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Simple Hadronic Cascade Simulations
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We obtain results for the average number of muons at sea level in a proton-initiated vertical atmospheric
cascade using a simple model of hadronic interactions based on the Hillas splitting algorithm. We study the
muon yield at sea level as a function of the proton primary energy, varying the parameters of the interaction
model in order to see the behavior of our results. We find that our results are in agreement with experimental
data and with those of more sophisticated simulation models for some particular values of the model parameters.
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I. INTRODUCTION

The hadronic component of an air shower is the one that
continuously feeds the electromagnetic and muonic compo-
nents through the decay of neutral and charged mesons re-
spectively. The muon yield at detector level is a key signal to
determine the energy and composition of the primary cosmic
rays [1] and that is the motivation of this study.

In the simulation of hadronic cascades, the most impor-
tant ingredient is, of course, the hadronic interaction model,
several of which have been developed and are currently used
in extensive air shower simulations [2, 3]. We simulate
the longitudinal development of proton-initiated vertical cas-
cades within a simple hadronic interaction model based on
the Hillas splitting algorithm (HSA) which is computationally
very fast [4]. According to this model only pions are produced
as secondaries; their energies are generated as we explain in
section II. Muons, on the other hand, arise from the decay of
charged pions. This work is focused on studying the number
of muons at sea level as a function of the proton primary en-
ergy. Varying the parameters of the interaction model allows
us to see the behavior of the muon yield and we can select the
values of the parameters for which our results best agree with
known ones, either from experiments or other simulations.

In the next section the interaction model is explained and
the average multiplicity in single interactions is studied. In
sections III and IV we briefly discuss pion decay and the at-
mosphere model used. Section V is devoted to the cascade
simulation and in section VI results regarding the muon con-
tent of the shower are discussed.

II. HADRONIC INTERACTION MODEL

As mentioned above, we study the development of the
hadronic component of the shower using a HSA type model
for the generation of secondaries in an inelastic hadronic (p-
Air or TF-Air) interaction. Here the secondaries are all pi-
ons and each kind is produced with a probability of one third.
Hence, the interactions we consider in the simulations are of
the following kind:

p (%) 4 Air — p (%) + Air+ X, (1)

where X represents any number of 1+ and 1t°.

The energies of the secondaries at each interaction, whether
the incoming particle is a proton or a charged pion, are gener-
ated by the HSA as follows:

1. Split the available energy of the incoming particle in two parts
A and B at random.

2. Assign A as the kinetic energy of the leading particle. This
particle is of the same kind as the incoming one.

3. Split B at random in J = 2V branches (N a fixed positive inte-
ger).

4. Split one of the J branches at random in two parts A’ and B'.
5. Assign A’ as the kinetic energy of a pion.

6. From B’ subtract my, split the rest at random in two parts and
assign one piece as the kinetic energy of a pion. Call the other
piece B’ again.

7. Repeat step 6 until the energy remaining (B’) is less than some
preassigned threshold E;j,. This value must be at least as large
as my.

8. Once E;;, has been reached, go back to step 4 with the next
branch. Continue until all branches have been used.

This is an energy priority algorithm, which means that en-
ergy is conserved at each step, while the multiplicity is a result
of the splitting process.

From the description of the algorithm given above, it is
clear that the average multiplicity will increase with incoming
energy. The algorithm is sensitive to the number of branches
J. Tests were run for single interactions with E;, = my and
J =1,2,4 and 8 in order to see how the average multiplicity
varies as a function of the incoming energy. These results are
shown in Fig. 1.

Observing Fig. 1 we can see that, for a fixed incoming en-
ergy, the average multiplicity grows with J. This occurs be-
cause if the threshold is reached in the splitting process (step 7
in the description above) when J = 1, pion production ceases
altogether. On the other hand, if the threshold is reached for
one of the branches when J > 1, pion production stops in that
particular branch, but we have more branches where pions
are created from. Hence the average multiplicity is higher.
Since muons come from the decay of charged pions, we ex-
pect the muon number at sea level to increase notoriously with



634

T T T
45 - -
o J=8§ =
40 + n J=4 o
o
A J=2 o
35 = o -
v J=1 .
>
S 30 ° b
2
g .
3 25+ DDDD ...I-‘
E . ..
g 20 =] . L] i
[a}
g 15 a ..I
> B . .'. AAAAM
© oof . - . A
10 YA B
I
. ...l N VNS v vV v VVIWV.
5_AAAAM v v v vV VVVW i
v vIVW
0 1 1 1
10 100 1000

incoming proton energy (GeV)

FIG. 1: Average number of secondaries in a p-Air interaction. Each point is
the average multiplicity in ten thousand interactions.

growing J. The value J = 4 is of special interest because it is
suggested as a good interpolation between two more complex
hadronic interaction models [3], GEISHA and QGSJET, in the
energy region where neither of these models apply: GEISHA
is valid for energies below a few tens of GeV and QGSJET is
valid above several hundreds of GeV.

III. PION DECAY

The lifetime of the charged pions is of order 1078 s, which
makes the decay and interaction processes compete in the de-
velopment of the shower. Hence the simulation must include
both processes . The decay channels considered are:

T — 4+, (Vy).
Since the secondary particles are isotropic in the CM, the en-

ergies of the products have flat distributions in their kinematic
ranges [5]:

m2
m—g"EnSEySEn, 2)
o1
m2
0<Ey<Eg(1-—5]. 3)
mTC

That is, the muon takes an energy with probability distributed
uniformly within the ranges given in equation (2) and the neu-
trino carries the rest. These kinematic ranges are valid in the
approximation of a highly relativistic pion and massless neu-
trinos. In our simulation only muons are tracked down, not
the neutrinos.

The lifetime of the neutral pions is of order 10716 5, so even
at the highest energies they decay almost instantaneously.
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Their decay mode is:
- 2y.

Since the photons are isotropic in the CM, their energies have
a flat distribution in the range (0,Ey) for highly relativistic
pions.

IV. ISOTHERMAL ATMOSPHERE

Since the natural units for interaction and decay paths are
g/cm? and km respectively, we must have a model for the
atmosphere in order to transform among these units. In the
simulations we consider an isothermal atmosphere. Within
this simple model, the ratio between vertical penetration depth
(in g/cm?) and density is constant, this constant represents a
height scale and is defined as &g:

X X

== T an

T. 4)

In this case, we have an exponential relation between vertical
penetration depth and altitude [5]:

X = 1030 -exp[—h/6.4] g/cm?, (5)

with A4 in km. This last relation, and its inverse, are used in the
simulations to convert the units in pion decay distances from
km to g/cm?.

V. SIMULATION OF THE CASCADES

In this section we discuss in detail the method used for the
simulation of the cascades. As was mentioned in section I,
we simulate the longitudinal development of vertical cascades
initiated by a high energy proton. The processes considered
are the following: for protons we only consider inelastic in-
teractions with atmospheric nuclei; for charged pions we con-
sider interactions and decays; finally, for neutral pions only
decays are taken into account. All distances are measured in
g/cm?. The basic idea of the algorithm can be summarized as
follows:

1. For each particle with energy above the threshold of in-
terest and altitude above sea level, determine the dis-
tance traveled until a decay or an interaction occurs, de-
pending on the case at hand.

2. At that point, generate the corresponding secondaries.
Record the depth at which each particle is created along
with its energy and kind.

3. Go back to step one for each particle.
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A. Protons in the Cascade

In the case of protons we generate the distance traveled be-
tween interactions from an exponential probability distribu-
tion using the inversion method. We use an energy-dependent
interaction length for protons (in g/cm?) as suggested in
ref. [6]:

if £E<0.1TeV

87
by = { 80.8—2.78In (1 L;) ifE>017ev, O

where E is the energy of the incoming proton. Once the inter-
action point is known, the secondaries are generated using the
HSA as described in section II. When the energy of the proton
falls below 10 GeV, no more interactions are considered and
the proton is only propagated until it reaches sea level.

B. Charged Pions in the Cascade

In the case of charged pions, we must consider both interac-
tion and decay processes. This is done by sampling two dis-
tances, one for each process, and selecting the shortest one.
If the selected process is interaction, the secondaries are gen-
erated at that point using the HSA as described in section II.
Instead, if the selected process is decay, a muon and a neu-
trino are created using a flat distribution as discussed in sec-
tion III. For interactions, the distance traveled is generated in
the same way as for protons, but with an interaction length
(in g/cm?) [6]:

L[ 16 ifE<0.1 Tev ,
"=\ 105-4.23In(:£y) fE>01Tev,

where E is the energy of the incoming pion. In an isothermal
atmosphere, the decay length of charged pions, in g/cm?, is
given by [5]:
EX
dn = - ®)

where g = 115 GeV, E is the energy and X is the vertical pen-
etration depth of the pion. Since d depends on X, the distance
traveled until decay is not so easily sampled. The natural units
for the decay distance are kilometers. Hence, we must gener-
ate the decay distance in these units. This is achieved using
the inversion method with an exponential probability distribu-
tion of mean path A; = yct, where y and 7 are the lorentz fac-
tor and the mean life of the pion, respectively, together with
unit conversion between g/cm? and km and viceversa using
the exponential relation of equation (5).

The algorithm for the generation of the pion decay distance
can be described as follows:

1. Take the initial position of the pion X, which is in units
of g/ cm?, and transform it to a height Ay in km.

2. Calculate A; = yct for the pion in question.

3. Generate the decay distance /; from an exponential dis-
tribution of mean path A,.
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4. With the decay distance [, calculate the height &, at
which the pion decays: hy = hy — ;.

5. Transform /1, to g/cm? to obtain the final position of the
pion X>.

6. The decay distance in g/cm? is thus X, — X].

The probability for a pion to decay as it traverses a small AX
of atmosphere is AX /dy. As can be seen from equation (8),
this probability is negligible if E > €;. On the other hand,
decay is the dominating process if £ < €;. In the simulations
we separate three energy regions for pions:

1. When E > 1 TeV only interactions are considered. The
distance traveled is generated from an exponential prob-
ability distribution with mean free path A, and secon-
daries are generated using the HSA.

2. When E < 10 GeV only decays are considered. The
distance traveled until decay is generated as discussed
above. The secondaries are created as discussed in sec-
tion III.

3. When 10 GeV < E < 1 TeV, two distances are sam-
pled, one for each process just like above, and the
process corresponding to the shortest distance is the one
that occurs.

C. Neutral Pions in the Cascade

In the case of neutral pions, due to their short lifetime, only
decays are considered. The decay is simulated right where
the neutral pion is created. The photons produced share the
energy of the parent ©° at random, but here we do not treat
this part of the process, as it feeds into the electromagnetic
component of the shower, which does not subsequently affect
the hadronic development.

D. Muons in the Cascade

Muons above threshold are propagated from their point of
creation down to sea level without considering any interaction
or decay processes. Since we use thresholds above 10 GeV,
disregarding decays does not affect the results.

VI. RESULTS AND CONCLUSIONS

We concentrate on the muon content of the shower at sea
level. As mentioned in section II the key parameter in the sim-
ulation is the number of branches J in the HSA. We study the
muon number at sea level as a function of primary energy and
its behavior as J is varied. The simulations were carried out
for primary protons with energies between 10'* and 10'© ¢V
using J = 1, 2, 4 and 8 for each primary energy. The results
are shown in Fig. 2.
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FIG. 2: Average number of muons at sea level as a function of primary
energy. Empty and solid symbols correspond to muon energy thresholds of
10 GeV and 30 GeV respectively. Each point is obtained by averaging the
muon content in one hundred vertical showers.

[EalGeVI[J] € | B [ ¢ [ B |
10 10.442[0.7057]] 30 3.3605]0.6943

J [[[EmlGeV1]J
I I
10 [2[[10.509[0.7783 30 |2][3.4755]0.7548
4 4
8 8

10 9.6191(0.8335 30 3.0279|0.8113
10 9.8028|0.8528 30 2.9945(0.8323

TABLE I: Parameters in the power law for the average number of muons at
sea level of equation (9).

Irrespective of the value of J used, we find that the average
number of muons with energies above 10 and 30 GeV at sea
level as a function of the primary energy is very well fitted by
a power law:

Ny=C-EP, )

where all correlation coefficients satisfy R? > 0.999 and
0 < B < 1. The values of  and C depend on the muon en-
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ergy threshold and on the particular J used in the HSA. These
values are shown in table I. The general result expressed in
equation (9) is expected from what is known from more com-
plex models and from experimental results [2, 5].

In table I we can see that for each value of J the exponent
B is larger for the 10 GeV threshold and grows smoothly as J
goes from 1 to 8. As expected, Fig. 2 shows a marked increase
in the number of muons at sea level as J goes from 1 to 8 for
every primary energy. However, each time J is doubled this
increase is progressively slower. For example, take the case of
the 10 GeV threshold and Ey = 100 TeV. When J goes from
1 to 2, N, grows in a factor of 1.4; when J goes from 2 to
4, N, grows in a factor of 1.17; and when J goes from 4 to
8, N, grows only in a factor of 1.12. This behavior occurs
because as the average multiplicity in the HSA grows with
J, the average energy per pion decreases, which means the
muons produced in the decays are less energetic.

The values of C and B for / =4 and 8 are in very good
agreement with those obtained by Stanev [2] with the SYBILL
model of hadronic interactions [7] and by the simple, deter-
ministic model of Matthews [8]. Furthermore, these results
are in very good agreement with the experimental results re-
ported by the Akeno group [9]. On the other hand; the results
obtained with J = 1 and 2 have values for B that are too low,
especially for J = 1. This is due to the extremely low multi-
plicity given by the HSA for these values of J, as can be seen
in Fig. 1.

This simple model for the simulation can be improved in
several ways. We can consider a more realistic model for the
atmosphere. Also, we can improve on the hadronic interaction
model modifying the HSA algorithm by setting the number of
branches J to be energy-dependent and fit hadronic data more
precisely.

It is natural to conclude that the parameters in equation (9)
are sensitive to the hadronic interaction model. The advantage
of this approach lies in the computational speed of the HSA
and in its flexibility.
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