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Shapes and Sizes from Non-Identical-Particle Correlations
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I review the prospects for measuring source characteristics from correlations other than those involving iden-
tical pions. Correlations generated from Coulomb and strong interactions are shown to provide remarkable
resolving power for determining three-dimensional information, in some cases accessing more detail than can
be represented by Gaussian fits.
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I. INTRODUCTION AND THEORY

As is well-known to the participants of this conference,
identical-particle correlations provide insight into the space-
time structure of the asymptotic phase-space density [1].
The experimentally measured two-particle correlation func-
tion C(P,q) is related to the source function S(P,r) through a
simple Fourier transform,

RP(q) ≡CP(q)−1 =
∫

d3rSP(r)cos(q · r). (1)

Here, P is the total momentum and q = (p1 − p2)/2 is the
relative momentum of the pair [2]. The source function is
defined by the outgoing phase space density,

SP(r) =
∫

d3r1d3r2δ(r1 − r2 − r) f (P/2,r1, t) f (P/2,r2, t)∫
d3r1d3r2 f (P/2,r1, t) f (P/2,r2, t)

,

(2)
where all quantities are calculated in the rest frame of the pair,
where P = 0. As long as the time t is beyond any time for
which particles are emitted, S is independent of t since both
particles are moving with identical velocity, which is zero in
this frame. The source function physically represents the nor-
malized probability for two particles of the same velocity to be
separated by a distance r in their asymptotic state. Although
the source function only measures a distribution of relative
distances, it still provides invaluable insight into the dynam-
ics of a collision. For instance, long lived sources will lead to
large separations along the direction of the pair’s velocity.

Determining S from the experimentally measured correla-
tion function in Eq. (1) is simple as one needs only Fourier
transform R (q). Since the total momentum P is not involved
in the convolution, I will suppress it in the notation for the
remainder of the paper. The ability of correlations of non-
identical particles to reproduce source functions is less appre-
ciated by the community, despite the fact that non-identical
particle correlations offer similar resolving power to identical-
particle correlations in many instances [3]. Non-identical-
particle correlations are driven by the strong and Coulomb
interactions. After making similar, though not identical, as-
sumptions as what were used for Eq. (1), the corresponding
expression for the correlations are:

R (q) =
∫

d3rS(r)
(|φ(q,r)|2 −1

)
. (3)

Again, the label P is suppressed. If one views R (q) as a vec-
tor, where each bin in q represents a component of the vec-
tor, and S(r) as a vector where each bin in r represents a
component, determining S from R becomes a matrix inver-
sion problem, where |φ|2 −1 is the matrix with labels q and r.
For the rest of the paper I will refer to the matrix as a kernel,
K (q,r) = |φ|2 −1 [4].

The goal of this talk is to describe the resolving power of
the kernel, see [5]. In optics, “resolving power” refers to the
limiting angular resolution of a lens. Here, we use the term
to describe the degree to which features of the experimental
correlation can be quantifiably tied to specific properties of
the source. This correspondence is contained in the kernel
K(q,r), which is driven by the nature of the interaction and
interference between the two particles. The resolving power
is of a radically different character depending on whether the
particles are identical, whether they are electrically charged,
or whether they interact strongly with one another.

When viewed as a matrix, the kernel K (q,r) is often highly
singular, i.e., it may not be possible to uniquely determine
S(r) for all r from even perfect knowledge of R (q). The in-
formation made accessible through the kernel depends on the
unique properties of the wave function for a particular parti-
cle pair. For instance, the pΛ wave function is driven only by
the strong interaction, which provides a large peak in R (q)
at small q. In contrast pK+ correlations are mainly driven
by the Coulomb interaction, which tends to wash out the ef-
fects of the strong interaction, but provides resolving power
through the Coulomb interaction itself. Before discussing the
kernels I first introduce the concept of expanding the prob-
lem in spherical harmonics or Cartesian harmonics in the next
section. In the subsequent sections, I review the general prin-
ciples determining the resolving power of the kernel for both
strong and Coulomb interactions. The resolving power for ex-
tracting non-Gaussian features for a pp source function is then
presented as an example.

II. DECOMPOSING ANGULAR INFORMATION WITH
CARTESIAN OR SPHERICAL HARMONICS

Before launching into a detailed discussion of the resolving
power of the kernel, K (q,r) = |φ|2 −1, I project the correla-
tion and source function with spherical and Cartesian harmon-
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ics [6]. The convenience of this decomposition derives from
the fact that the specific projections of the correlations func-
tion, R�,m(q) for spherical harmonics or R�x,�y,�z for Cartesian
harmonics, are related to the same projection for the source
function,

R�m(q) = 4π
∫

r2dr S�,m(r)K�(q,r), (4)

R��(q) = 4π
∫

r2dr S��(r)K�(q,r).

For Cartesian harmonics, � = �x + �y + �z. The kernel is the
same for both expressions,

K�(q,r) ≡ 1
2

∫
d cosθqr

[∣∣φ(q,r,cosθqr)
∣∣2 −1

]
P�(cosθqr).

(5)
The projections reduce angular information for some angular
function F(Ω), which could be either S or R , into a set of
coefficients, F�m or F��.

The projections and inverses for spherical harmonics are
defined as:

F�m ≡ (4π)−1/2
∫

dΩF(Ω)Y�m(Ω), (6)

F(Ω) ≡ (4π)1/2 ∑
�,m

F�mY�m(Ω).

The (2�+ 1) complex coefficients obey the symmetry F�m =
(−1)mF∗

�−m, so that the angular information for each � is rep-
resented by (2�+1) independent real numbers.

For Cartesian harmonics, the projections are defined as:

F�� =
(2�+1)!!

�!

∫ dΩ
4π

F(Ω)A��(Ω), (7)

F(Ω) = ∑
��

�!
�x!�y!�z!

F��n̂
�x
x n̂�y

y n̂�z
z

The Cartesian harmonic function A��(Ω) represent products of

the components of unit vectors, n̂�x
x n̂�y

y n̂�z
z , which then have

lower values of � projected away. Table I shows the functions
for � ≤ 4. Unlike the spherical harmonics, all these functions
are real. For a given �, there are (� + 1)(� + 2)/2 different
combinations of (�x, �y, �z) that sum to �. However, not all
coefficients are independent. Since any part of the function
from which one can factor n2

x + n2
y + n2

z = 1 gives a function
of lower projection �, the functions A�� and the coefficients F��
satisfy the “tracelessness” constraint,

F�x+2,�y,�z +F�x,�y+2,�z +F�x,�y,�z+2 = 0. (8)

With this constraint, all the coefficients for a given � can be
generated unambiguously from knowing the (2� + 1) coeffi-
cients for �x = 0 or 1. Thus, both expansions, with spheri-
cal harmonics or Cartesian harmonics, can be represented by
(2�+1) real numbers for each �.

The two choices of basis functions for the projections are
equivalent, and it is straight forward to convert between one
set of coefficients and the other. The main advantage of Carte-
sian harmonics is that it is easier to identify the coefficient
with the distortion of the shape as can be seen by the expan-
sions in Eq. (7).

TABLE I: Cartesian harmonics for � ≤ 4. Other harmonics can be
found by swapping indices on both sides of the equation, e.g., x ↔
y. For example, given A210 = n2

xny − ny/5, swapping y ↔ z gives
A201 = n2

xnz −nz/5.

A(1)
100 = nx A(3)

111 = nxnynz

A(2)
200 = n2

x − (1/3) A(4)
400 = n4

x − (6/7)n2
x +(3/35)

A(2)
110 = nxny A(4)

310 = n3
xny − (3/7)nxny

A(3)
300 = n3

x − (3/5)nx A(4)
220 = n2

xn2
y − (1/7)n2

x − (1/7)n2
y +(1/35)

A(3)
210 = n2

xny − (1/5)ny A(4)
211 = n2

xnynz − (1/7)nynz

III. THE RESOLVING POWER OF
IDENTICAL-PARTICLE STATISTICS

The kernels for identical particles are particularly simple
for bosons/fermions,

K (q,r) = (±)cos(q · r), (9)

K�(q,r) = ±(−1)�/2 j�(qr), � = even
0, � = odd

Inverting R (q) to find S(r) involves a simple Fourier trans-
form. Roughly speaking, the correlation structure of level q
reveals information about components of the source function
of scale R ∼ 1/q. Shape characteristic are also easy to invert
using the kernel for specific �. Since j�(qr) behaves as (qr)�,
information about the distortions of a specific � require look-
ing at a range of q for which qR � �. The fact that the kernel
does not provide resolving power for small r is not usually a
problem, since the source function S�(r) also tends to vanish
for (r/R) � �.

IV. THE RESOLVING POWER OF STRONG
INTERACTIONS

First, I consider the information available by analyzing the
kernel for � = 0. For q � 1/R, where R is a characteristic
scale of the source, |φ(q,r)|2 differs significantly from unity
only at small r, and the kernel can be approximated by a delta
function. The correlation function is then only sensitive to the
probability that the two particles have r = 0, with a resolving
power determined by the overall density of states which is
given by the scattering phase shifts,

R�=0(q) =
∆dn/dq

4πq2/[(2π�)3]
S(r = 0), (10)

∆dn/dq =
1
π ∑

�

(2�+1)
dδ�

dq
. (11)

The sensitivity in q is determined by the form of dδ�/dq,
rather than by details of the shape.

For q � 1/R, where R is a characteristic scale of the source,
R�=0(q) becomes sensitive to more details of S�=0(r), not just
the value at r = 0. At that point, the resolving power depends
on the unique shape of the wave function, which is also given
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by the phase shifts. For q � 1/R, the kernel is determined
solely by the � = 0 phase shifts. As long as the range of the
interaction is short compared to the source size (true for heavy
ion collisions), one can then approximate the wave function by
a distorted plane wave. If only the � = 0 pieces are kept,

K (q,r) ≈
∣∣∣∣eiq·r +

sin(qr +δ�=0)
qr

− sinqr
qr

∣∣∣∣
2

−1 (12)

K (q → 0,r) ≈ −2ar +a2

r2 ,

where a is the scattering length, δ�=0 = −qa. Thus, one
can crudely state that the R�=0(q → 0) provides information
about the 〈1/r2〉 and 〈1/r〉 moments of the source function,
while R�=0(q � 1/R) provides information about S�=0(r →
0). Looking at dR�=0/dq2 at q = 0 will provide insight into
other higher moments, 〈r�≥0〉. For higher moments the con-
stant of proportionality depends on the � = 1 phase shifts and
on the next higher expansion of the � = 0 phase shift, which is
determined by the effective range.

Gaussian parameterizations of S�=0(r) involve two parame-
ters, a size RG, and a “coherence” parameter λ which repre-
sents the normalization of S which can differ from unity since
some of the particles might originate from effectively infinite
distances due to long-lived decays. Any two pieces of infor-
mation about S�=0(r), such as the value at r = 0 and a moment,
are sufficient to determine the two Gaussian parameters. As
explained in the previous paragraph, the kernel can, in princi-
ple, provide more information. However, the ability to extract
such non-Gaussian details are constrained by the strength and
form of the scattering phase shifts and by statistical and sys-
tematic errors in the data.

The kernel for � > 0 allows one to determine properties of
the source shape. Even though the scattering phase shifts are
usually important only for a few small values of �, K�(q,r) has
strength for all �. This sensitivity can be explained by pointing
out that for large qr, which is the only region one can analyze
for higher �, one can view the problem classically. The kernel
is then largely determined by the shadowing. In the large qr
limit the kernel can be determined solely from the geometry
of classical trajectories,

K (q,r)|r→∞ = − 1
r2

{
−σδ(−Ωqr)+

dσ
dΩ

}
. (13)

Here, the first term represents the shadowing due to particles
scattering away from the direction q̂ · r̂ =−1, while the second
term represents the addition due to scattered particles. Since
the delta function has contributions to all �, the kernel from
strong interactions provides resolving power at all � for larger
r. In practice, the power falls off at large � since quantum
considerations destroy K� for qr � �.

The � = 0 kernel shown in Eq. (10) and the � > 0 kernel
shown in Eq. (13) tend to be of similar strength for most cir-
cumstances. Thus, for most interactions, it can be stated that
if one has sufficient statistics to measure the size, one also has
the ability to determine shape.

V. THE RESOLVING POWER OF COULOMB
INTERACTIONS

Coulomb interactions also provide leverage for determin-
ing source sizes. The limitations of the Coulomb interaction
derives from the inherently weak couplings which make corre-
lations relatively small except at small q. At small q, |φ|2 → 0,
unless r is so large as to be outside the range of the Coulomb
interaction, e2/r � q2/2µ. Thus, all pairs that are emitted
within a radius, r < µe2/q2

r , where qr is the momentum reso-
lution, contribute zero to the correlation function, or equiva-
lently −1 to the kernel. For most experiments the resolution
is of the order of 1 MeV/c and only those pairs where at least
one member originates from a weak decay are uncorrelated.
Thus, the intercept of the correlation function at q = 0 gives

C(q → 0) = (1− fl.l.)2, (14)

where fl.l. is the fraction of particles from long-lived decays.
For large q, one can use the classical limit of the kernel

given by calculating classical Coulomb trajectories,

|φ(q,r,cosθqr)|2 → d3q0

d3q
(15)

=
1+ cosθqr − x√

(1+ cosθqr − x)2 − x2
Θ(1+ cosθqr −2x).

Here, x is the ratio of the Coulomb and final-state kinetic en-
ergy,

x ≡ 2µe2

q2r
. (16)

Since e2 = 1/137 is small, x is small unless q is quite small.
This allows the kernel to be approximated as

K (q,r)|x→0 ≈ − x
2

δ(1+ cos(θqr), (17)

K�(q,r)|x→0 ≈ (−1)�
x
2
.

In addition to x being small, this approximation also relies on
the classical approximation, qr � �.

The Coulomb interaction thus provides excellent resolving
power for all �, provided that x is not too small for the rel-
evant region qR � 1, which can equivalently be stated that
µe2R should not be too small, or the source size should not be
too much smaller than the Bohr radius, which is 390 fm for ππ
but only 58 fm for pp. Thus, one expects reasonable resolving
power for pK or heavier pairs, whereas pairs involving pions
offer weak resolving power through the Coulomb force. The
Coulomb interaction becomes especially useful if light nuclei
can be used, as in addition to the increase in the reduced mass
µ, the increased factor of charges, e2 → Z1Z2e2, bolsters the
resolving power.

For large r the Coulomb kernel falls as (q2r)−1 for large q.
Thus, the tail of the correlation function provides a measure of
the moment 〈1/r〉 for the source function. By analyzing the
correlation function for its variance from the 1/q2 behavior
for decreasing q, one can, in principle, ascertain other facets
of the source function.
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VI. RESOLVING POWER IN THE REAL WORLD

Although the considerations of the previous sections are
useful for qualitative insight, almost all kernels are affected by
more than one class of interaction, and in some cases are sig-
nificantly influenced by all three (e.g., pp correlations). These
effects then intermingle and affect the kernel in more compli-
cated ways, and can not be treated in isolation.

Imaging has become a popular term for describing the in-
version of R (q) to determine S(q). Particular attention has
been given to the � = 0 components by Danielewicz and
Brown by fitting to splines [7–9], where non-Gaussian aspects
of source functions have been observed. The spline-fitting
routines are themselves a fit to a constrained functional form,
and should not be mistaken for a fully flexible accounting for
all possible forms for the source function. Our goal here is to
gain a better feel for the sensitivity to non-Gaussian features
of the source one might attain in real-world analyses.

First, I will consider the simple case of � = 0 sources. I pick
the form

S�=0(r) = λ(1−Xfrac)
e−r2/2R2

G

ZG
+λXfrac

e−
√

r2/X2+4R4
G/X4

ZX
.

(18)
Here, the normalization constant ensures that each source
would integrate to unity when λ = 1. The four parameters
in this fit are:

• λ, the “coherence factor”.
• RG, a Gaussian source size.
• X , an exponential size describing the source function at

large r.
• Xfrac, the fraction of the source described by the expo-

nential.

The form of the argument of the second term was chosen to
force the curvature at the origin to match that of the Gaussian.

The upper panel of Fig. 1 shows a pp correlation function
calculated for the form above with the parameters: λ = 0.6,
RG = 5 fm, X = 10 fm, Xfrac = 0.5. In the lower panel, the
change of the correlation function is illustrated for various
changes in the four parameters above. Visually, it is apparent
that any one of the four changes can be pretty well approxi-
mated by making linear combinations of the other three. For
instance, the effects of increasing the exponential length X by
2 fm can be approximately reproduced by a combination of re-
ducing λ combined with small changes to the remaining two
parameters.

The ability of an experimental analysis to determine all four
parameters in Eq. (18) depends on details of the particular in-
teraction and the experimental accuracy and resolution. To
more rigorously determine the degree to which parameters
could be experimentally constrained, theoretical correlation
functions were binned, and random errors were then added.
For errors of the order of what might be expected at RHIC, it
did not seem possible to uniquely determine all four parame-
ters. However, extracting three parameters was usually quite
robust. Since a Gaussian parameterization uses only two para-
meters, our exercise demonstrates that non-Gaussian features

FIG. 1: A one-dimensional pp correlation function for the para-
meters shown in Eq. (18) is displayed in the upper panel, while
changes corresponding to the labeled changes of the four parame-
ters are shown in the lower panel. For most experiments, only three
of the four parameters would be uniquely determined.

can be extracted, but that determining both the weight Xfrac
and the exponential scale X will probably be outside the res-
olution of the experiments. However, if one feels confident in
the scale X , e.g., one might believe it comes principally from
ω decays, our investigations suggest that it is quite possible
to confidently determine the relative weight Xfrac. Most of the
pairs that were investigated appeared to accommodate three-
parameter analyses.

As shown in the previous section, insight into the three-
dimensional shape of sources can come from all types of in-
teractions. This is illustrated by the plotting of several an-
gular correlations for a non-spherical source in Fig. 2. The
Gaussian source has dimensions of 4 fm in the x and y direc-
tions and 8 fm in the z direction. For non-identical particles,
the center of the Gaussian was moved by 4 fm to simulate
one species being emitted ahead or behind of the other [10–
12]. The correlation function is plotted at two values of q as a
function of the angle with respect to the z axis. The fact that
the values are not constant, and that their variation with angle
is similar to their average strength, illustrates the strong an-
gular resolving power provided by all the pairs. In all cases,
their is little sensitivity to shape at small q. This can be un-
derstood from considering the uncertainty principle that says
that if qR � 1, there is an inherent vagueness as to the direc-
tion of the relative momentum. However, at a relative mo-
mentum of 55 MeV/c, the angular sensitivity is significant for
all cases. The pairs involving two baryons tended to be espe-
cially strong. To illustrate the same information with angular
projections, Fig. 3 shows projections in terms of Cartesian
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FIG. 2: (Color online) Correlations for two relative momenta are
shown as a function of the angle describing the direction of q with
respect to the z axis for a Gaussian source of radius Rx = Ry = 4, Rz =
8 fm. The angular variations for q = 55 MeV/c illustrate significant
resolving power for experimentally determining shapes.

harmonics for all � ≤ 3.
As a point of comparison, I present identical-pion correla-

tions for the same source, (Rx = Ry = 4 fm, Rz = 8 fm), but
without the offset of the center due to the fact that there can
be no offset with identical particles. As can be seen in Fig. 4,
the correlations are much larger than those seen for any of the
examples from Fig. 3. The stronger resolving power derives
from the simple fact that all the correlations, including those
for � = 0, are several times larger. For identical particles, there
are no odd-numbered harmonics. However, as shown in Fig.
4, it should be feasible to measure harmonics to rather large �.

In addition to the calculations for Gaussians shown here, I
have evaluated angular projections for correlations from blast
wave models. From our experience thus far I can make the
following rough statements regarding the prospects for dis-
cerning shapes.

• For identical pion or identical kaon correlations, many
values of � are accessible.

• For pK or pπ correlations:

– � = 1 terms are easy

FIG. 3: (Color online) Angular projections of correlations as a func-
tion of q for a Gaussian source of dimensions Rx = Ry = 4 fm, Rz = 8
fm. For non-identical particles, the center of the Gaussian was also
moved by 4 fm in the z direction. Projections are for Cartesian har-
monics, with � = 0 (lower panels), �x = �y = 0, �z = 1,2,3, subse-
quently higher panels. The solid lines for pK+ describe the correla-
tions one would obtain if classical trajectories were used rather than
wave functions to determine the correlations weights, see Eq. (15).

FIG. 4: Angular projections of identical-pion correlations as a func-
tion of q for a Gaussian source of dimensions Rx = Ry = 4 fm, Rz = 8
fm. Since the correlations are stronger for this case, larger values of
� can be explored.

– � = 2 require 1% or better accuracy

– � = 3 are probably prohibitively small

• For baryon-baryon correlations

– � = 1,2 are easy

– � = 3 requires 1% or better accuracy.
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VII. SUMMARY AND PROSPECTS

Identical-pion correlations arguably represent the most dis-
criminating observable at RHIC. A large fraction of the space
of possible equations of state have been excluded by the-
ory/experiment comparison, including strong first-order equa-
tions of state, and on the opposite extreme, hard pion-gas-like
equations of state. Given the paramount importance of these
conclusions, it would be enormously important to verify these
statements with independent analyses of space-time parame-
ters using other classes of correlations. As a first goal, exper-
imental analyses should work on alternative measurements of
Rout/Rside/Rlong. Additionally, the odd harmonics access new
features of the emission geometry. These alternative mea-
surements should be viewed as being more complementary
than redundant, as the theoretical basis for Coulomb-induced
and strong-interaction based correlations is somewhat differ-
ent from that used for identical-particle interference.

Exploiting other classes of shape analyses is inherently dif-
ficult for two reasons. First, the strength of the correlations
tends to be small. Whereas identical pion correlations are
measured in the tens of percent, other classes of correlation
tend to be a few percent once they are in the region q � 25
MeV/c, where one can access shape information. Recent
data sets from RHIC have amassed sufficient statistics to an-
alyze correlation functions at the sub-one-percent level. The
PHENIX experiment, with its excellent particle-identification
over a wide range of momenta, is especially well poised to

exploit such correlations. STAR has even better statistics
for some cases, but the delay in finishing the STAR time-of-
flight wall has made it difficult to access some correlations at
high statistics. For instance, since correlations are analyzed at
small relative velocity (not small relative momentum) pπ cor-
relations require comparing a pt = 100 MeV/c pion to a 700
MeV/c proton to match velocities. Both particles are at the
edge of STAR’s acceptance for particle identification. How-
ever, analyses will ultimately be constrained by systematic
experimental errors, and from competing physical processes,
such as flow or jets. All such effects must be handled more
carefully when the desired correlation is of order one percent.

The second challenge for analyzing these classes of cor-
relation derives from the difficulty in disentangling the more
complicated and opaque kernels. However, as was shown
here, this is by no means insurmountable. Recently devel-
oped fitting algorithms, imaging techniques, and angular de-
compositions, have now been compiled into usable libraries
with the CorAL (Correlations Analysis Library) project. An
alpha version of the library is already available [13], and in-
terested parties are encouraged to contact any of the authors,
for assistance in using the codes.
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