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Pions in Isospin Dense Media
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The thermal and density corrections, in terms of the isospin chemical potential µI , to the mass of the pions,
the decay constant and different condensates are studied in the framework of the SU(2) low energy effective
chiral Lagrangian at finite temperature in the two phases: The first phase |µI |< m and the second phase |µI |> m,
being m the tree-level pion mass. As a function of temperature for µI = 0, the mass remains quite stable, starting
to grow for very high values of T , confirming previous results. However, there are interesting corrections
to the mass and the other observables mentioned when both effects (temperature and chemical potential) are
simultaneously present. At zero temperature the π± should condense when µI =±mπ. At finite T , the condensed
pion acquires a thermal mass in such a way that a mixture, like in a superfluid, of a condensed and normal phase
appears.
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In the last years, the pion condensation effect due to a dense
isospin media has been a matter of study in a great variety
of frameworks, specially in the description of the physics in-
side compact stars and relativistic heavy-ion collisions. An
isospin dense media (for positive isospin chemical potential)
involves more u quarks baryon-charge than the d quarks ,
so in hadronic degrees of freedom, the media will contain
more positive charged pions than negative ones. The oppo-
site occurs with negative isospin chemical potential, which is
the case in the core of neutron stars, where densities are big
enough to condense the negative charged pions. Pion and kaon
condensates are relevant at the cooling process period

The introduction of in-medium processes via isospin chem-
ical potential has been studied first at zero temperature [1, 2]
in both phases at tree level. Many works at zero and finite
temperature study the effect of pion condensation for isospin
dense media principally in the frame of NJL [3], lattice QCD
[4] and in other frames [5].

All the works confirm that a pion gas, with chemical poten-
tial greater than the pion mass, change to a superfluid phase,
where one of the charged pions condense in a second order
phase transition.

Chiral Perturbation theory (χPT) is an appropriate theory
for such scenario, since is a QCD low-energy theory, which
includes only the pseudo-goldstone modes. It is also simple in
this frame to introduce isospin chemical potential as an exter-
nal vector current. The different observables, such as masses,
decay constants and currents can be easily extracted.

This proceeding contribution is based on the articles [6] for
the masses and decay constants in the first phase, [7] for the
masses in the second phase and [8] for the analysis of the con-
densates in the two phases.

I. CHIRAL PERTURBATION THEORY

In the low-energy description where only pion degrees of
freedom are relevant, let us consider the most general chiral
invariant Lagrangian, ordered in a series of powers of the ex-
ternal momentum. The pions will be coupled with external
fields Sχ[U ;s, p,v,a], where the external sources s = s0(x) +
sa(x)τa p = p0(x)+ pa(x)τa vµ = 1

2 va
µ(x)τa and aµ = 1

2 aa
µ(x)τa,

are the scalar, pseudo-scalar, vector and axial-vector external
fields sources, respectively, being τa the Pauli matrices (see
[9] for all the generalities of χPT). The field matrix U contain
the pion fields and is defined as U = Ū1/2 exp{iπaτa/ f}Ū1/2,
where Ū is the vacuum expectation value of the fields and f
the pion decay constant at tree level. In the case of massive
pions at finite isospin chemical potential, we replace s = M,
p = 0, vµ = 1

2 µIδµ0τ3 and aµ = 0, where M is the current quark
mass-matrix and uµ is the four velocity.

Four our analysis we also need to extract the different cur-
rents of the theory defined as the functional derivative of the
Action with respect to the external sources:

V a
µ =

δS
δva

µ
=

1
2

q̄γµτaq, Aa
µ =

δSχ

δaa
µ

=
1
2

q̄γµγ5τaq,

Ja
p =

δSχ

δpa = q̄γ5τaq, −J0
s =

δSχ

δs0 = −q̄q,

being the vectorial, axial, pseudo-scalar and scalar currents.
In this way, the different condensates are defined as the vac-
uum expectation value of the currents 〈0|J |0〉 and the decay
constants from the PCAC relation saturating the axial current
with a soft pion 〈0|A|π〉 ∼ fπ.

For radiative corrections we need the chiral Lagrangian up
to O(p4) in the Weinberg momentum power counting and ex-
pand the chiral Lagrangian in powers of pion fields consider-
ing that the expectation value 〈π2〉 ∼ P2.

To introduce the temperature we will use Thermo-field Dy-
namics formalism. The advantage is that for one-loop correc-



M. Loewe and C. Villavicencio 521

tions we only need the Dolan-Jackiw propagator, defined as

DDJ(p) =
∫

dk0

2πi
lim
η→0

[
D(k0 + iη,p)−D(k0 − iη,p)

k0 − p0 − iε

]

+nB(p0)
[
D(p0 + iε,p)−D(p0− iε,p)

]
(1)

After expanding the chiral Lagrangian and currents for one-
loop calculations, following the prescriptions of χPT of the
power counting, we can perform radiative corrections. In the
case of the condensates the procedure is direct in both phases,
since it is only needed to calculate the vacuum expectation
value of the currents. Nevertheless, the identification of the
masses and decay constants is not as simples as in the sec-
ond phase, since there occurs a mixing of the charged fields.
We use the prescription in [1] to extract the pion masses, as
the poles of the determinant of the propagator matrix in rest
frame, i.e. the solution of |D−1(p0)| = 0.

II. CONDENSED PHASE

A common feature of all approaches in the second phase is
the fact that the physical pion states do not correspond any-
more to the usual pion charged states. In fact as we will see,
the π± states will mix in a non trivial way. The result of this
mixture produces and extremely cumbersome propagator, a
matrix 2×2, so we need to define some criteria how to handle
this propagator, according to the value of the chemical poten-
tial, for computing radiative corrections.

For |µI | > m there is a symmetry breaking. The vacuum
expectation value that minimizes the potential is Ū = c+ iτ̃1s,
where c ≡ m2/µ2

I and s ≡ (1−m4/µ4
I )

1/2 as was obtained in
[1]. This non-trivial vacuum will produce as a result a mixing
of the charged fields. Thus the pseudo-fields that appears in
the Lagrangian are not any more the physical ones. A direct
consequence is that the propagator matrix for charged pions is
not diagonal. In momentum space it is

D̃ =
i

[p4 − p2µ2
I s2 −4µ2

I c2 p2
0]

(
p2 −2i|µI|cp0

2i|µI|cp0 p2 −µ2
I s2

)

(2)
where D̃i j ≡Di j �=3 with respect the degrees of freedom of the
quasi-fields π̃1 and π̃2. Here we use µI =−|µI| as it is the case
in the core of neutron stars. The main difficulty with this ma-
trix propagator is that it is very cumbersome to integrate the
different loop corrections. This fact motivated us to proceed
in a systematic way, through an expansion in a new appropri-
ate smallness parameter, namely s when |µI| ∼ m and c when
|µI| 
 m.

It is not difficult to realize that the different vertices which
appear in our Lagrangian will correspond to different powers
of c or s depending on the case. Although it could appear as
a trivial correction, we will keep only the zero order in our
calculations. As we will see, this procedure is not trivial at all
and provide us with interesting information about the behav-
ior of the pion masses as function of temperature and isospin
chemical potential.

If we scale all the parameters with |µI| in all structures, it is
possible to expand the propagator in powers of s n for |µI| ∼ m
and cn when |µI| 
 m.

In χPT the natural scale parameter is Λχ = 4π f . Usu-
ally Λχ is compared with the tree level pion mass defining
in this way the smallness parameter for perturbative expan-
sions α = (m/4π f )2. Now, since |µI| > m in the second
phase, we will re-define the perturbative expansion parame-
ter as α′ = (µI/4π f )2

After the renormalization procedure, the divergent terms
and the scale factor that will appear in the loops calculation
due to dimensional regularization and the L4 terms will can-
cel. Finally the renormalized self-energy will get the form

Σ|µI |
m = µ2
I α′ ∑

n=0

[
σ(c)

n

(
p
|µI| ;

T
|µI |

)
+ σlog

n

(
p
|µI|

)
lnc

]
cn,

Σ|µI |∼m = µ2
I α′ ∑

n=0

σ(s)
n

(
p
|µI| ;

T
|µI|

)
s2n. (3)

where the functions σ’s are dimensionless. The logarithmic
terms in the high chemical potential region appears by the can-
cellation of the divergences with the χPT counter-terms of the
coupling constants. The limit of the theory is µI < mρ since
higher resonances must be considered.

A similar expansion is performed to the radiative correc-
tions of the condensates. With all this in mind we can pro-
ceed to calculate perturbative correction to the different ob-
servables we are interested on.

III. MAIN RESULTS

In this section we only will show a graphical description of
the different observables extracted from the procedures men-
tioned above. The specifications and details of them can be
founded in [6, 7, 8]

A. Condensates

In the first phase, the only non-vanishing condensates
are the chiral condensate 〈0|q̄q|0〉 and the isospin number
density 〈nI〉 = 〈0| 1

2 q†τ3q|0〉. When the isospin chemical
potential is greater than the pion mass, due to the parity
breaking, two more condensates appear, the pion conden-
sate 〈π〉 = 〈0|iq̄γ5τ3q|0〉 and the axial charge density 〈QA〉 =
〈0| 1

2 q†γ5τ2q|0〉. It is interesting to note that in terms of the
vacuum expectation value of the currents form a basis in the
isospin space:

〈0|Vµ|0〉 = 〈nI〉δµ0e3,

〈0|Aµ|0〉 = 〈QA〉δµ0e2,

〈0|Jp|0〉 = 〈π〉e1. (4)

The chiral condensate and the isospin number density in the
first phase, as is well known, are affected by the chemical po-
tential only for finite temperatures. The chiral condensate is
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FIG. 1: Chiral condensate at finite temperature and isospin chemi-
cal potential in (a) the transition region and (b) the high chemical
potential region.

independent of the sign of the chemical potential. In the first
phase start to decrease with temperature. In the second phase,
however, it is affected directly by the chemical potential, be-
ing this effect enhanced by the temperature as can be seen in
Figure 1.a. For high values of chemical potential, the decrease
will be more smooth due to logarithmic terms described in the
last section as can be seen in Figure 1.b.

The isospin number density change it sign with respect to
the chemical potential sign. It vanishes at zero temperature
and for finite T start to develop a similar behavior of the chiral
condensate in the first and near the transition point (Figure
2.a). Nevertheless, for higher values of the chemical potential
it presents an abruptly change due to the logarithmic terms.
Moreover, it present a crossover in the isothermal lines as can
be seen in Figure 2.a.

The pion condensate, will appear in the second phase and
start growing with the chemical potential. It start to diminish
by the action of the thermal bath as shows Figure 3.a. It is
expected since at certain temperature, the condensed pion will
acquire a thermal mass , a superfluid phase coexisting massive
an condensed π− pion. In Figure 3.b. we can see again that the
logarithmic terms change their behavior, starting to decrease
with the chemical potential.

The axial charge density is one of the less studied conden-
sates. It is interesting to note that for a certain temperature
it change the sign near the phase transition point as can be
seen in figure 4. For high values of the chemical potential, the
isothermal lines start to approximate again and negative part
start to grow to zero (figure 4.b). Again, the responsible of
this change in the behavior is the ‘lnc’ term.

It is important to remark that in the second phase, the re-
lation between the chiral condensate and the pion condensate
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FIG. 2: Isospin number density condensate at finite temperature and
isospin chemical potential in (a) the transition region and (b) the high
chemical potential region.
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FIG. 3: Pion condensate at finite temperature and isospin chemical
potential in (a) the transition region and (b) the high chemical poten-
tial region.

s〈q̄q〉+ c〈π〉= 0 (5)

which appears at tree level for zero temperature is still valid at
finite temperature for one-loop correction.
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FIG. 4: Axial charge density at finite temperature and isospin chem-
ical potential in (a) the transition region and (b) the high chemical
potential region.

B. Masses

In the first phase the only quantities that are affected di-
rectly with the chemical potential at zero temperature are the
charged pion masses.

One of the most interesting results, of course is the π−
mass, since it will condense in the second phase (if we change
the sign of the chemical potential, the π+ will condense). As
we can see in figure 5, the mass at zero temperature vanishes
when the chemical potential reach the pion mass and remains
in a condensed state. When the temperature start to grow, the
condensation critical value of the chemical potential start to
grow. For a certain critical temperature Tc ≈ 20MeV , the neg-
ative pion acquire again a mass. Here is the superfluid phase
where massive and condensed negative pions coexist. In the
high chemical potential region, the π− will be of O(c2).

In the case of the other masses, near the transition point
mπ+ decreases, as in the tree-level approximation, and this be-
havior is enforced with temperature. In this region m π0 grows
with both parameters (see figure 6.a). For mπ0 in this region,
it increases monotonically both with temperature and chemi-
cal potential. mπ+ , as the temperature and the chemical poten-
tial rise, becomes asymptotically close to mπ0 as was expected
(see figure 6.b). In contrast with the first region, the π+ mass
grows with temperature and a crossover occurs somewhere in
the intermediate region of the chemical potential values.
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FIG. 5: mπ− at finite temperature and isospin chemical potential in
the transition region.
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FIG. 6: mπ0 and mπ+ at finite temperature and isospin chemical po-
tential in (a) the transition region and (b) the high chemical potential
region.

C. Decay constants

Here we will give a description of the decay constants only
in the first phase. Due to the mixing of the charged pions
in the second phase, it is not simple to identify which is the
physical pion field. Also the LSZ reduction formula must be
generalized. This will developed in a future work.

The isospin chemical potential will modify the PCAC rela-
tion due to the fact that it breaks Lorentz symmetry. We obtain
as a result that PCAC relates also the isospin number density
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FIG. 7: (a) fπ± and (b) fπ0 as a function of temperature and finite
isospin chemical potential in the first phase.

with the charged pions decay constant:

〈0|A±
µ (0)|π∓(p)〉 = i(pµ ±µIδµ0) fπ± ∓ i〈nI〉δµ0

〈0|A0
µ(0)|π0(p)〉 = ipµ fπ0 (6)

where fπ+ = fπ− . The temperature and isospin chemical po-
tential dependence of the decay constants in the first phase can
be seen in figure 7.

We can see that it behaves like the chiral condensate in the
first phase where the influence of the chemical potential is
stronger for fπ0 . This similarity with the chiral condensate
is not surprising since they are related by the G-MOR relation
which is valid at finite temperature. In fact for finite isospin
chemical potential and Temperature, the G-MOR relation will
be modified as

m̄2
π f̄ 2

π = −1
2
(mu + md)〈q̄q〉 (7)

being mu and md the light quark masses and m̄π = 1
3 (mπ+ +

mπ− +mπ0) and f̄π = 1
3( fπ+ + fπ− + fπ0), the average value of

the masses and decay constants.

IV. CONCLUSIONS

Here we show an analysis of the development of the
masses,decay constants and condensates of a pion gas in a
dense isospin media within a thermal bath in the frame of χPT.
By calculating the negative-charged pion mass we can see the
transition from the normal phase to a superfluid phase where
initially, at zero temperature, this pion will condense and their
mass vanishes. A pion con densate will appear and it will be
the order parameter to the superfluid phase. The negative pion
mass in the second phases, appears for values of the temper-
ature over a critical temperature Tc ≈ 20MeV , turning in to
a superfluid phase with partially condensed pa particles and
partially with a thermal mass. Nevertheless this is a scheme
dependant result predicted by χPT, but such temperatures co-
incides with temperatures reached by the core of a neutron star
from their born and initial cooling process.

Except for the charged pion masses, all the other quantities
depend on the isospin chemical potential only at finite tem-
perature in the first phase. In the second phase, two quanti-
ties present a crossover between the limits near the transition
region and for high isospin chemical potential: the positive
charged pion mass and the isospin number density. In general
all quantities change drastically with the logarithmic terms in
the asymptotic limit when µ → ∞. All this results agree with
lattice results [4].

It is interesting to remark again that the relation in (5) is
preserved, and modifications to the PCAC (equation 6) and
the G-MOR relation (equation 7). The last two are only valid
in the first phase and will be future work the behavior of the
decay constants in the second phase, as well as the modified
PCAC and G-MOR relations.
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