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We analyze the event-by-event fluctuations of mean transverse momentum measured recently by the PHENIX
and STAR Collaborations at RHIC. We argue that the observed scaling of strength of dynamical fluctuations with
the inverse number of particles can be naturally explained by formation of multiparticle clusters.
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I. INTRODUCTION

This paper is based on our recent analysis [1] of the event-
by-event fluctuations of the mean transverse-momentum mea-
sured by PHENIX [2] and STAR [3, 4] Collaborations at
RHIC. The discussed new data has extended our knowledge
of the phenomena studied intensely in recent years [5–20].
One of the central issues in this field is whether the pT fluc-
tuations at intermediate momenta result from jets [21, 22]. In
this paper we argue that the observed scaling of strength of dy-
namical fluctuations may be naturally explained by formation
of multiparticle clusters. From our point of view, the explana-
tion of the data in terms of quenched jets represents only one
possible option, other physical mechanisms leading to cluster-
ing also explain the data.

Our reasoning is based on the following three observations:
i) the mean and the variance of the inclusive momentum dis-
tribution are practically constant at low centrality parameters
(c = 0−30%),

〈M〉= const. , σp = const. , (1)

ii) the variance of the average momenta for the mixed events
is practically equal to the variance of the inclusive distribution
divided by the average multiplicity,

σmix
M ' σp

〈n〉 , (2)

finally, iii) the difference of the experimental and mixed-event
variances of mean pT , denoted as σ2

dyn, scales as inverse mul-
tiplicity

σ2
dyn ≡ σ2

M−σ2,mix
M ∼ 1

〈n〉 . (3)
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As mentioned above, an explanation of this scaling can be
provided by clustering in the expansion velocity. Moreover,
the extracted value of σdyn is large at the expected scale pro-
vided by the variance of pT , which indicates that the clusters
should contain at least several particles in order to combina-
torically enhance the magnitude to the observed level. This
point is supported by the numerical calculations of the values
of σ2

dyn coming from the resonance decays and from thermal
clusters in statistical models of heavy-ion collisions, which
show that these values are very small [1, 23].

II. SIMPLE WAY OF DOING STATISTICAL ANALYSIS

In this Section we present elementary statistical consider-
ations which form the basis of our treatment of the fluctua-

TABLE I: Analysis of the event-by-event fluctuations in the trans-
verse momentum. Upper rows: the PHENIX experimental data at√

sNN = 130 GeV [2]; middle rows: the mixed-event results; bottom
rows: our way of looking at the data. One observes that to a good
approximation σ2,mix

M ' σ2
p/〈n〉 and σ2

dyn = (σ2
M −σ2,mix

M ) ∼ 1/〈n〉.
Except for the first two rows, all values are given in MeV. The errors
in the last row reflect the unknown round-off errors in the data of the
upper and middle parts.

centrality 0-5% 0-10% 10-20% 20-30%
〈n〉 59.6 53.9 36.6 25.0
σn 10.8 12.2 10.2 7.8
〈M〉 523 523 523 520
σp 290 290 290 289
σM 38.6 41.1 49.8 61.1
〈M〉mix 523 523 523 520
σmix

M 37.8 40.3 48.8 60.0

σp

√
1
〈n〉 + σ2

n
〈n〉3 38.2 40.5 49.8 60.8

σdyn
√
〈n〉 60.3±1.6 59.2±1.5 59.8±1.2 57.7±1.1
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tions. We use the notation where the letter p denotes |~pT |,
pi is the value of p for the ith particle, and M = ∑n

i=1 pi/n
is the mean transverse momentum in an event of multiplic-
ity n. Consider events of multiplicity n and transverse mo-
menta p1, p2, . . . , pn. The multiplicity n and the momenta
are varying randomly from event to event. The probability
density of occurrence of a given momentum configuration is
P(n)ρn(p1, . . . , pn), where P(n) is the multiplicity distribution
and ρn(p1, . . . , pn) is the conditional probability distribution
of occurrence of p1, . . . , pn in accepted events, provided we
have the multiplicity n. Note that in general ρ depends func-
tionally on n, as indicated by the subscript. The normalization
is

∑
n

P(n) = 1,
∫

d p1 . . .d pnρn(p1, . . . , pn) = 1. (4)

The marginal probability densities are defined as

ρ(n−k)
n (p1, . . . , pn−k)≡

∫
d pn−k+1 . . .d pnρn(p1, . . . , pn), (5)

with k = 1, . . . ,n− 1. These are also normalized to unity, as
follows from Eq. (4). Since the number of arguments distin-
guishes the marginal distributions ρ(n−k)

n , in the following we
drop the superscript (n−k). Further, we introduce the follow-
ing definitions

〈p〉n ≡
∫

d pρn(p)p, (6)

varn(p) ≡
∫

d pρn(p)(p−〈p〉n)2 ,

covn(p1, p2) ≡
∫

d p1d p2 (p1−〈p〉n)(p2−〈p〉n)ρn(p1, p2).

The subscript n indicates that the averaging is taken in samples
of multiplicity n. We note in passing that the commonly used
inclusive distributions are related to the marginal probability
distributions in the following way:

ρin(x)≡∑
n

P(n)
∫

d p1 . . .d pn

n

∑
i=1

δ(x− pi)ρn(p1, . . . , pn)

= ∑
n

nP(n)ρn(x), (7)

ρin(x,y)≡

∑
n

P(n)
∫

d p1 . . .d pn

n

∑
i, j=1, j 6=i

δ(x− pi)δ(y− p j)ρn(p1, . . . , pn)

= ∑
n

n(n−1)P(n)ρn(x,y), (8)

which are normalized to 〈n〉 and 〈n(n−1)〉, respectively. For
the variable M = ∑n

i=1 pi/n we find immediately

〈M〉 = ∑
n

P(n)
∫

d p1 . . .d pnMρn(p1, . . . , pn) (9)

= ∑
n

P(n)〈p〉n,

r ( r - 1 ) / 2  p a i r s

N c l  c l u s t e r s

FIG. 1: The cluster picture of correlations. Particles are grouped
in Ncl clusters, containing on the average r particles. The particles
within a cluster move at very similar collective velocities, indicated
by arrows.

〈M2〉 = ∑
n

P(n)
∫

d p1 . . .d pnM2ρn(p1, . . . , pn)

= ∑
n

P(n)
n
〈p2〉n (10)

+∑
n

P(n)
n2

[
n

∑
i, j=1, j 6=i

covn(pi, p j)+n(n−1)〈p〉2n
]

.

III. ANALYSIS OF THE PHENIX DATA

At first we discuss the PHENIX measurement [2] of the
event-by-event fluctuations of the mean transverse momen-
tum at

√
sNN = 130 GeV. We use the experimental fact that

the variance of the momentum distribution and its mean are
independent of centrality (in the considered range), which al-
lows us to replace the quantities 〈p〉n by 〈M〉 and 〈p2〉n−〈p〉2n
by σ2

p at the average multiplicity, denoted as σ2
p,〈n〉. In this

way we get

σ2
M = σ2

p,〈n〉∑
n

P(n)
n

+∑
n

P(n)
n2

[
n

∑
i, j=1, j 6=i

covn(pi, p j)

]
. (11)

In the mixed events, by construction, particles are not corre-
lated, hence the covariance term in Eq. (11) vanishes and

σ2,mix
M = σ2

p,〈n〉∑
n

P(n)
n

' σ2
p,〈n〉

(
1
〈n〉 +

σ2
n

〈n〉3 + . . .

)
, (12)

where in the last equality we have used the fact that the distri-
bution P(n) is narrow and expanded 1/n = 1/[〈n〉+(n−〈n〉)]
to second order in (n−〈n〉). Comparison made in Table I, see
the 8th and 9th rows, shows that formula (12) works at the
1-2% level. In addition, since σp,〈n〉 is not altered by the event
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mixing procedure, subtracting (12) from (11) yields

σ2
dyn = ∑

n

P(n)
n2

n

∑
i, j=1, j 6=i

covn(pi, p j)

' 1
〈n〉2

〈n〉
∑

i, j=1, j 6=i
cov〈n〉(pi, p j). (13)

IV. CLUSTER EXPLANATION

The scaling of the dynamical fluctuations with 〈n〉, see the
last row of Table I and Eq. (3), may be regarded as a constraint
restricting the behavior of the covariance term. For instance,
one can immediately conclude that if all particles were corre-
lated to each other, ∑n

i, j=1, j 6=i cov〈n〉(pi, p j) would be propor-
tional to the number of pairs, and σdyn would not depend on
〈n〉 at large multiplicities. A natural explanation of the scaling
(3) comes from the cluster model, depicted in Fig. 1. The sys-
tem is assumed to have Ncl clusters, each containing (on the
average) r particles. Below we keep r = const. for simplicity
(a more general case is discussed in Ref. [1]). The particles
are correlated if and only if they belong to the same cluster,
where the covariance per pair is 2cov∗. The number of corre-
lated pairs within a cluster is r(r−1)/2. Some particles may
be unclustered, hence the ratio of clustered to all particles is
〈Ncl〉r/〈n〉= α. If all particles are clustered then α = 1. With
these assumptions Eq. (13) becomes

σ2
dyn =

α(r−1)
〈n〉 cov∗, (14)

which complies to the scaling (3). An immediate conclusion
here is that the ratio α cannot depend on 〈n〉 (in the considered
centrality range, c = 0−30%) in order for the scaling to hold.

The question now is whether we can use the above results
to draw conclusions on effects of jets (minijets), which have
been proposed as a possible explanation of the experimental

data even at the considered soft momenta [21]. Jets, when
fragmenting, lead to clusters in the momentum space. The
resulting full covariance from jets is then Ncl,jet j( j− 1) covj

〈n〉2 ,
where Ncl,jet is the number of clusters originating from jets,
j is the average number of particles in the cluster, and 2covj

is the average covariance per pair. The total number of par-
ticles produced from jets is Ncl,jet j. On the other hand, the
commonly accepted estimate of the dependence of Ncl,jet j on
centrality is accounted for by the nuclear modification factor
RAA multiplied by the number of binary nucleon-nucleon col-
lisons Nbin. Since RAA depends on the ratio 〈n〉/〈n〉pp, where
〈n〉pp is the multiplicity in the proton-proton collisions, in a
given pT bin one finds

Ncl,jet j ∼ RAANbin =
〈n〉

Nbin〈n〉pp
Nbin ∼ 〈n〉, (15)

which complies to the scaling of Eq. (14).

V. CONCLUSIONS

The observed scaling of the dynamical fluctuations of mean
transverse-momentum may be naturally explained by the clus-
ter model. We emphasize that the scaling follows from the
presence of clusters only, and is insensitive to the nature of
their physical origin as long as one imposes the condition
Ncl ∼ 〈n〉.

The explanation of the observed data in terms of quenched
jets agrees with the cluster picture. However, the explanation
of the centrality dependence of the pT fluctuations in terms of
jets based solely on Eq. (15) is not decisive: any mechanism
leading to clusters would do, for instance the thermal clusters
discussed in Ref. [1] or mechanisms of Ref. [24]. Micro-
scopic realistic estimates of the magnitude of covj and j are
necessary in that regard, including the interplay of the jets and
medium. In short, the nature of clusters remains an open issue.
For the current status of this program the reader is referred to
[22, 25].
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