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Accelerating Solutions of Perfect Fluid Hydrodynamics for
Initial Energy Density and Life-Time Measurements in Heavy Ion Collisions
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A new class of accelerating, exact, explicit and simple solutions of relativistic hydrodynamics is presented.
Since these new solutions yield a finite rapidity distribution, they lead to an advanced estimate of the initial
energy density and life-time of high energy heavy ion collisions. Accelerating solutions are also given for
spherical expansions in arbitrary number of spatial dimensions.
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I. INTRODUCTION

Relativistic hydrodynamics can be successfully applied
both at the largest and the smallest scales of physics. How-
ever, its equations are highly nonlinear, and only few exact
relativistic solutions are presently known. We present here a
recently found family of exact solutions [1]. These generalize
the Landau-Khalatnikov solution [2–4], as they are also accel-
erating and yield a finite rapidity distribution. They are simple
and explicit, similarly to the Hwa-Bjorken solution [5, 6]. We
show new 1+ 3 dimensional solutions [1], that are reduced to
the exact hydro solutions of refs. [7–11] in the accelerationless
limit.

II. NEW SIMPLE SOLUTIONS OF RELATIVISTIC
HYDRODYNAMICS

Let us denote the metric tensor by gµν =
diag(1,−1,−1,−1), the four-velocity by uµ = γ(1,vn),
the pressure by p, the energy density by ε, the temperature by
T , the charged particle density by n and the entropy density
by σ. All fields depend on the coordinates xµ. We denote by
r the spatial coordinate rz in 1+1 dimensions, and the radial
coordinate in 1+ d dimensions (where r ≥ 0). Relativistic
hydrodynamics expresses local momentum, energy and
charge conservation:

(ε+ p)uν∂νuµ = (gµρ−uµuρ)∂ρ p, (1)
(ε+ p)∂νuν +uν∂νε = 0, (2)

∂ν(nuν) = 0. (3)

¿From these relations entropy conservation also follows:
∂ν(σuν) = 0. Our choice of Equations of State (EoS) is that
of an ideal gas: p = nT , ε = κp. For an ultra-relativistic ideal
gas in d spatial dimensions, κ = d = 1/c2

s . In the considered
case, σ ∝ T d .

We use the τ and η Rindler coordinates:

|r|< |t| : r = τsinhη, t =±τcoshη, (4)
|r|> |t| : r =±τcoshη, t = τsinhη. (5)

In order to generalize the Hwa-Bjorken solution, we intro-
duced the λ > 0 parameter, and found the following class of
solutions:

v = tanh λη, (6)

p = p0

(τ0

τ

)λd(1+1/κ) [
cosh

η
2

]−(d−1)φ(λ)(1+1/κ)
, (7)

n = n0

(τ0

τ

)λd
ν(s)

[
cosh

η
2

]−(d−1)φ(λ)
, (8)

T = T0

(τ0

τ

)λd/κ 1
ν(s)

[
cosh(

η
2

)
]−(d−1)φ(λ)/κ

. (9)

The initial pressure, number density and temperature are de-
noted by p0, n0 and T0, respectively. The above forms are
hydrodynamical solutions for the special values of λ and κ
as given below. The λ = 1 , |r| < |t| , ν(s) = 1 case is the
d-dimensional generalization of the well known inertial Hwa-
Bjorken flow [5, 6], where κ and d > 1 are arbitrary. Here
ν(s) is an arbitrary positive scaling function, given by the ini-
tial conditions, and s is a scaling variable, that has a vanishing
co-moving derivative:

|r|< |t| : s(τ,η) =
(τ0

τ

)λ−1
sinh [(λ−1)η] , (10)

|r|> |t| : s(τ,η) =
(τ0

τ

)λ−1
cosh [(λ−1)η] , (11)

valid for λ 6= 1. If λ = 1, we have s = s0η for |r| < |t|, while
s = τ/τ0 for |r|> |t|.

The constants d, λ and κ are constrained: In 1 + 1 dimen-
sions, λ is arbitrary but κ = d = 1, except if λ = 1 when κ is
arbitrary. If d is arbitrary, λ = 2 and κ = d is a valid solution
both for |r| < |t| and |r| > |t|, and for λ = 1, we have solu-
tion inside the lightcone for arbitrary κ. Recently, T. S. Biró
pointed out [12], that the λ = 1/2, κ = 1 and the λ = 3/2,
κ = 11/3 cases are solutions for d = 3 dimensional expan-
sions, which can be generalized easily for any d ∈R, choosing
κ = (4d−1)/3. The function φ(λ) = 0 for λ = 0, 1 or 2, while
it is unity, φ(λ) = 1 for λ = 1/2 or λ = 3/2. It is introduced to
indicate, that the solutions are dependent on space-time rapid-
ity η in the λ = 1/2 and 3/2 cases only. The λ 6= 1 solutions
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FIG. 1: Fluid trajectories of the λ = 2 exact solution.

describe a flow with relativistic acceleration. If λ = 2, the
trajectories are uniformly accelerating, see Fig. 1 and ref. [1].

III. RAPIDITY DISTRIBUTIONS AND ENERGY DENSITY
ESTIMATION

For d = 1, the rapidity distribution, dn
dy was calculated in

a Boltzmann approximation in ref. [1]. The freeze-out tem-
perature is T (η = 0,τ = τ f ) = Tf . We assumed [1], that the
freeze-out hypersurface is pseudo-orthogonal to uµ. With a
saddle-point integration, for λ > 0.5, and m/Tf À 1 (where m
is the particle mass), we got

dn
dy
≈ n f τ f

√
2πm

Tf λ(2λ−1)
cosh

α
2−1

( y
α

)
e
− m

Tf
coshα( y

α )
, (12)

with α = 2λ−1
λ−1 . The “width” of this distribution is

∆y2 =
α

m/Tf −1/2+1/α
. (13)

The rapidity distribution has a minimum at y = 0, if ∆y2 < 0
(i.e. 1/2 + Tf /(4m) < λ < 1), it is flat if λ = 1 or λ = 1/2 +
Tf /(4m), otherwise it is approximately Gaussian. The typical
cases are plotted in Fig. 2.

As an application, we estimate the energy density reached
in heavy ion reactions. Let us focus on the thin transverse slab
at mid-rapidity, just after thermalization (τ = τ0), illustrated
by Fig. 2 of ref. [6]. The radius R of this slab is estimated by
the radius of the colliding hadrons or nuclei, and the volume is
dV = (R2π)τ0dη0. The energy content is dE = 〈mt〉dn, where
〈mt〉 is the average transverse mass at y = 0, so similarly to
Bjorken, the initial energy density is

ε0 =
〈mt〉

(R2π)τ0

dn
dη0

. (14)

For accelerationless, boost-invariant Hwa-Bjorken flows η0 =
η f = y, however, for our accelerating solution we have to ap-

ply a correction factor of ∂η f
∂η0

∂y
∂η f

= (τ f /τ0)
λ−1 (2λ−1). Thus
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FIG. 2: Normalized rapidity distributions from the new solutions for
various λ, Tf and m values. Thick lines show the result of numerical
integration, thin lines the analytic approximation from eq. (12). For
λ > 1 and not too big Tf it can be used with about 10 % error.

the initial energy density ε0 can be accessed by a corrected es-
timation εc as

εc

εB
= (2λ−1)

(
τ f

τ0

)λ−1

, εB =
〈mt〉

(R2π)τ0

dn
dy

. (15)

Here εB is the Bjorken estimation, which is recovered if dn
dy

is flat (i.e. λ = 1), but for λ > 1, both correction factors are
bigger than 1. Hence the initial energy densities are under-
estimated by the Bjorken formula. Fig. 3 indicates fits to
BRAHMS pseudo-rapidity distributions from ref. [13], these
fits indicate that εc = 8.5−10 GeV/fm3 in Au+Au collisions
at RHIC.
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FIG. 3: Top panel: Fits of eq. (12) to dn/dη data as measured by the
BRAHMS collaboration [13] in

√
sNN = 200 GeV Au+Au collisions

at various centralities. Bottom panel: εc/εB ratio as a function of
τ f /τ0. Using the Bjorken estimate of εB = 5 GeV/fm3 as given in
the BRAHMS White Paper [14], and τ f /τ0=7-10, we find an initial
energy density of εc = (1.7−2.0)εB = 8.5−10 GeV/fm3.

IV. LIFE-TIME DETERMINATION

For a Hwa-Bjorken type of accelerationless, coasting longi-
tudinal flow, Sinyukov and Makhlin [15] determined the lon-
gitudinal length of homogeneity as

Rlong =
√

Tf

mt
τB. (16)

Here mt is the transverse mass and τB is the (Bjorken) freeze-
out time. However, acceleration influences the estimated life-
times of the reaction. If the flow is accelerating, the estimated
origin of the trajectories is shifted, and we found the follow-
ing correction of eq. (16), at mid-rapidity, for broad but finite
rapidity distribution:

Rlong =
√

Tf

mt

τc

λ
⇒ τc = λτB. (17)

Thus in earlier HBT analyses the effective proper-time dura-
tion of the reaction have been underestimated, as pointed out
also in refs. [16–19]. BRAHMS pseudo-rapidity distributions
in Fig. 3 yield λ≈ 1.2, and imply a 20 % increase in the esti-
mated life-time of the reaction.

V. SUMMARY

We have presented new, simple and accelerating solutions
of relativistic hydrodynamics. We have improved quantita-
tively on Bjorken’s initial energy density estimate, by tak-
ing into account the longitudinal work, which is important
for finite rapidity distributions. We have fitted the BRAHMS
pseudo-rapidity distributions with the resulting simple forms,
and pointed out that in Au+Au collisions at RHIC, 8.5 - 10
GeV/fm3 initial energy densities are reached, a factor of 2
larger, than the Bjorken estimate. We have also corrected the
Sinyukov-Makhlin formula for longitudinal work effects, and
found an increase of the life-time of the reaction by about 20
%, as extracted from the longitudinal HBT radius parameter
in Au+Au collisions at

√
sNN = 200 GeV.
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[9] T. S. Biró, Phys. Lett. B 474, 21 (2000).
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