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Roles of Wave Functions in the Electroproduction of Vector Mesons
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Elastic vector meson electroproduction is calculated through integrals of the overlap product of photon and
vector meson wave functions, multiplied by the amplitude for the scattering of qq̄ dipole pairs off the proton.
In this nonperturbative QCD calculation, for sizes of the overlap functions that are smaller than the typical
ranges of the interaction of the dipoles with the proton, the amplitudes factorize, with overlap strengths (inte-
gration extended over the light front coordinates describing the qq̄ dipoles) containing all Q2 dependence of the
observables. This factorization is important in the description of the experimental data for all S-wave vector
mesons.
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I. INTRODUCTION

In nonperturbative treatments of elastic photo and electro-
production of vector mesons [1–3] the photon and vector me-
son wave functions appear as explicit ingredients of the calcu-
lation, with an overlap product formed to describe the tran-
sition from real or virtual photon to the final meson state.
The photon and vector meson are treated in a simple dipole
model of quark-antiquark distribution functions, which is re-
sponsible for the hadronic character of the interaction with
the proton. On the other side of the process, the proton is
also treated as a system of three quarks (or a system qq̄ in a
diquark model structure). The transition from photon to me-
son and the interaction with the proton occurs in the presence
of a background QCD field. The Stochastic Vacuum Model
[4, 5] gives a framework for this calculation and has been used
with success in the study of J/ψ photo- and electroproduc-
tion processes. The calculation requires no new free parame-
ters, incorporating the knowledge acquired in applications of
hadron-hadron scattering [6], based on a functional approach
[7].

These successful results give basis and justification for a
practical use of simple dipole wave functions of photons and
mesons and for the purely nonperturbative treatment of elastic
and single diffractive vector meson (ρ,ω,φ,ψ,ϒ)

The treatment of J/ψ electroproduction exhibits clearly the
factorization property [3], with all Q2 dependence of the am-
plitudes and cross sections contained in the strength of the
overlap of virtual photon and meson wave functions. The
overlap strength is defined as the integral of the overlap prod-
uct of wave functions, weighted with r2 (r is the dipole sepa-
ration), over the light-cone coordinates of the qq̄ dipole [8].

This factorization property of the amplitude is favoured by
the small size of the overlap function, which in the heavy vec-
tor meson J/ψ case is smaller than the typical range (the cor-
relation length of the nonperturbative QCD vacuum) of the
interaction with the proton. For light vector mesons, this con-

dition occurs in electroproduction as the photon virtuality Q2

increases.
In view of the importance of this analysis for the interpreta-

tion and description of the experimental information on vec-
tor meson production, we study in this paper the properties of
the photon-meson overlaps and overlap strengths for different
vector mesons.

The description of the energy dependence requires a spe-
cific model for the coupling of qq̄ dipoles to the proton. In
previous nonperturbative calculations of photo and electropro-
duction of J/ψ mesons [1–3], where a quantitative descrip-
tion of all experimental data was envisaged, the two-pomeron
model of Donnachie and Landshoff [9] was successfully em-
ployed. All QCD and hadronic parameters used in our calcula-
tion have been defined before [10]. In perturbative approaches
the energy dependence is taken into account through the gluon
distributions in the proton [11–14].

We introduce light cone wave functions and describe their
overlaps, comparing results for the ρ, ω, φ, J/ψ and ϒ mesons.

Basic formulæ and Ingredients

We first some basic formulae developed in our previous
work on photo- and electro- production [1–3], where details
can be found.

The amplitude for electroproduction of a vector meson V in
polarization state λ is written in our framework

Tγ∗p→V p,λ(s, t;Q2) (1)

=
∫

d2R1dz1 ργ∗V,λ(Q
2;z1,R1) J(s,q,z1,R1) ,

J(s,q,z1,R1) (2)

=
∫

d2R2d2be−iq.b|ψp(R2)|2S(s,b,z1,R1,z2 = 1/2,R2) .

Here

ργ∗V,λ(Q
2;z1,R1) = ψV λ(z1,R1)∗ψγ∗λ(Q

2;z1,R1) (3)
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represents the overlap of virtual photon (virtuality Q2) and
vector meson wave functions, and S(s,b,z1,R1,1/2,R2) is
the scattering amplitude of two dipoles with separation vec-
tors R1,R2, colliding with impact parameter vector~b; ~q is the
momentum transfer.

The form of overlap written in eq.(3) corresponds to SCHC
(s-channel helicity conservation); generalizations can be made
introducing a matrix in the polarization indices. For the proton
structure we adopt a simple diquark model.

The construction of the wave functions is made in a refer-
ence frame where the vector meson is essentially at rest, and
we therefore use light-cone coordinates [15–20]. The degrees
of freedom for the dipole pair are the q→ q̄ vector in the trans-
verse plane r = (r cosθ,r sinθ), and the momentum fractions
z of the quark and z̄ = (1− z) of the antiquark.

Photon wave functions

The qq̄ wave function of the photon carries as labels the
virtuality Q2 and the polarization state λ. The qq̄ state is in
a configuration with given flavour ( f , f̄ ) and helicities (h, h̄).
The colour part of the wave function leads to an overall mul-
tiplicative factor

√
Nc. The helicity and spatial configuration

part of ψγ∗,λ(Q2;z,r,θ) is calculated in light-cone perturba-
tion theory. The photon couples to the electric charge of the
quark-antiquark pair with e f δ f f̄ , where e f = ê f

√
4πα and ê f

is the quark charge in units of the elementary charge for each
flavour. In lowest order perturbation theory, for each polariza-
tion λ and flavour f content, we write [1–3, 11, 16, 21],

ψγ∗,+1(Q2;z,r,θ) = ê f

√
6α

2π

[
iε f eiθ(zδh,+δh̄,− (4)

−z̄δh,−δh̄,+)K1(ε f r)+m f δh,+δh̄,+K0(ε f r)
]

,

ψγ∗,−1(Q2;z,r,θ) = ê f

√
6α

2π

[
iε f e−iθ(z̄δh,+δh̄,− (5)

−zδh,−δh̄,+)K1(ε f r)+m f δh,−δh̄,−K0(ε f r)
]

ψγ∗,0(Q2;z,r) = ê f

√
3α

2π
(−2zz̄) δh,−h̄ Q K0(ε f r) , (6)

where

ε f =
√

z(1− z)Q2 +m2
f , (7)

α = 1/137.036 , m f is the current quark mass (the values in
this presentation are mu = md = 0.2, ms = 0.3 , mc = 1.25 and
mb = 4.2 GeV).

Vector meson wave functions

The flavour dependence of the ρ(770), ω(782) ,φ(1020),
J/ψ(1S) and ϒ(1S) mesons are, respectively, (uū −
dd̄)/

√
(2) (isospin 1), (uū + dd̄)/

√
(2) (isospin 0), ss̄, cc̄

and bb̄. We take the spin structure determined by the vec-
tor current, with expressions similar to those of the photon
[1, 2, 21, 22]. We thus write

ψV,+1(z,r,θ) =
(
− ieiθ∂r(zδh,+δh̄,−− z̄δh,−δh̄,+)

+m f δh,+δh̄,+

)
φV (z,r) ,

ψV,−1(z,r,θ) =
(
− ie−iθ∂r(z̄δh,+δh̄,−− zδh,−δh̄,+)

+m f δh,−δh̄,−
)

φV (z,r) , (8)

ψV,0(z,r) =
(

ω4zz̄δh,−h̄

)
φV (z,r) . (9)

Here λ = ±1 and 0 denote transverse and longitudinal polar-
izations of the vector meson, h and h̄ represent the helicities
of quark and antiquark respectively and m f is the quark cur-
rent mass. The scalar function φV (z,r) contains two parame-
ters, N and ω, which have different values for transverse and
longitudinal states; they are determined by the normalization
condition and the leptonic decay width [1–3]. The parameter
ω controls the size of the hadron.

We consider two forms for φV (z,r) . One is based on the
relativistic equation for two particles confined by an oscillator
potential and is written

φBSW (z,r) =
N
√

zz̄√
4π

exp
[
− M2

V
2ω2 (z− 1

2
)2

]
exp[−ω2r2

2
], (10)

which corresponds to the Bauer-Stech-Wirbel (BSW) pre-
scription [23]. Here MV represents the vector meson mass.

The second form follows the Brodsky-Lepage (BL) pre-
scription [18, 20] for the construction of a light-cone wave
function from a non-relativistic one is written

φBL(z,r) =
N√
4π

exp
[
−m2

f (z− 1
2 )2

2zz̄ω2

]
exp[−2zz̄ω2r2] . (11)

The input experimental data for the S-wave vector mesons
[24] are shown in Table I and the derived wave function para-
meters ω and N are given in Table II.

TABLE I: S-wave vector meson data. The coupling fV and the de-
cay width Γe+e− are related through f 2

V = (3MV Γe+e−)/(4πα2) . The
quantity êV is the effective quark charge in units of the elementary
charge, determined by the qq̄ structure.

Meson MV (MeV) êV Γe+e− (keV) fV (GeV)
ρ(770) 775.9±0.5 1/

√
2 6.77±0.32 0.15346±0.0037

ω(782) 782.57±0.12 1/3
√

2 0.60±0.02 0.04588±0.0008
φ(1020) 1019.456±0.02 −1/3 1.261±0.03 0.07592±0.0018
J/ψ(1S) 3096.87±0.04 2/3 5.14±0.31 0.26714±0.0081
ϒ(1S) 9460.30±0.26 −1/3 1.314±0.029 0.23607±0.0026
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TABLE II: Parameters of the vector meson wave functions

BSW
transverse longitudinal

ω(GeV) N ω(GeV) N
ρ 0.2159 5.2082 0.3318 4.4794
ω 0.2084 5.1770 0.3033 4.5451
φ 0.2568 4.6315 0.3549 4.6153
J/ψ 0.5770 3.1574 0.6759 5.1395
ϒ 1.2850 2.4821 1.3582 5.9416

BL
transverse longitudinal

ω(GeV) N ω(GeV) N
ρ 0.2778 2.0766 0.3434 1.8399
ω 0.2618 2.0469 0.3088 1.8605
φ 0.3113 1.9189 0.3642 1.9201
J/ψ 0.6299 1.4599 0.6980 2.3002
ϒ 1.3250 1.1781 1.3742 2.7779

Overlap functions

After summation over helicity indices, the overlaps of the
photon and vector meson wave functions that appear in eqs.(1)
and (3) are given by

ργ∗V,±1;BSW (Q2;z,r)

= êV

√
6α

2π

(
ε f ω2r

[
z2 + z̄2]K1(ε f r)+m2

f K0(ε f r)
)

φBSW (z,r)

≡ êV ρ̂γ∗,±1;BSW (Q2;z,r) (12)

and

ργ∗V,±1;BL(Q2;z,r) = êV

√
6α

2π
×

(
4ε f ω2rzz̄

[
z2 + z̄2]K1(ε f r)+m2

f K0(ε f r)
)

φBL(z,r)

≡ êV ρ̂γ∗,±1;BL(Q2;z,r) (13)

for the transverse case, BSW and BL wave functions respec-
tively. For the longitudinal case we can write jointly

ργ∗V,0;X (Q2;z,r) =−16êV

√
3α

2π
ω z2z̄2 Q K0(ε f r)φX (z,r)

≡ êV ρ̂γ∗,0;X (Q2;z,r) , (14)

where X stands for BSW or BL.

II. OVERLAP STRENGTHS

Previous work [3] has shown the importance for elastic
electroproduction processes of the quantities called overlap
strengths, formed by integration over the internal variables of
the quark-antiquark pairs of the overlap function multiplied
by r2, written

Yγ∗V,T ;X (Q2) =
∫ 1

0
dz

∫
d2r r2 ργ∗V,±1,X (Q2;z,r)

≡ êV Ŷγ∗V,T ;X (Q2) , (15)

Yγ∗V,L;X (Q2) =
∫ 1

0
dz

∫
d2r r2 ργ∗V,0,X (Q2;z,r)

≡ êV Ŷγ∗V,L;X (Q2) (16)

with X for BSW or BL. These quantities appear as indepen-
dent factors in the amplitude, containing all its dependence
on Q2 and on the vector meson and quark masses, when-
ever the range of the overlap region is small compared to
the typical range of the nonperturbative interaction govern-
ing the process. This simplification occurs when Q2 + M2

V
>∼

10GeV2, which means always in J/ψ and ϒ production, and
Q2 >∼ 10GeV2 in ρ,ω and φ electroproduction.

The sums of transverse and longitudinal squared strengths
for all vector mesons are shown in Fig. 1. Using the variable
Q2 + M2

V , where MV is the mass of the corresponding vector
meson, and extracting factors given by the effective squares of
the quark pair charges (ê2

V = 1/2, 1/18, 1/9, 4/9 and 1/9 for the
ρ,ω,φ,ψ and ϒ mesons respectively), universalities observed
in the experimental data are exhibited.
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FIG. 1: Sums of transverse and longitudinal squared strengths with
extraction of charge factors ê2

V , as functions of Q2 +M2
V . These quan-

tities give all Q2 dependence of the integrated elastic cross sections.
Due to the nearly linear behaviour in the log-log scale, the sums of
squared strengths can be parametrized with forms A/(Q2 +M2

V )n.

The Q2 dependence of the squared strengths can be repre-
sented by

Ŷ 2
γ∗V,T (Q2) =

AT

(1+Q2/M2
V )nT

,

Ŷ 2
γ∗V,L(Q2) =

AL(Q2/M2
V )

(1+Q2/M2
V )nL

, (17)

with the values of AT , nT , AL and nL given in Table III. The
use of the numerical values M2

V of the vector mesons masses
in these parametrizations is inspired in the Vector Dominance
Model, with nT = 2 corresponding to the vector meson prop-
agator. The parametrization is successful in the description of
data (in rather limited Q2 intervals), and can be improved in
the light vector mesons cases with M left as a free parameter
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TABLE III: Parameters AT , nT ,AL and nL of eqs. (17) for the squared
overlap strengths Ŷ 2 in GeV−4, directly related to the cross sections.

BSW
transverse longitudinal
AT/L nT/L AT/L nT/L

ρ 2.18 3.16 0.58 3.38
ω 2.11 3.23 0.74 3.50
φ 0.57 3.27 0.23 3.49
J/ψ 0.26E(−2) 3.48 0.19E(−2) 3.63
ϒ 1.33E(−5) 3.68 1.14E(−5) 3.73

BL
transverse longitudinal
AT/L nT/L AT/L nT/L

ρ 4.46 3.35 0.84 3.42
ω 4.63 3.45 1.04 3.54
φ 1.08 3.47 0.32 3.53
J/ψ 0.30E(−2) 3.51 0.21E(−2) 3.66
ϒ 1.39E(−5) 3.68 1.18E(−5) 3.73

(fitting results reccommend increases by up to 30 percent in
MV ). However differences are small and not important at the
moment, in view of the limited data. In any case, the reason
for the appealing and efficient parametrizations of the form
1/(Q2 +M2

V )n is not understood.
Figure 2 shows the ratios of squared strengths of the longi-

tudinal and transverse cases, for the different vector mesons.
According to the factorization property, these quantities cor-
respond to the ratios of longitudinal and transverse cross sec-
tions, which are observed experimentally. For light vector
mesons (ρ,ω,φ) the value of Q2 must be large enough, namely
Q2 +M2

V
>∼ 20GeV2 and we observe that for these mesons the

BSW and BL wave functions show different behaviour in the
Q2 dependence.
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FIG. 2: Ratios of longitudinal to transverse squared strengths, for
different vector mesons. In the cases of light vector mesons (ρ,ω,φ)
the BSW and BL wave functions show different behaviour in the Q2

dependence.

III. EXPERIMENTAL DATA

The factorization property means that we may write

Tγ∗p→V p,T/L(s, t;Q2)≈ (−2is) G(t) Yγ∗V,T/L;X (Q2) (18)

with Y given by eqs. (15),(16). G(t) depends on the specific
framework and model for the dipole-dipole interaction and on
the proton wave function. Depending on the dynamical struc-
ture of the model, it may also contain energy dependence due
to the dipole-dipole interaction.

The energy dependence in our calculation follows the two-
pomeron model of Donnachie and Landshoff [9]. The small
dipoles couple through the hard pomeron with energy depen-
dence (s/s0)0.42, while large dipoles follows the soft pomeron
energy dependence (s/s0)0.0808. The reference energy is s0 =
(20 GeV)2.

All observables of differential and integrated elastic cross
for the processes of photo and electroproduction of J/ψ and
ϒ vector mesons [1–3] have been calculated using these ex-
pressions using the Model of the Stochastic Vacuum (MSV).
In Fig. 3 we show the Q2 dependence of the elastic electropro-
duction cross section for γ∗p → ψp obtained before [3]. The
data are from HERA-ZEUS [27] and HERA-H1 [28]. The
line corresponds to the squared overlap strength multiplied by
a constant fixed by universal QCD quantities.
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FIG. 3: Integrated elastic cross section for J/ψ electroproduction as
function of Q2. Data from [27] (circles) and [28] (squares). The line
goes with the squared overlap strength, multiplied by a single con-
stant determined without free parameter using the stochastic vacuum
model [3].

These calculations have shown a property of factorization
of the amplitudes, with all Q2 dependence, and all proper-
ties specifically dependent on the vector meson structure, de-
scribed by the quantity called overlap strength, which is the
integral over the dipole variables r and z, with a weight r2, of
the photon-meson overlap function.

The comparison with data demonstrates the contents of in-
formation concentrated in the wave function overlaps. The
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message is that details of proton structure functions are not
visible in the kinematical conditions where the nonperturba-
tive method has a full control of the elastic electroproduction
process.

Figure 4 shows data of elastic ρ electroproduction, from
Zeus [27] and H1 [29] at energies W =

√
s = 75− 90GeV .

The solid line is the overlap strength squared, multiplied by a
fixed number C = 74× 103 converting the squared strengths
in GeV−4 to the cross section in nb. The figure shows that
the Q2 dependence of the data above Q2 = 10GeV2 is well
represented by the overlap of photon and ρ meson wave func-
tions, with a discrepancy between full MSV calculation and
factorized form appearing for smaller Q2 values.
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FIG. 4: Integrated elastic cross section for ρ electroproduction as a
function of Q2. Data from Zeus [27] (empty circles) and H1 [29]
(empty squares) in the energy range 70-90 GeV. The dotted lines
show results from the full MSV calculation (not using factorization)
with BSW at 50 and 90 GeV to exemplify the energy dependence.

Figure 5 shows the cross sections for ρ, ψ and ϒ electro-
production, reduced by the charge factors 1/2, 4/9 and 1/9 re-
spectively, plotted against the variables Q2 + M2

V . The ψ and
ρ data and theoretical lines are the same as in Figs. 3 and 4.
The ϒ photoproduction data (triangles) from ZEUS [30] and
H1 [31] at about W=100 GeV are compared to the theoretical
calculation at this energy [2].

The plot exhibits the partial universality of the data in terms
of the variables Q2 +M2

V , showing that the shifts observed ex-
perimentally between the heavy and light mesons are theoret-
ically reproduced as natural consequences of the construction
of the overlap of photon and meson wave functions.

Our construction of the wave functions uses the experimen-
tal decay rates of the vector mesons, which effectively incor-
porate QCD corrections, and thus makes phenomenologically
realistic representations of the vector meson structures. We
may conjecture that the shifts observed in plots of data and
of squared strengths are due to QCD corrections of the decay
rates, which specifically depend on the quark masses, and thus
are different for the different mesons. It will be interesting to
see their influence on the parameters of wave functions that

are used for the evaluation of electroproduction, in order to
investigate a possible origin of the observed shifts.
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FIG. 5: Integrated elastic cross section for J/ψ [27, 28] and ρ elec-
troproduction [27, 29], and for ϒ photoproduction [30, 31]. The lines
represent the theoretical calculations explained in the text. For J/ψ
and ϒ the differences between the two kinds of vector meson wave
function are not important, as shown in Fig. 2. For ρ the differences
are illustrated by the dashed line corresponding to BL.

Figure 6 shows the experimental ratio [27, 29, 32, 33] be-
tween longitudinal and transverse cross sections in ρ electro-
production, compared to the ratio of longitudinal to transverse
squared overlap strengths. In the ratio, the specific dynam-
ics of the process of interaction of the q− q̄ dipoles with
the proton cancels out, so that a clear view is obtained of
the self-contained role of the photon-meson wave function
overlap. The comparison is to be taken more seriously for
Q2 >∼ 10GeV2. The cross section with transverse polarization
falls to zero much more quickly, and the ratio R = σ(L)/σ(T )
becomes sensitive to the helicity structure of the wave func-
tion. Thus the predictions for the ratio R given by the BSW
and BL wave functions, in the light meson cases, are very dif-
ferent. This is obviously an area that deserves exploration,
both experimentally and theoretically.

IV. CONCLUSIONS

The results discussed in this paper are consequences of the
form of the amplitude in eqs. (1),(2),(3) written as integra-
tions over configuration space coordinates. The fundamental
quantity in the calculations is the dipole-dipole interaction,
which in nonperturbative language takes the form of loop-
loop correlation in QCD vacuum. The dipoles appear in the
γ?−V transition (overlap of the wave functions) and in the
proton structure. The treatment is typical of soft QCD cal-
culation, and provides very successful phenomenology of pp
and hadron-hadron scattering [6]. Different models must pro-
vide the quantities relating the amplitudes with the overlap
strengths, written in terms of their basic ingredients and para-
meters. We particularly use the Stochastic Vacuum Model to
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FIG. 6: Ratio of polarized cross sections in ρ electroproduction. Data
from [27, 29, 32, 33]. The lines represent ratios of overlap strengths,
showing different behaviour for BSW and BL wavefunctions.

produce measured quantities, but the factorization property is
more general.

In the treatment of J/ψ electroproduction we have shown
that, where the range of the overlap function is small com-
pared to the proton size and to the range of correlation func-

tions of the QCD vacuum, a factorization of the amplitude
takes place [3], such that the Q2 dependence of observables is
fully described in terms of the overlap strengths of eqs.15. For
heavy, small sized vector mesons (such as J/ψ), factorization
of the amplitude occurs even in photoproduction processes.
For the light vector mesons, of broader wave functions and
broader overlaps with the photon when Q2 is small, the fac-
torization holds clearly only for large values of Q2. In ρ elec-
troproduction this means Q2 >∼ 10GeV2.

Comparing our results with experimental data on cross sec-
tions for J/ψ and ρ electroproduction plotted against Q2 +M2

V
in Fig. 5, we show the approximate universal behaviour of
different mesons, with the shift that has been observed exper-
imentally and is here quantitatively predicted by the overlap
strength.
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