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We consider the modification of the Cahn-Hilliard equation when a time delay process through a memory
function is taken into account. We then study the process of spinodal decomposition in fast phase transitions
associated with a conserved order parameter. The introduced memory effect plays an important role to obtain a
finite group velocity. Then, we discuss the constraint for the parameters to satisfy causality. The memory effect
is seen to affect the dynamics of phase transition at short times and have the effect of delaying, in a significant
way, the process of rapid growth of the order parameter that follows a quench into the spinodal region.
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I. BACKGROUND

Diffusion is a typical relaxation process and appears in var-
ious fields of physics: thermal diffusion processes, spin dif-
fusion processes, Brownian motions and so on. It is empiri-
cally known that the dynamics of these processes is approx-
imately given by the diffusion equation. Although the diffu-
sion equation has broad applicability, there exist the applica-
bility limitations. First, the diffusion equation does not obey
causality[1]. Let us consider the following telegraph equation,

τ
d2

dt2 m(x, t)+
d
dt

n(x, t)−D∇2n(x, t) = 0. (1)

Then, the propagation speed is given by v =
√

D/τ. Thus, the
propagation speed of the diffusion equation is infinite because
the telegraph equation is reduced to the diffusion equation in
the limit of vanishing τ. Second, the diffusion equation does
not satisfy exact relations, for instance, the Kramers-Kronig
relation and the f-sum rule [2, 3]. By solving the Heisenberg
equation of motion, the exact Laplace-Fourier transform of
the time-evolution of a conserved number density is given by

δnLF(k,z) =
i
z
C(k)+

i
z3

k2

m
〈n(0)〉eq +O(1/z4), (2)

where δ means the fluctuations from the equilibrium value and
C(k) represents the Fourier transform of the correlation func-
tion of the number density. Because of the Kramers-Kronig
relation and the f-sum rule, the term proportional to 1/z2

disappears and the coefficient of the second term is propor-
tional to the equilibrium expectation value of the total number
〈n(0)〉eq. These are not satisfied if the coarse-grained dynam-
ics of the number density is assumed to be given by the diffu-
sion equation [2, 3].

It is known that the problem of causality and the sum rules
can be solved by using the telegraph equation instead of the
diffusion equation. Interestingly enough, it has been shown

recently that the coarse-grained equation derived by employ-
ing systematic coarse-grainings from the Heisenberg equation
of motion is not the diffusion equation but the telegraph equa-
tion [3, 4].

The discussion so far is applicable to conserved quanti-
ties because the diffusion equation is a coarse-grained equa-
tion of conserved quantities. On the other hand, the corre-
sponding equation for a non-conserved quantity is the time-
dependent Ginzburg-Landau (TDGL) equation in the sense
that the TDGL equation is a overdamping equation. The mi-
croscopic calculation [7] again shows that the relaxation phe-
nomenon is accompanied by oscillation and cannot be de-
scribed by the TDGL equation as is the case with conserved
quantities. As a matter of fact, the equation has a similar form
to the telegraph equation.

The effect discussed above is, in particular, important for
fast processes where the time scale of memory is not short
enough, because the telegraph equation can be obtained by
introducing the memory effect to the diffusion equation. Such
fast phase transitions are expected to have happened in early
universe and most certainly also characterize the phase tran-
sitions expected to occur in the highly excited matter created
in relativistic heavy-ion collisions. In the early universe, such
situations may have happened when the typical microscopic
time scales for relaxation, given by the inverse of the decay
width associated with particle dynamics, is larger than the
Hubble time. This is a situation likely to be expected when
describing GUT phase transitions or even the inflationary dy-
namics [5]. In relativistic heavy-ion collisions, one expected
to learn about the QCD phase transition. For instance, from
the hydrodynamic analysis of the freeze-out temperature in
the most central Au-Au collisions at 130 A GeV, the typi-
cal reaction time is given by around 10-20 fm [6]. However,
the characteristic time scale of the memory function in the
Langevin equation which describes the dynamics of the or-
der parameter of the chiral phase transition is predicted to be
about 1 fm, which is not enough short to be ignored [7].
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II. MEMORY EFFECT IN SPINODAL DECOMPOSITION

So far, we have discussed the difficulties with causality
and memory effects, and sum rules associated with linear
processes. Next, we consider such problems associated with a
nonlinear process, known as spinodal decomposition(SD) [8].

We consider the general Ginzburg-Landau (GL) Free en-
ergy,

F(φ) =
∫

d3x
[

a
2
(∇φ)2− b

2
φ2 +

c
4

φ4
]
, (3)

where φ is a conserved order parameter. To describe the phase
transition, the parameter b is proportional to Tc − T with Tc
being the critical temperature of the associated second order
phase transition. The dynamics of conserved order parameters
can be described by the Cahn-Hilliard (CH) equation. In the
ordinary CH equation, the irreversible current induced by the
GL free energy is given by

J(x, t) =−Γ∇
δF(φ)

δφ
, (4)

where Γ denotes a kind of Onsager coefficient. To take the
memory effect into account, the current is generalized as fol-
lows,

J(x, t) =−
∫ t

0
dsd3x′M (x−x′, t− s)∇x′

δF(φ)
δφ(x′,s)

. (5)

For simplicity, we assume the following memory function,

M (x, t) =
Γ
γ

e−t/γδ(3)(x). (6)

Here, the typical memory time is characterized by γ. Substi-
tuting the current to the equation of continuity, we obtain the
modified CH equation,

γ
∂2

∂t2 φ(x, t)+
∂
∂t

φ(x, t) = Γ∇2 δF(φ)
δφ

. (7)

At the late stage of the spinodal decomposition, the be-
havior of the process is described by the linearized equation
around equilibrium order parameter φ0 =

√
b/a,

γ
∂2

∂t2 φ̃c(k, t)+
∂
∂t

φ̃c(k, t) =−Γk2(ak2 +2b)φ̃c(k, t), (8)

whose solution is φ̃c(k, t) = Ak exp(λ′+t)+Bk exp(λ′−t), where
Ak and Bk are arbitrary constants and

λ′± =
−1±

√
1−4γΓk2(ak2 +2b)

2γ
. (9)

On the other hand, the solution for the corresponding ordinary
CH equation (γ = 0) is φ̃nc(k, t) = Ck exp[−Γk2(2b + ak2)t].
One can easily see that there exists a critical momentum
for the solution of the modified CH equation, k′2c = [−b +√

b2 +a/(4γΓ)]/a. Below the critical momentum, the solu-
tion shows overdamping behavior similar to the ordinary CH
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FIG. 1: The group velocity (11) as function of D for a fixed value
ξ = 1. The three lines are corresponding to γ = D, D+0.1 and D+1,
respectively.

solution, while above the critical momentum, the damping is
accompanied by the oscillatory fluctuation mode. Thus, we
can consider that the critical momentum is a kind of a ultra-
violet cutoff because the higher momentum modes have rapid
oscillations and cancel in computing averages. The propa-
gation speed is characterized by the group velocity. In the
modified CH equation, this is given by

v(k) =
√

2D(ξ2k2 +1)√
γ(ξ2k2 +2)

, (10)

where D = 2bΓ and ξ =
√

a/b. At k = 0, the group veloc-
ity reads v(0) =

√
D/γ. The maximum group velocity is a

monotonically increase function of k. Because of the momen-
tum cutoff discussed above, the maximum group velocity is
given by

v(k′c) =
2D
γ

1+ξ2/(2γD)
1+

√
1+ξ2/(2γD)

. (11)

For causality, Eq. (11) should be less than one. This leads
to the constraint γ > D. In other words, we can always find
allowed values of parameters for which the spinodal decom-
position is causal, under the constraint. In Fig. 1, the group
velocity is plotted as function of D for a fixed value ξ = 1.
The three lines corresponds to γ = D, D + 0.1 and D + 1, re-
spectively. One can see that the group velocity is larger than
one for any D at γ = D. At γ = D+0.1, one can find D where
the group velocity is less than one. At γ = D + 1, the group
velocity is less than one for any D. The modified CH equation
satisfies causality in this sense.

Let us see how this also applies for instance to the spin-
odal modes and then use these results e.g. for the problem of
searching a signal of a phase transition in RHIC. By consid-
ering the fastest-growing mode of the SD, which is defined
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by

∂
∂k
−1+λ

2γ

∣∣∣∣
kr

= 0, (12)

we derive the time scale of the fastest mode to be

τc(kr) =
2γ

−1+
√

1+ γD/(2ξ2)
. (13)

When γ is very small, the time scale is reduced to τnc(kr) =
8ξ2/D, which agrees with the time scale of the SD without the
effect of memory [9]. Since the modes that give the result of
Eq. (13) are in fact the dominant spinodal modes and τnc < τc,
this reflects itself in an overall delay of the time formation of
domains, as described by the causal CH equation compared to
the noncausal one, as the phase transition proceeds. This fea-
ture is confirmed by our simulations shown below. For a prob-
lem like RHIC and a possible signature of a phase transition
coming from it, this difference in time scales can be very pro-
nounced and lead to a striking effect that a signal, like charge
fluctuations and domain formation, can be so much delayed
that possibly could not be observed in the current experiments.
For instance, in RHIC, the correlation length is typically ξ∼ 1
fm. Using also the relation between the parameters D and γ
obtained for a quark plasma, γ = 3D, which is consistent with
our constraint condition obtained from Eq. (11), and consider-
ing D∼ 3.7 fm [9, 10], we obtain from Eq. (13) that τc ∼ 6.1
fm, which is to be compared with the result τnc ∼ 2.2 fm. This
represents almost a 200% difference for the time scales for the
starting of the growth of fluctuations in Eq. (7) as compared
to the ordinary CH equation (for γ = 0).

We have solved Eq. (7) numerically on a discrete spatial
square lattice using a semi-implicit scheme in time, with a
fast Fourier transform in the spatial coordinates [8]. We have
checked the stability of the results by changing lattice spac-
ings and time steps. In addition, for γ > 1 we have also used a
leap-frog algorithm and the results obtained with both meth-
ods agreed very well. For the noncausal γ = 0 equation, we
used as initial condition φ(x, t = 0) a random distribution in
space with zero average and amplitude 10−3. For γ 6= 0, we
used in addition the condition that at t = 0 the first-order
derivative of φ is zero. For the numerical work, Eq. (7)
is re-parameterized to dimensionless variables, conveniently
defined by time t̄ = (8/τnc)t = (2b2Γ/a)t, space coordinates
x̄i = xi/ξ, field φ̄ =

√
c/bφ and γ̄ = (8/τnc)γ. In terms of these

variables Eq. (7) becomes function of only one parameter, γ̄.
Eq. (7) was next solved for several values of γ̄. Two rep-
resentatives results, for γ̄ = 0 and γ̄ = 40.5 (for the example
analyzed in the previous paragraph), are shown in Fig. 2.

In Fig. 2 we present the time evolution of the vol-
ume average of the order parameter φ, defined as φ̄(t) =

1
N3 ∑x〈φ̄(x, t)+〉, where N3 is the total number of lattice points
and the average is taken over different initial random configu-
rations. φ(x, t)+ indicates that only the positive values of the
field are considered (i.e., a specific direction for the field has
been selected). The rapid increase of φ̄ reflects the phenom-
enon of SD. The figure also shows the results by solving the
linear equation. It shows that it performs extremely well up
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FIG. 2: Volume average of φ̄(t̄) as a function of dimensionless time
t̄ for the noncausal (solid) and causal (dashed) solutions. The two
curves that exit the top of the plot are results from the linearized
theory.

to and right after the spinodal growth of the order parameter,
then justifying our previous analytical results based on the so-
lution of the linear equation. The effect of γ is seen to be more
important at earlier times, consistent with the memory func-
tion used and becomes less important after the rapid growth
of the order parameter (the spinodal explosion). It also shows
the effect of a finite γ, increasing dramatically the delay of the
spinodal explosion, as predicted by our previous analytical re-
sults. The time for reaching equilibrium is seen to be very
long, as is common with the traditional noncausal CH equa-
tion. Also apparent from Fig. 2 are the oscillations in the order
parameter for a finite γ, also predicted by our previous analy-
sis. This is due to the increasing importance of the second-
order time derivative as compared to the first-order one as γ
increases, i.e. as γ increases the dissipation term becomes less
important and the equation becomes more and more a wave-
like equation. The estimated delay for the thermalization is
even larger than the recent estimation [11] for the time delay
of the relaxation of a nonconserved order parameter.

We have also investigated the effect of memory for the
structure function, S(k, t) = |φ(k, t)|2. This quantity is impor-
tant because it provides information on the space-time coars-
ening of the domains of the different phases. In Fig. 3 we
present the results for the spherically averaged value of S for
k = 0.7kc (to emphasize the fast growth of the long wave-
length fluctuations with k < kc). The spherical averaging for a
given k was done over momenta kr =

√
k2

x + k2
y + k2

z such that
k−0.1∆≤ kr ≤ k +0.1∆, with ∆ = 2π/L, where L is the size
of the lattice. Consistently with Fig. 2, this figure shows the
dramatic delay for the spinodal growth.

III. CONCLUSION

We have introduced memory effects into the CH equation.
By introducing the memory effects, we could define the group
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FIG. 3: Spherically averaged structure function as a function of di-
mensionless time t̄ for a k̄ = 0.7k̄c for the noncausal (solid) and causal
(dashed) solutions.

velocity and, to satisfy causality, we were able to derive the
constraint for the parameters of the CH equation. For a phys-
ical situation of interest for the phenomenology of RHIC, we
found that the inclusion of memory effects can delay substan-
tially the phase-separation process and consequently, there
might not be enough time for the system to thermalize before
the breakdown of the system due to expansion.

In this paper, we simply discussed the case of a mem-
ory function which has the exponential form. However, we
can generalize the present work by considering other types
of memory functions. In particular, microscopic calculations

from nonequilibrium quantum field theory [5] show that mem-
ory functions tend to exihibt relaxation as well oscillations as
time goes on. Then, we can consider the following physically
motivated from those field theory calculations,

M (x, t) =
Γ
γ

e−t/γ cos(Ωt)δ(3)(x), (14)

where Ω is some characteristic frequency of oscillation. Sub-
stituing (14) into the equation of continuity, we obtain

γ2 ∂3

∂t3 φ(x, t)+2γ
∂2

∂t2 φ(x, t)+(1+ γ2Ω2)
∂
∂t

φ(x, t)

= Γ∇2 δF(φ)
δφ

+ γΓ
∂
∂t

∇2 δF(φ)
δφ

. (15)

This result and the example worked out explicitly in this work
shows that the macroscopic dynamics of conserved quantity
strongly depends on the choice of the memory function. In
these cases, the use of microscopic motivated memory func-
tions based on the particular model under study is fundamen-
tal. An analysis for (15), analogous to the one performed in
this work for the simplest exponential decay memory func-
tion, will be presented elsewhere.
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