coupling constant based on the
renormalization properties of the ghost gluon vertex. (See, for
instance, [4].) Since this vertex does not undergo renormaliza-
tion in the Landau gauge, then the effective coupling constant
is defined from the gluon and ghost form factors as

αeff
S (p2) = α(µ)DA(p2)

(
Dc(p2)

)2
(22)

where α(µ) = g2(µ)/(4π) is the running strong coupling con-
stant. Although both numerical approaches use the same
definition they do not definitively agree on the infrared be-
haviour aside from the fact that there is freezing at a finite
value. However, some DSE studies find αeff

S (0) = 2.97 for
SU(3), [30, 31], whilst various lattice and DSE analyses sug-
gest αeff

S (0) = 0, [32, 33]. Given that we have analysed both
form factors in the Gribov-Zwanziger Lagrangian, it is a sim-
ple exercise to evaluate (22) in the p2 → 0 limit. We find that
at one loop in the MS scheme, [12],

αeff
S (0) = lim

p2→0


 α(µ)

[
1+CA

( 3
8 L− 215

384

)
a
]
(p2)2

CAγ4
[
1+CA

(
3
8 L− 5

8 + πp2

8
√

CAγ2

)
a
]2




(23)
where L = ln

(
CAγ4

µ4

)
. Thus for SU(3) we find αeff

S (0) = 1.768
independent of the number of massless quarks. Whilst this is
less than the value for the DSE approach it is finite and non-
zero. Moreover, the Nc dependence is in qualitative agreement
with [30, 31]. In the determination of a finite value it is worth
noting the key role played by the gap equation in ensuring the
cancellation of the dimensionful and dimensionless quantities
to leave a pure number. We also remark that the ωab

µ gluon
vertex has a similar freezing to the same value, [12].

One property of (22) which motivated recent studies of Lan-
dau gauge QCD and the suggested condensation of low di-
mensional operators was the numerical evidence of a 1/p2

power correction to the effective coupling constant, [34–37].
Although that analysis was in the MOM scheme, if it is a more
general property of the Landau gauge effective coupling con-
stant it ought to be present in other schemes. As we have exact
expressions for the form factors it is possible to evaluate (22)
in powers of p2 and see whether a 1/p2 term emerges as a cor-
rection or if the expected 1/(p2)2 term is the first term. The
latter is certainly expected to be present due to the existence
of the gauge invariant dimension four operator (Ga

µν)
2 which

can condense. Therefore, returning to (15) and formally ex-
panding in powers of γ2, we have at leading order at one loop,
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[12],

X =
[[(

13
6

ln
(

p2

µ2

)
− 97

36

)
p2 +

3π
√

CAγ2

8

]
CA

−
[

4
3

ln
(

p2

µ2

)
− 20

9

]
TF Nf p2

]
a

M = U =
[

11CA

8
γ2

]
a

Q =
[[

−
(

1− 3
4

ln
(

p2

µ2

))
p2 +

3π
√

CAγ2

8

]
CA

]
a

W = R = S = O(a2) . (24)

Hence, at one loop

DA(p2) = 1 − 3CAπ
8

√
CAγ2

p2 a (25)

Dc(p2) =
[
−1+

[
1− 3

4
ln

(
p2

µ2

)
− 3π

8

√
CAγ2

p2

]
CAa

]−1

.

Thus evaluating αeff
S (p2) in the same expansion and identify-

ing the γ independent pieces as deriving from the perturbative
part of the coupling constant, we find at one loop

αeff
S (p2) = αpert

S (p2)
[

1 − 9CAπ
8

√
CAγ2

p2 a + O
(

1
(p2)2

)]
.

(26)
Thus a 1/p2 correction emerges and the power correction of
[34–37] can be mimicked by the presence of the Gribov mass
in the Gribov-Zwanziger Lagrangian. Though this ought to be
qualified by noting that the condensation of the gauge variant
operator 1

2 (Aa
µ)2 has also received a large amount of attention

in recent years in the Landau gauge, [38, 39], and could be an
alternative justification for the lattice result. It is also worth
observing that both γ2 and 1

2 (Aa
µ)2 have the same anomalous

dimensions in the Landau gauge [40, 41]. Indeed the effect
that the Gribov mass has on the condensation of 1

2 (Aa
µ)

2 has
been examined in [22, 42, 43]. One final point is that the sign
of γ2 is not fixed in (1). Therefore, one can alter the sign of γ2

in (26) to obtain the same sign as that in [36, 37]. Although
this is for a different scheme (MOM) compared to our MS
result, it would result in an effective tachyonic gluon mass.
This may appear unacceptable. However, as the gluon is not

truly an observable field due to confinement this ought not
to be a hindrance. More specifically this tachyonic nature is
only revealed in the next to high energy limit. If one exam-
ines the full gluon propagator at one loop, there is no pole in
the propagator. Therefore, one cannot truly identify a mass
for the confined gluon in the conventional way that one does
for a fundamental unconfined field. Another observation from
a phenomenological point of view is that in [44] it was noted
that a tachyonic gluon mass in current correlators could repro-
duce experimental data more accurately than either a massless
gluon or one with a non-tachyonic mass.

VI. CONCLUSION

We have studied the Gribov-Zwanziger Lagrangian, [14],
at one loop and established that it qualitatively reproduces
the propagator and effective coupling constant behaviour ob-
served in the infrared using DSE and lattice studies. More-
over, the gap equation has been determined at two loops in
MS and ensures the Kugo-Ojima confinement criterion is sat-
isfied. This would appear to establish the Gribov-Zwanziger
Lagrangian as a useful tool to examine other phenomenolog-
ical aspects of QCD such as the operator product expansion
and the evaluation of vacuum expectation values of gauge in-
variant operators, such as (Ga

µν)
2. Further, we have examined

the renormalization of the Gribov-Zwanziger Lagrangian in
linear covariant gauges albeit in the limit of small gauge fixing
parameter. Clearly it would be a formidable task to fully ex-
tend the Landau gauge Gribov-Zwanziger Lagrangian to other
gauges such as linear covariant and maximal abelian gauges,
[24, 45]. However, if it were possible then it would be in-
teresting to extend our present Landau gauge propagator and
effective coupling constant analysis to these gauges in order to
understand what their infrared structure is. This would com-
plement DSE and lattice analyses.
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