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We briefly discuss four different possible types of transitions from quark to hadronic matter and their char-
acteristic signatures in terms of correlations. We also highlight the effects arising from mass modification of
hadrons in hot and dense hadronic matter, as well as their quantum statistical consequences: the appearance
of squeezed quantum states and the associated experimental signatures, i.e., the back-to-back correlations of
particle-antiparticle pairs. We briefly review the theoretical results of these squeezed quanta, generated by in-
medium modified masses, starting from the first indication of the existence of surprising particle-antiparticle
correlations, and ending by considering the effects of chiral dynamics on these correlation patterns. Never-
theless, a prerequisite for such a signature is the experimental verification of its observability. Therefore, the
experimental observation of back-to-back correlations in high energy heavy ion reactions would be a unique
signature, proving the existence of in-medium mass modification of hadronic states. On the other hand, their
disappearance at some threshold centrality or collision energy would indicate that the hadron formation mecha-
nism would have qualitatively changed: asymptotic hadrons above such a threshold are not formed from medium
modified hadrons anymore, but rather by new degrees of freedom characterizing the medium. Furthermore, the
disappearance of the squeezed BBC could also serve as a signature of a sudden, non-equilibrium hadronization
scenario from a supercooled quark-gluon plasma phase.
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I. INTRODUCTION

The major goal of the programme of high energy heavy
ion physics has been to explore the phases of hot and dense,
strongly interacting matter. More specifically, it has been to
find a new phase where quarks and gluons are no longer con-
fined to their T = 0 bound states, the hadrons. This new phase
of matter may be referred to as “Quark-Gluon Plasma” (QGP)
in analogy to the electromagnetic plasma, the phase in which
electrons and ionized atoms appear as new degrees of free-
dom, as compared to the neutral atomic or molecular forms of
matter.

It has been theoretically predicted by a number of au-
thors [1–6] that the emergence of a large number of colored
degrees of freedom in an expanding QGP could be signaled
by correlation measurements. However, some of the theoret-
ical expectations related to a first order phase transition, such
as a long-lived QGP, are not being observed experimentally.

Nevertheless, we could still ask the question: can a phase
transition be signaled by correlation measurements at all?
Fortunately, the answer is positive: in section II, we shall
discuss correlation measurements that have indeed signaled
experimentally the onset of first order as well as second order
phase transitions, in solid-state physics measurements.

II. PHASE TRANSITIONS AND CORRELATIONS

Returning to the question if an experimental measurement
of the two-particle correlation function could be utilized to
signal a phase transition, a clear yes answer has recently been
given in condensed matter physics by Schellekens, Hoppeler,

Perrin, Viana Gomes, Boiron, Aspect and Westbrook [7]. In
their measurement, a cloud of ultra-cold gas of meta-stable He
atoms was released from its magnetic trap, and after 47 cm
ballistic fall, the position of each atom was detected. Single
particle detection of these neutral atoms was possible as the 20
eV internal energy of each atom was released when the atoms
hit the detector.

The initial temperature has been varied from above to be-
low the Bose-Einstein condensation threshold, TBEC = 0.5 µK.
The observed two-body correlation function for initial con-
ditions with T > TBEC showed a bunching behavior, while
the correlation function became flat for the coherent, Bose-
Einstein condensed sample, with initial conditions T < TBEC.
The observed quantum statistical correlations are the atomic
analogue of the Hanbury Brown – Twiss effect [8], and in the
case of atomic Bose-Einstein condensation, the disappearance
of the bunching behavior signaled the phase transition from
the usual thermal state to the Bose-Einstein condensate. The
intercept parameter of the correlation function served as an
order parameter of this phase transition. Thus the correlation
function can clearly signal a phase transition.

III. FOUR POSSIBILITIES FOR TRANSITION FROM
DECONFINED TO HADRONIC MATTER

What kind of phase transitions may occur in hot and dense,
nuclear matter? According to recent lattice QCD calculations,
three types of equilibrium transitions are possible in the (T ,
µB) plane: if the temperature is increased at zero, or nearly
zero chemical potentials, the transition from confined to de-
confined matter is a cross-over [9], i.e. this is not a phase tran-
sition in the strict, thermodynamical sense: quark and gluon
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degrees of freedom are present below Tc, hadrons are present
above Tc and various observables yield different estimates for
the critical temperature itself. In contrast, at rather large bary-
ochemical potentials, the transition from hadronic matter to
deconfined matter is of first order. The line of first order tran-
sitions ends at a critical end point (CEP) that separates the
first order phase transitions from the cross-over region. At
this critical end point, (µCEP,TCEP), the transition from con-
fined to deconfined matter is a second order phase transition.
There are other more exotic states like color superconducting
quark matter, and there is a nuclear liquid-gas phase transi-
tion, but the region of the phase diagram which is relevant
for high energy heavy ion collisions at CERN/SPS, RHIC and
LHC, is the region around the CEP [10]. Recent calculations
and experimental data indicate that in central Au+Au colli-
sions at RHIC, the transition is likely a cross-over. The cor-
responding extracted temperatures for the 0-5 % most central√

sNN = 130 GeV Au+Au data sample are T0 = 214±7 MeV,
and µB = 77± 38 MeV, respectively [11]. These values are
to be contrasted with the critical end point location of the line
of first order QCD phase transition estimated by lattice QCD
[10] to be TCEP = 162±2 MeV and µCEP = 360±40 MeV.

If the evolution of the strongly interacting matter produced
in relativistic heavy ion collisions happens through thermo-
dynamically equilibrated states, first- and second-order phase
transitions, as well as an analytic cross-over, are the only three
possibilities for the state of the system. However, heavy ion
collisions create violently exploding mini-bangs, where the
time-scales of the expansion are rather short as compared to
the typically ∼ 100 fm/c nucleation times of hadronic bub-
bles in a first order phase transition from QGP to a hadron
gas. Hence non-equilibrium transitions are also possible. In
ref. [12], another scenario is suggested, where a rapidly ex-
panding QGP state might strongly supercool in Au+Au colli-
sions at RHIC and then suddenly hadronize while emitting a
flash of pions. The predicted signals of this scenario are not,
even currently, in disagreement with RHIC data on Au+Au
collisions. So the possibility of non-equilibrium hadronic for-
mation must be kept in mind and further experimental tools
must be found to pin down if this mechanism is in fact present
in Au+Au collisions at RHIC.

IV. CORRELATION SIGNATURES FOR THE FOUR
REHADRONIZATION SCENARIOS

Let us itemize the possible types of rehadronization transi-
tions, and summarize their correlation signatures:

• A strong first order QCD phase transition has been stud-
ied in the predominant fraction of the literature. Such
a transition is characterized by long life-times and time
spreads, since the latent heat and the initial entropy den-
sities are large. The picture behind this scenario is that
of a slowly burning cylinder of QGP [6]. In such a sce-
nario, the extended duration of particle emission adds
up to source parameter in the direction of the average
momentum of the pion pair, resulting in a substantial

increase of the effective source size. This is signaled as
Rout � Rside, regardless of the exact details of the cal-
culation [1–6]. However, experimentally Rout ≈ Rside,
both at CERN SPS [13, 14] and at RHIC [15–17].
Hence, a strong first order transition from deconfined
to hadronic matter seems to be excluded by current cor-
relation measurements in high energy heavy ion colli-
sions, both at CERN/SPS and at the RHIC energy range.

However, three other alternatives still remain possible.

• A second order QCD phase transition from decon-
fined to hadronic matter has been considered recently
in ref. [18]. The interesting conclusion is that this
phase transition is not signaled by the scale parame-
ters of the correlation function, as the spatial correla-
tions develop a power-law tail in these kind of transi-
tions, and power-laws have no characteristic scale. In-
stead, the second order phase transitions are character-
ized by critical exponents. One of these, traditionally
denoted by η, characterizes the tail of the spatial corre-
lations of the order parameter. In ref. [18], this exponent
was shown to be measurable with the help of the two-
particle correlation function in momentum space, and
it was shown that η = α, where α stands for the Lévy
index of stability of the correlation function itself, i.e.,
C(q) = 1+λexp[−(qR)α].

A strong decrease of the Lévy index of stability α down
to about 0.50± 0.02 in the vicinity of the critical end
point is a theoretical prediction for the localization of
this outstanding landmark of the QCD phase diagram.
This value was obtained based on universality class ar-
guments. Rajagopal, Wilczek and others argued that
the universality class of QCD at the critical point is
that of the 3-dimensional Ising model [19]. The expo-
nent of the correlation function η, however, is extremely
small in that model, i.e., η = 0.03±0.01 [19]. In a vi-
olent heavy ion collisions, random external fields are
also present, which change the universality class and,
thus, might increase the value of the correlation expo-
nent. In the 3-dimensional random field Ising model,
η increases to 0.50 ± 0.05. When interpreted as a
Lévy index of stability, it still corresponds to an ex-
tremely peaked correlation function, which should be
very clearly measurable. Nevertheless, the excitation
function of the shape parameter α has not yet been de-
termined experimentally. Therefore, it is possible that
at certain colliding energies, either at CERN/SPS range
or at RHIC, there is a dramatic change in the shape of
the correlation function, which has not yet been identi-
fied.

• A cross-over from QGP to confined matter is the last re-
maining possibility of an equilibrium phase transition.
This scenario can be signaled by emission of hadrons
from a region above the critical temperature, T > Tc,
or, by finding deconfined quarks or gluons at temper-
atures T < Tc. Recent lattice QCD calculations sug-
gest that, at zero baryochemical potential, the transi-
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tion from quarks to hadrons is a rapid cross-over, dif-
ferent observables yielding different transition temper-
atures at µB = 0. The peak of the renormalized chiral
susceptibility predicts Tc=151(3) MeV, whereas critical
temperatures based on the strange quark number sus-
ceptibility, and Polyakov loops, result in values higher
than this by 24(4) MeV and 25(4) MeV, respectively.
Signs of quarks or gluons below these temperatures
have not yet been observed experimentally. However,
emission of hadrons from a small but very hot region,
with T > Tc � 176± 7 MeV [10, 20], has been sug-
gested by Buda-Lund hydro model fits to the identified
particle spectra and two-pion correlation functions in
Au+Au collisions at RHIC [11].

• The fourth possibility corresponds to hadron forma-
tion out of thermal equilibrium. A sudden recombi-
nation from quarks to hadrons has been considered as
the mechanism for hadron formation in the ALCOR
model [21]. Other realizations of sudden hadron for-
mation and freeze-out were tools used to explain the
observed scaling properties of elliptic flow [22] with
the number of constituent quarks. In the context of
femtoscopy analyses, it has been suggested that the
comparable magnitude of Rout ≈ Rside ≈ Rlong could
be a signature of a flash of hadrons (pion-flash) from
a deeply supercooled QGP phase [12]. If this mech-
anism would indeed be responsible for the hadroniza-
tion in high energy heavy ion collisions, it would also
predict that the freeze-out distributions of temperature,
flow, and density would not depend on the particle
type (or cross-section), since all hadrons would be pro-
duced in the same flash. Strangeness would be en-
hanced, as strangeness production predominantly hap-
pens in the pre-hadron state of matter. Finally, no in-
medium mass modification of hadrons could be ob-
served, since deeply supercooled QGP is a state of
over-stretched matter, has negative pressures internally,
which cause the sudden break-up and coalescence of
matter. However, in this picture, the hadron gas is pro-
duced in a large volume, and re-scattering effects are
small. Hence, the interactions which would cause the
in-medium mass modification of hadrons, do not take
place, as the hadron gas would freeze out as soon as it
was produced. Note, however, that the thermodynamic
considerations in Ref. [12] would also allow, in about
50 % of the parameter space, for the production of a
super-heated hadron gas. Therefore, the indication of a
hot spot in the central region, and of particle emission
from a region with T (x) > Tc [11] would be compatible
with this non-equilibrium hadronization mechanism as
well.

In the end of this review, we shall propose a new method to
observe the onset of sudden hadronization from a supercooled
QGP state as a possible rehadronization mechanism.

V. COHERENT STATES

In this session, we will briefly present the theory of quan-
tum optical coherence and chaos, by introducing the con-
cept of coherent states and an explanation of the HBT ef-
fect. Then we discuss squeezed states and review their ap-
plications in high energy heavy ion and particle physics. At
the end we will focus on how these quantum statistical cor-
relations of squeezed hadronic states could be experimentally
used as tools to search for a sudden freeze-out of hadrons from
a super-cooled QGP state.

Let us mention an inspiring historical review by Michel
Martin Nieto [23], who compared the well known discovery
of the coherent states by E. Schrödinger in 1926 [24] with the
much less well known discovery of squeezed states by E. H.
Kennard in 1927 [25]. According to Nieto [23], Schrödinger’s
original discovery of coherent states was inspired by a ques-
tion from Lorentz, in a letter on May 27, 1926, in which he
lamented the fact that Schrödinger’s wave functions were sta-
tionary, and did not display classical motion. On June 6, 1926
Schrödinger replied that he had found a system with classical
motion, and sent Lorentz a draft copy of his paper, published
in Ref. [24]. According to it, coherent states can be defined
with the help of the so-called minimum-uncertainty method.
In this, the mean position and mean momentum are required
to follow the trajectory of the classical motion corresponding
to the same Hamiltonian, and also that the vacuum state is a
member of the set of states.

The development of understanding about the dual nature of
light, evident in its wave-like properties and quantized detec-
tions has been summarized recently in ref. [26].

When the tools to handle quantum electrodynamics were
developed, they were applied mainly to high energy processes,
and it was still naively assumed, that the conflict between
Maxwell’s treatment - who focused on the wave-like prop-
erties of the electromagnetic fields, and whose formulas were
the basis of radio engineering - and Planck’s theory, which
emphasized the quantum nature of light, would be of no sig-
nificance in optical observations. This state of blissful indif-
ference [26] was however changed by the landmark experi-
ment of R. Hanbury Brown and R. Q. Twiss [8], who pro-
posed an interferometric method to determine the angular ex-
tension of distant stellar objects. They found out that intensity
correlation between photocurrents, recorded in two separated
detectors, displayed a bump when the difference in optical
path lengths between the signals was decreased towards zero.
These observations have shown that the photons in the two dif-
ferent detectors were correlated, although they stemmed from
two different surface elements of distant stars. This way, in-
dividual photons, as well as pairs of such photons, entered the
realm of observational optics. Ever since, this phenomenon is
known as the HBT effect.

The correlated emission of particle pairs is a fundamental
property of quantum fields. The effect has been observed
in particle physics and been explained based on the bosonic
nature of pions by Goldhaber, Goldhaber, Lee, and Pais in
1960 [27]. Recently, such positive correlations have been
observed also in ultracold quantum gases by Schellekens et
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al [7], as detailed in Section II, which indicates that quantum
fluctuations and correlations are important basic properties of
matter fields, just as well as that of the electromagnetic (pho-
ton) field [28].

After the discovery of the HBT effect and the discovery of
lasers, there was a theoretical debate in the literature, arguing
whether photons from a laser light would show the HBT effect
or not. The correct theory was published first by Glauber who
had shown that there is no HBT effect in the coherent fields
of lasers. In fact, the lack of second- and higher-order HBT
type of intensity correlations defines quantum optical coher-
ence. Thus, Glauber related the bunching properties of the
HBT observations to the random, chaotic nature of the pho-
ton field in thermal radiation. He also pointed out that more
information is necessary to characterize the quantum state of
the photon field: “Whereas a stationary Gaussian stochastic
process is described completely by its frequency-dependent
power spectrum, a great deal more information in the form
of amplitude and phase relations between differing quantum
states may be required to describe a steady light beam. Beams
of identical spectral distributions may exhibit altogether dif-
ferent photon correlations or, alternatively, none at all. There
is ultimately no substitute for the quantum theory in describ-
ing quanta”. Based on Glauber’s theory, the puzzling HBT
effects observed in thermal radiation and the lack of HBT ef-
fect in lasers were understood in the same framework, and the
characterization of quantized electromagnetic radiation has
been reduced to counting photons. The new field of quantum
optics was born. These days, we witness the birth of quantum
atomics [28] as coherent and incoherent beams of fermionic
[29] or bosonic [7] atoms enter the realm of experimental in-
vestigations.

In this section, we highlight some of the basic properties of
coherent states, introduced by Glauber in Ref. [30], as eigen-
states of the annihilation operator. For simplicity, let us con-
sider a given mode of a free boson field, corresponding to a
harmonic oscillator. After quantization and normal ordering,
the Hamiltonian operator of the one-mode harmonic oscillator
is written as

H = ωa†a, (1)

where a† and a are the creation and annihilation operators,
respectively. Their non-vanishing commutator is

[a,a†] = 1. (2)

With the help of these creation and annihilation operators, a
Fock space can be built up by considering that

a|0〉 = 0, (3)

|n〉 =
1√
n!

a†n|0〉. (4)

The creation and annihilation operators step up or down on
the infinite ladder of Fock spaces as

a†|n〉 =
√

n+1 |n+1〉, (5)
a|n〉 =

√
n |n−1〉. (6)

Here n stands for a non-negative integer number. The number
operator is the Hermitian N = a†a, with N|n〉 = n|n〉. These
Fock states are orthonormal,

〈n|m〉 = δn,m, (7)

where δn,m stands for a Kronecker-delta. The resolution of the
unity operator in terms of Fock states is given by

1 =
∞

∑
n=0

|n〉〈n|. (8)

So, these Fock states form a complete, orthonormal basis. The
density matrix of the system can be expanded as

ρ =
∞

∑
n=0

pn|n〉〈n|, (9)

where pn stands for the probability that the quantum mechan-
ical system is in state |n〉. Its normalization is

Trρ =
∞

∑
n=0

pn = 1. (10)

The above formulas can be generalized with the help of co-
herent states, but with certain subtleties. Let us start first with
definitions.

Coherent states are the eigenstates of the annihilation oper-
ator,

a|α〉 = α|α〉, (11)

where α is a complex (c) number. Their algebraic properties
are very interesting. For example, one can express them in
terms of Fock states as

|α〉 = exp(−|α|2/2)
∞

∑
n=0

αn
√

n!
|n〉. (12)

It is interesting to observe that, removing (detecting) one
quantum from a coherent state does not change the probability
that yet another quantum could be removed from such a state.
This is in sharp contrast to the properties of Fock states where,
once a particle is detected, the resulting Fock state is orthogo-
nal to the Fock state before the detection. i.e., 〈n|n−1〉 = 0.

The expansion of |α〉 in terms of Fock states can be used
to prove that these states are properly normalized, 〈α|α〉 = 1.
Although different coherent states are not orthogonal, i.e.,

|〈α|β〉|2 = exp(−|α−β|2), (13)

they can, nevertheless, also be used to resolve unity as

1 =
∫ d2α

π
|α〉〈α|, (14)

where d2α = dRe[α]dIm[α]. It then follows that any state
may be expanded linearly in terms of coherent states. There-
fore, the most general light beam (of a given mode k and of a
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given polarization) can be described by a density operator of
the following form:

ρ̂ =
∫

d2αd2α′P2(α,α′)|α〉〈α′|. (15)

In many practical important cases, such as the thermal or
the coherent radiation, the density matrix turned out to be in a
diagonal representation when expanded in terms of the over-
complete set of coherent states:

ρ̂ =
∫

d2αP (α)|α〉〈α|. (16)

A similar representation was proposed by Sudarshan [31]
shortly after Glauber’s work, which emphasized the advan-
tage of this representation when evaluating expectation values
for normal ordered products of creation and annihilation op-
erators,

Trρ̂Ô = Tr
{

ρ̂(a†)λaµ
}

=
∫

d2αP (α)(α∗)λαµ. (17)

Consequently, the evaluation of expectation values of nor-
mal ordered operators in a quantum mechanical system, de-
fined with the help of its density matrix, is reduced to the
evaluation of expectation values of the quasi-probability dis-
tribution P (α), defined over the complex plane of α. The
Hermiticity of the density matrix implies that P (α) is a real
valued function, although it is not necessarily positive, due
to the quantum nature of the field. This representation of the
density matrix is frequently called as the Glauber-Sudarshan
representation.

Glauber investigated a model of photoionization of a pair of
atoms, labelled 1 and 2, lying at r1 and r2 within a light beam
of sufficiently narrow spectral bandwidth and given polariza-
tion. Summing up the transition probabilities over final elec-
tron energies, there is no quantum mechanical restriction in
defining the time at which each electron emission takes place.
The probability density for ionization of atom 1 at time t1 and
for atom 2 at time t2 can be written as

P2(t1, t2) = P1(t1)P1(t2)C2(t1, t2), (18)

where P1(t) is the transition probability of each atom placed
individually in the beam, and C2(t1, t2) is the two-particle cor-
relation function.

Glauber pointed out, that for a coherent state, correspond-
ing to P (α) = δ(α−β), C2(t1, t2) = 1, i.e., there is no HBT
type of correlation in a coherent beam, which would be a rea-
sonable model for the laser field. The density matrix of a ther-
mal radiation with mean number of photons 〈n〉 can be written
as

ρ̂ =
∞

∑
n=0

pn|n〉〈n|, (19)

pn =
〈n〉n

(1+ 〈n〉)1+n . (20)

This corresponds to a Gaussian distribution in terms of the
P (α) representation,

P (α) =
1

π〈n〉 exp(−|α|2/〈n〉). (21)

It is easy to show that for such a filtered, single mode, thermal
radiation, the correlation function is

C2 = 1+ |exp(iω[t2 − t1 − (x2 − x1)/c]) |2. (22)

This corresponds to the classical limit, when modes are treated
as forming a continuum with a stochastic noise. Note that for
such a thermal light, the maximum value of the correlator is
C2 = 2, in a sharp contrast to the C2(t1, t2) ≡ 1 value, that is
characteristic of a coherent light.

VI. SQUEEZED CORRELATIONS IN PARTICLE
FEMTOSCOPY

Squeezed states are generalized coherent states with very
interesting quantum statistical properties. They can be ob-
tained by means of the displacement operator method, as dis-
cussed below, by using a Bogoliubov-Valatin transformation,
or even as generalized minimum uncertainty states [23]. Let
us consider first the displacement operator method, and dis-
cuss their properties in terms of Bogoliubov transformation in
the next subsection.

A. Squeezed coherent states

The displacement operator has the following properties

D−1(β)aD(β) = a+β, (23)

D−1(β)a†D(β) = a† +β∗. (24)

It is easy to show that acting with the first equality above on
a vacuum state, the displacement operator D(α) creates a co-
herent state, i.e.,

D(α)|0〉 = |α〉 (25)

On imposing the requirement that D(α) should be a unitary
operator, this leads to

D(α) = exp(αa† −α∗a)

= exp(−|α|2/2)exp(αa†)exp(−α∗a), (26)

where the second part expresses the displacement operator in
a normal order, i.e., where all the creation operators stand to
the left and all the annihilation operators stand to the right.
Further discussion of the properties of these displacement op-
erators, can be found in Refs. [32, 33].

The displacement operator is generalized to the squeeze op-
erator S(z) as

S(z) = exp{1
2
(za†a† − z∗aa)}, (27)

z = r exp(iφ) (28)

Squeezed states are defined in terms of displacement and
squeeze operators as follows:

|α,z〉 = D(α)S(z)|0〉, (29)

where the ordering D(α)S(z) differs from S(z)D(α) by a
change of parameters, being however equivalent.
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B. Surprises on π+-π− Bose-Einstein correlations

In 1991, Andreev, Plümer and Weiner[34] pointed out the
surprising existence of a new boson-antiboson quantum sta-
tistical correlation. The surprise was related to the fact that
this type of correlation involved particle-antiparticle pairs,
differently than the better known Bose-Einstein Correlations
(BEC), which occurred between two identical particles. We
can understand the origin of this effect in a simple way in
terms of creation and annihilation operators, taking the π0

case for illustration. For instance, the single-inclusive distrib-
ution is written as

N1(ki) = ωki

d3N
dki

= ωki〈â†
ki

âki〉 , (30)

and the two-particle distribution, after the decomposition that
follows from Wick’s theorem, is written as

N2(k1,k2) = ωk1ωk2〈â†
k1

â†
k2

âk2 âk1〉
= ωk1 ωk1{〈â†

k1
âk1〉〈â†

k2
âk2〉+ 〈â†

k1
âk2〉〈â†

k2
âk1〉

+ 〈â†
k1

â†
k2
〉〈âk1 âk2〉} . (31)

In Eq. (31), the first term corresponds to the product of the
two single-inclusive distributions, the second one gives rise
to the Bose-Einstein identical particle correlation, reflecting
their last position just before being emitted. The third term,
absent in the π±π± case, is the responsible for the particle-
antiparticle correlation (either π±π∓ or π0π0, since π0 is its
own antiparticle). They are related to the expectation value
of the annihilation (creation) operator, i.e., to 〈â(†)

k1
â(†)

k2
〉 �= 0,

analogous to what is observed in two-particle squeezing in op-
tics, where the averages are estimated using a density matrix
that contains squeezed states, as briefly discussed in the previ-
ous section. Under the conditions as those usually considered
in femtoscopic analyses, the last term in Eq. (31) vanishes.
However, it is non zero if the Hamiltonian of the system is of
the type H = H0 +H1, where H0 is the free part in the vacuum,
corresponding to final particles, and H1 represents the interac-
tion of quasi-particles, resulting in an effective shift of their
masses. Alternatively, as in the pioneer work in Ref. [34], this
could be similar to having a chaotic superposition of coherent
states and a density matrix containing squeezed states.

Although that initial discussion by Andreev, Plümer and
Weiner was not entirely correct, they clearly pointed out that
the particle-antiparticle correlations would manifest them-
selves as an enhancement above unity of the correlation func-
tion, i.e., C(π+π−) > 1 and C(π0π0) > 1, reflecting particle-
antiparticle quantum statistical effects.

In 1994, Sinyukov[35], also discussed a similar effect for
π+π− and π0π0 pairs, claiming that it would be due to inho-
mogeneities in the system, as opposed to homogeneity regions
in HBT, which comes from a hydrodynamical description of
the system evolution. He used Wick’s theorem for expand-
ing the two-particle inclusive distribution in terms of bilinear
forms.

In 1996, Andreev and Weiner[36] elaborated further their
original idea. They considered that in high energy collisions,

a blob of strongly interacting pions, which was seen as a liq-
uid, was formed and later suffered a sudden breakup, so that
the pionic system having ground state and pioninc excitations
was rapidly converted into free pions. In the moment of tran-
sition, they postulated that the in-medium creation and anni-
hilation operators (b̂†, b̂) could be related to the corresponding
free ones (â†, â), by means of a squeezing transformation

â = b̂cosh(r)+ b̂† sinh(r)

â† = b̂sinh(r)+ b̂† cosh(r) , (32)

where r = 1
2 ln(E f r/Ein) is a squeezing parameter [37], E f r

and Ein are the asymptotic (free) energy and the in-medium
energy, respectively.

In the same year, Asakawa and Csörgő[38] proposed a simi-
lar structure to this previous approach, but relating in-medium
operators to free ones by means of a two-mode Bogoliubov
transformation. They also proposed to observe hadron mass
modification in hot medium by means of Back-to-Back Corre-
lations, relating particle-antiparticle pair correlations to two-
mode squeezed states.

There were a few more tentative works by the two groups
but the correct approach was finally written in 1999, by
Asakawa, Csörgő, and Gyulassy[39]. The squeezing parame-
ter they proposed was somewhat similar to the one described
by Eq. (32).

C. Back-to-back boson-antiboson correlations

The formalism developed by Asakawa, Csörgő and Gyu-
lassy for squeezed bosons in an infinite medium can be sum-
marized as follows. The in-medium Hamiltonian, H, is writ-
ten as H = H0 − 1

2
∫

dx dyφ(x)δM2(x− y)φ(y), where H0 =
1
2

∫
dx

(
φ̇2 + |∇φ|2 +m2φ2

)
, is the free Hamiltonian, in the

matter rest frame. The scalar field, φ(x), represents quasi-
particles whose mass is modified by the medium, and prop-
agate in a momentum-dependent way. The in-medium mass,
m∗, is related to the vacuum mass, m, via

m2
∗(|k|) = m2 −δM2(|k|).

The mass-shift is assumed to be limited to long wavelength
collective modes: δM2(|k|) 
 m2 if |k| > Λs. As a con-
sequence, the dispersion relation is modified to Ω2

k = ω2
k −

δM2(|k|), where Ωk is the frequency of the in-medium mode
with momentum k.

The in-medium, thermalized annihilation (creation) opera-
tor is denoted by b̂k (b̂†

k), whereas the corresponding asymp-
totic operator for the observed quantum with four-momentum
kµ = (ωk,k), ω2

k = m2 + k2 (ωk > 0) is denoted by âk (â†
k).

These operators are related by the Bogoliubov transforma-
tion, i.e., âk1 = ck1 b̂k1 + s∗−k1

b̂†
−k1

, which is equivalent to
a squeezing operation. For this reason, rk is called mode-
dependent squeezing parameter. The relative and the aver-
age pair momentum coordinates are written as q0

1,2 = ω1−ω2,

q1,2 = k1−k2, Ei, j = 1
2 (ωi +ω j), and K1,2 = 1

2 (k1 +k2). For
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shortening the notation, the squeezed functions are denoted by
ci, j = cosh[r(i, j,x)] and si, j = sinh[r(i, j,x)], where

r(i, j,x) =
1
2

log
[
(Kµ

i, juµ(x))/(K∗ν
i, j (x)uν(x))

]

=
1
2

log

[
ωki(x)+ωk j(x)
Ωki(x)+Ωk j(x)

]
(33)

is the squeezing parameter. Also, ni, j is the den-
sity distribution, which is taken as the Boltz-
mann limit of the Bose-Einstein distribution, i.e.,
n(∗)

i, j (x) ≈ exp{−[K(∗)µ

i, j uµ(x)−µ(x)]/T (x)}, where the
symbol (∗) implies the use of in-medium mass, whereas it is
absent if there is no mass-shift.

In the cases of π0π0 or φφ correlations, where the boson
is its own anti-particle, the full correlation function consists
of a HBT part (related to the chaotic amplitude, Gc(1,2)) to-
gether with a BBC portion (related to the squeezed amplitude,
Gs(1,2)), as shown below

C2(k1,k2) =
N2(k1,k2)

N1(k1)N1(k2)

= 1+
|Gc(1,2)|2

Gc(1,1)Gc(2,2)
+

|Gs(1,2)|2
Gc(1,1)Gc(2,2)

. (34)

The invariant single-particle and two-particle momentum dis-
tributions is given by

Gc(i, i) = Gc(ki,ki) = N1(ki) = ωki〈â†
ki

âki〉,
Gc(1,2) =

√
ωk1 ωk2〈â†

k1
âk2〉,

Gs(1,2) =
√

ωk1 ωk2〈âk1 âk2〉. (35)

For an infinite, homogeneous and thermalized medium, the
part of the full correlation function in Eq. (34) that corre-
sponds to the Back-to-Back Correlation is written as

Cbosons(k,−k) = 1+
|cks∗knk + c−ks∗−k (n−k +1) |2

n1(k)n1(−k)
. (36)

The effects of finite system size on the BBC are considered
afterwards in the text. In Ref.[39], the influence of finite emis-
sion times is discussed, observing that the BBC in this case is
suppressed when compared to the instant emission. Never-
theless, it was also shown that the maximum of the BBC for
each value of |�k|, corresponding to C2(k,−k), still attained
significant magnitude, in spite of considering the finite time
suppression. We will see this more explicitly later.

D. Back-to-back correlations for fermions

Previously, the BBC was shown as a different type of
correlation between boson-antiboson pairs, occurring if their
masses were shifted. In 2001, T. Csörgő, Y. Hama, G. Krein,
P. K. Panda and S. S. Padula demonstrated that a similar corre-
lation existed between fermion-antifermion pairs[40], if their

masses were modified in a thermalized medium. In the femto-
scopic type of correlations, identical bosons have an opposite
behavior as compared to identical fermions, resulting from
the fact that quantum statistics suppresses the probability of
observing pairs of identical fermions with nearby momenta,
while it enhances such a probability in the case of bosons.
However, regarding the Back-to-Back Correlations resulting
from squeezed states, a very different situation occurs: fermi-
onic BBC are positive and similar in strength to bosonic BBC.
Besides, contrary to the the femtoscopic correlations, the BBC
are unlimited.

The expressions in the fermion BBC case are similar to
Eq.(30) and (31),

N1(ki) = ωki〈â†
ki

âki〉 ; Ñ1(ki) = ωki〈 ˆ̃a†
ki

ˆ̃aki〉 , (37)

N2(k1,k2) = ωk1ωk2〈â†
k1

ˆ̃a†
k2

ˆ̃ak2 âk1〉 . (38)

In the above expressions, 〈Ô〉 denotes the expectation value
of the operator Ô in the thermalized medium and â†, â, ˆ̃a†, ˆ̃a
are, respectively, creation and annihilation operators of the
free baryons and antibaryons of mass M and energy ωk =√

M2 + |�k2|, which are defined through the expansion of
the baryon field operator as Ψ(�x) = (1/V )∑λ,λ′,�k(uλ,�kâλ,�k +

vλ′,−�kâ†
λ′,−�k

)ei�k.�x; V is the volume of the system, uλ,�k and
vλ′,−�k are the Dirac spinors, where the spin projections are
λ,λ′ = 1/2,−1/2. The in-medium creation and annihilation
operators are denoted by b̂†, b̂, ˆ̃b†, ˆ̃b. While the â-quanta are
observed as asymptotic states, the b̂-quanta are the ones ther-
malized in the medium. They are related by a fermionic
Bogoliubov-Valatin transformation,

(
âλ,k
ˆ̃a†
λ′,−k

)
=

(
ck

fk
| fk| sk A

− f ∗k
| fk| s∗k A† c∗k

)(
b̂λ,k

ˆ̃b†
λ′,−k

)
, (39)

here c1 = cosr1, s1 = sinr1, and

tan(2r1) = − |k1|∆M(k1)
ω(k1)2 −M∆M(k1)

(40)

is the fermionic squeezing parameter. Note that in the fermi-
onic case, the squeezing parameter is the coefficient of the sine
and cosine functions, differently than in the bosonic cases, in
which their hyperbolic counterparts appeared. In Eq. (39) A
is a 2 × 2 matrix with elements Aλ1λ2 = χ†

λ1
σ · k̂1χ̃λ2

, where
k̂1 = k1/|k1|, χ is a Pauli spinor and χ̃ =−iσ2χ. Since r is real
in the present case, we drop the complex-conjugate notation
in the remaining of this section.

In order to evaluate the thermal averages above, the system
is modelled as a globally thermalized gas o quasi-particles
(quasi-baryons). In this description, the medium effects are
taken into account through a self-energy function, which, for a
spin- 1

2 particle (we will focus on proton and anti-proton pairs),
under the influence of mean fields in a many-body system,
can be written as Σ = Σs + γ0Σ0 + γiΣi. In this expression, Σ0

is a weakly momentum dependent function which, for locally
thermalized systems being considered, has the role of shifting
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FIG. 1: The plot shows back-to-back correlations of p̄p (fBBC) and
of φ-meson pairs (bBBC), as a function of the in-medium modified (p
or φ) mass, m∗, for |�k| = 800 MeV/c. The dependence of the fBBC
on the net baryon density is shown for three values of ρB. In both
cases T = 140 MeV and ∆t = 2 fm/c. The plots were extracted from
Ref.[40].

the chemical potential, i.e., µ∗ = µ−Σ0. The vector part is
very small and is neglected. The scalar part can be written
as Σs = ∆M(k). Within these approximations the system can
be described with a momentum-dependent in-medium mass,
m∗(k) = m−∆M(|k|).

We are mainly interested here in the study of the squeezed
correlation function, which corresponds to considering only
the joint contribution of the first and third terms of the r.h.s.
of Eq. (34). In the fermionic case and for an infinite, homo-
geneous thermalized medium, the BBC part of the correlation
function is written as

C(+−)
f ermions(k1,−k1) = 1+ [1+(2∆t ωk)2]−1 ×

{ (1−nk − ñk)2(cksk)2[
c2

knk + s2
k(1− ñk)

][
c2

kñk + s2
k(1−nk)

]}, (41)

where nk = 1
exp[(Ωk−µ∗)/T ]+1 ; ñk = 1

exp[(Ωk+µ∗)/T ]+1 , in terms
of which the net baryonic density is written as ρB =
(g/V )∑k

(
nk − ñk

)
. In Eq. (41) we have included a more

gradual freeze-out by means of a finite emission interval, sim-
ilarly to what was done in Ref[39], which has the effect of
suppressing the BBC signal.

For a numerical study of the fermionic back-to-back corre-
lations, fBBC, for simplicity we considered momentum inde-
pendent in-medium masses, i.e., m∗ = M −∆M. In Fig. (1)
we show fBBC for p̄p pairs as a function of the in-medium
mass m∗, for three values of the net baryonic density ρB: for
the normal nuclear matter, one tenth of this value, and for the
baryon free region, i.e., ρB = 0. We show in the same plot
results for the bosonic case, bBBC, corresponding to φ me-
son pair, whose mass is close to the proton mass and was the
example used in Ref.[39].

We see from Fig.(1) that fBBC and bBBC are, indeed, both

positive correlations, with similar shape, and of the same or-
der of magnitude. We also observe that fBBC is strongly en-
hanced for decreasing net baryonic density, being maximal for
ρB ≈ 0, i.e., for approximately equal baryon and anti-baryon
densities.

E. Flow effects on back-to-back correlations

In the previous discussions, an infinite and homogeneous
medium was considered. However, we know that the sys-
tems produced in high energy collisions, including the ones
at RHIC, have finite sizes. Thus, it would be important to test
if the BBC signal would survive when more realistic spatial
and dynamical hypotheses were considered. For pursuing this
purpose, we studied the effects on the squeezing parameter
and on the back-to-back correlation of a finite size medium
moving with collective velocity[41]. For this, a hydrodynami-
cal ensemble was adopted, in which the amplitudes Gc and Gs
in Eq. (34) and (35) were extended to the special form derived
by Makhlin and Sinyukov [35],

Gc(1,2) =
1

(2π)3

∫
d4σµ(x)K

µ
1,2eiq1,2·x{|c1,2|2n1,2

+ |s−1,−2|2(n−1,−2 +1)}, (42)

Gs(1,2) =
1

(2π)3

∫
d4σµ(x)K

µ
1,2e2iK1,2·x{s∗−1,2c2,−1n−1,2

+ c1,−2s∗−2,1(n1,−2 +1)}. (43)

In Eq.(42) and (43) d4σµ(x) = d3Σµ(x;τ f )F(τ f )dτ f is the
product of the normal-oriented volume element depending
parametrically on τ f (the freeze-out hyper-surface parame-
ter) and the invariant distribution of that parameter F(τ f ).
We consider two possibilities: i) an instant freeze-out, cor-
responding to F(τ) = δ(τ − τ0); ii) an extended freeze-
out, with a finite emission interval, with F(τ) = [θ(τ −
τ0)/∆t]e−(τ−τ0)/∆t . These cases lead, after performing the in-
tegration in dτ in Eq. (42) and (43) with weight (Ei, j e−i2Ei, jτ),
respectively to: i) (ωi + ω j) e−i(ωi+ω j)τ0 ; ii) (ωi + ω j)[1 +
[(ωi +ω j)2∆t2]−1/2.

According to the hydrodynamical solution, we can express
the chemical potential as µ(x)

T (x) = µ0
T − r2

2R2 , being R the radius
of the system, T = T (x) the temperature of the system in each
space-time point x, and µ0 a constant. As an initial study, we
assumed that the system expands with four-dimensional flow
velocity uµ = γ(1,v), where v =<u> r

R . In the non-relativistic
limit, we can write γ = (1+v)−1/2 ≈ 1+ 1

2 v2, thus taking into
account all terms up to O(mv2). We estimate the geometri-
cal and dynamical effects for moderate flow on the BBC in
the bosonic case, considering the in-medium changes of φ-
mesons for illustration.

For small mass shifts, i.e. (m−m∗)
m 
 1, the flow ef-

fects on the squeezing parameter are of fourth order, i.e.,
O

(
Kin. energy

m

)
( δm2

m2 ). As a consequence, the flow effects on
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FIG. 2: The effect of a finite emission interval on the back-to-back
correlation function, as compared to instant emission, is illustrated
by the two plots. The dashed curves have been reduced by a factor
of 400, and the solid curves correspond to the suppression by a finite
emission duration, of about ∆t � 2 fm/c. The plot in (a) shows this
effect in the absence of flow. The plot in (b) shows the corresponding
result when flow is included, with 〈u〉 = 0.5; the other parameters
adopted to produce the curves are R = 7 fm/c, T = 140 MeV. The
plots were extracted from Ref.[41].

ri, j can be neglected, and the factors ci, j and si, j become flow
independent, although they could still depend on the coordi-
nate r through the shifted mass, m∗ (e.g., through T (x), as in
hydrodynamics), which is not considered here.

For the sake of simplicity, and trying to keep the results as
analytic as possible (for details, see Ref. [41]), we made the
hypothesis that the mass-shift was independent on the posi-
tion within the fireball. We further assumed that this last one
had a sharp boundary, i.e., δm = 0 on the surface, and also the
density vanishes outside the system volume. The spatial inte-
gration in Eq. (42) and (43) extends over the region where the
mass-shift is non-vanishing, which is not infinitely large. For
instance, in relativistic heavy ion collisions is a finite region
V ≈ R3 ≈ (5− 10)3 fm3. We should keep in mind that the
vacuum term in the integrand vanishes outside the mass-shift
region, since it is proportional to si, j, which is identically zero
in that region. On the other hand, the terms proportional to
n(∗)

i, j (x) are finite. Being so, we can extend the integration in
Eq. (42) and (43) to infinity and, without much loss of gener-
ality, we can choose for V a Gaussian profile, exp[−r2/(2R2)].
This study was performed considering two situations: in one
of them, the mass-shift was supposed to occur in the entire
system region, which was considered as 3-D Gaussian with
a circular cross-sectional area of radius R = 7 MeV/c at its
width. The second case considered this volume split in two
regions, the mass-shift occurring only in the internal one, with
R = 5 MeV/c. Although we adopted several simplifying hy-
potheses for reducing the problem complexity and treat it an-
alytically, the resulting expressions are still intricate, so that a
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FIG. 3: (Color online) The plots in this panel are similar to the ones
in Fig. 2. The main difference is that here we assumed that the mass-
shift occurred only in a smaller part of the system volume. The back-
to-back correlation is shown as a function of the shifted mass m∗ on
top, and as function of both m∗ and the momentum of each particle
(k1 = −k2 = k), on bottom. The plots in parts (a) and (b) illustrate
better the behavior of the BBC signal seen in parts (c) and (d), for
|k| = 500 MeV/c and for |k| = 1000 MeV/c, respectively. In both
cases, the dashed curve corresponds to 〈u〉= 0 and the solid curve, to
〈u〉= 0.5. In (c), the 3-D plot without flow (〈u〉= 0) was considered,
whereas in (d) a radial flow with v = 〈u〉r/R = 0.5 was included. The
plots were extracted from Ref.[41].

graphical presentation of the results is more beneficial to the
reader. A complete discussion with full analytical and numer-
ical results can be found in Ref.[41].

Therefore, Fig. (2) and Fig. (3) summarize the main results
of that study. The panel in Fig. (2) shows the case where the
mass shift extends over the entire system region. It clearly
illustrates the dramatic suppression effect of a finite emission
duration, since the curves corresponding to instant emission
had to be multiplied by a factor 1/400 in order to fit in the
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same plots. We can also see that the effect of flow, within the
approximations used, also reduces the signal but in a moderate
way.

For illustrating other interesting features found in this pre-
liminary analysis and shown in Fig.(3), we chose the case with
two-regions, as briefly delineated above. It also allows for
some comparison with the result on Fig.(2). In parts (a) and
(b) of Fig.(3), we can see that, depending on the momenta
of the back-to-back pairs suffering the squeezing correlation,
the signal is weaker when flow is present (for |k| � 1000
MeV/c), almost unaffected by flow (for |k| � 750 MeV/c),
or even slightly stronger in the presence of moderate flow (for
|k| < 500 MeV/c), for the set of parameters chosen in those
calculations. If flow is absent, however, a monotonically in-
crease can be observed with increasing values of the pair mo-
menta, |k|. A more complete view of the behavior of the max-
imum of the φφ back-to-back correlation can be seen in the
parts (c) and (d) of Fig.(3). It is evident that back-to-back cor-
relation function has a steeper growth with momentum in the
no flow case, for the same values of the shifted mass, m∗. The
moderate flow picture considered in this study still causes the
growth of the BBC with |k|, but in a considerably smaller rate.
With this broader panorama in mind, it is easier to understand
the plots (a) and (b) of Figs. (2) and (3). Finally, we see that
the strength of the signal is directly proportional to the size
where the mass-shift occurs. Although the values of |k| were
not the same in those two figures, but already knowing that
the signal grows with increasing |k|, we see that the strength
in Fig. (2), where the system size is R = 7 fm, is bigger than
the corresponding ones in Fig. (3), in which the squeezing
region has Rs = 5 fm, even for |k| = 1000 GeV/c.

Naturally, the above study was mainly a first step towards
better understanding the nature and conditions of survival of
the squeezing correlation, since it involved several approxi-
mations in its derivation. In particular, it was supposed that
the squeezing occurred homogeneously throughout the sys-
tem region, and independently on the particle momentum.
Next steps will require a modelling instead of this assumption,
which will provide the volume dependence of the squeezing
in a more realistic way. Besides, we have presented merely
the behavior of the maximum of the back-to-back correlation
function. Is is under investigation how the signal behaves for
finite systems and small values of the average pair momenta,
which hopefully will furnish an optimized form of the BBC
signal to be looked for experimentally.

F. Chiral dynamics and back-to-back correlations

This sub-section is based on ref. [42]. The environment
generated in the mid-rapidity region of a high-energy nu-
clear collision might endow the pionic degrees of freedom
with a time-dependent effective mass. This implies two-mode
squeezing, but with a time-dependent squeezing parameter. Its
specific evolution provides a mechanism for the production of
back-to-back charge-conjugate pairs of soft pions which may
present an observable signal of the non-equilibrium dynamics
of the chiral order parameter. The suddenness of the transi-

tion to the asymptotic quanta is a condition that is released in
this approach. The important point of the numerical investi-
gations along such a model assumptions was that suddenness
is not a mandatory requirement. The BBC signal seems to
be strong enough to survive even the time-dependence of the
effective mass caused by chiral dynamics, resulting in an adia-
batic mass variation, modelled by mass oscillations within an
exponentially decreasing envelope.

G. Experimental constraints on chiral dynamics as possible
explanation for the RHIC HBT puzzle

Recently, Cramer, Miller, and collaborators have been in-
vestigating a relativistic quantum mechanical treatment of
opacity and refractive effects, which seems able to describe
STAR two-pion (HBT) correlation data and pion spectra in
Au+Au collisions at

√
sNN = 200 GeV colliding energies at

RHIC. This investigation suggested that an attractive, real part
of the optical potential is the critical element needed to re-
produce the transverse mass dependence of the sidewards and
the outwards HBT radii at RHIC. This optical potential rep-
resents the strength of the interactions between the pions and
the medium. Chiral dynamics in their model leads to a tem-
perature and density dependent in-medium modification of the
pion (pole as well as screening) mass. The results were found
to be consistent with a system in which chiral symmetry was
partially restored [43].

Cramer, Miller, and collaborators also suggested to experi-
mentally check various new phenomena to see if their expla-
nation was correct. For instance, they argued that a pionic
version of the Ramsauer resonances lead to peaks in the HBT
radius parameters Ro and Rs in the low momentum region, 15
MeV < pT < 65 MeV, and also predicted a peaking behavior
in the same region in the transverse momentum spectrum of
pions [43–45].

Apparently, there are several other tests that could be per-
formed to verify if this connection of pion HBT radii to chi-
ral dynamics is a correct and unique explanation. For ex-
ample, if in-medium mass modification of pions reflecting
their interactions with the medium is the reason for the ef-
fect, then similar interactions between kaons and the medium,
although of different strength, should also be present. Hence,
kaon and pion HBT radii would not be expected to show a
similar transverse mass dependence. On the other hand, if
the HBT radii are equal due to asymptotic properties of ex-
act solutions of relativistic hydrodynamics, as proposed by
the Buda-Lund hydro model [11], kaons, pions, and all other
heavier particles should show the same effective, and approx-
imately spherically symmetric, source size at large transverse
masses, (Rout � Rside � Rlong ∝ 1/

√
mt ). Therefore, a calcu-

lation of the transverse momentum dependence of the pion
HBT radii within this model, above the current upper limit of
pT ∼ 600 MeV, compared to the PHENIX results on radii up
to 1.2 GeV in transverse momentum, could help to clarify this
point, when combined with a theoretical and experimental ef-
fort to do a similar study for kaons.

Nevertheless, if a chiral phase transition is the key element
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in the success of the Cramer-Miller approach, there should be
a distinct probe of its manifestation. In this regard, and as
discussed in this review on hadronic squeezed states, back-to-
back correlations of particle-antiparticle pairs were shown to
exist in all scenarios involving in-medium mass modification
of hadrons, regardless of the details of the calculation (i.e., for
bosons or fermions, expanding system, finite duration of parti-
cle emission, in-medium mass modification in only a fraction
of the total volume, time dependent in-medium mass modifi-
cation due to chiral dynamics). Therefore, the experimental
determination of the in-medium mass modification by means
of back-to-back particle-antiparticle correlations could supply
this unambiguous answer.

VII. SUMMARY: A NEW CORRELATION SIGNATURE OF
A FREEZE-OUT FROM A SUPERCOOLED

QUARK-GLUON PLASMA

Currently available correlation data seem to exclude the
possibility of a strong first order phase transition in Au+Au
collisions at RHIC and in Pb+Pb collisions at top CERN SPS
energies. The proposed signature of a possible second order
QCD phase transition has not yet been investigated in detail,
the excitation function of the Lévy index of stability needs to
be determined experimentally. From lattice QCD calculations
there is an indication, in case such a critical point is reached
at a certain value of the center of mass energy, that above
this point a cross-over type of transition should be expected.
Presently, a cross-over type of equilibrium hadronization, or
a sudden non-equilibrium hadronization mechanism, are both

possible scenarios for hadron production in ultra-relativistic
heavy ion collisions at RHIC. We have discussed the latter
possibility here and focused on quantum optical characteris-
tics of such a scenario, arguing that it leads to vanishing in-
medium mass modifications of hadrons. As a consequence,
the back-to-back correlated particle-antiparticle pairs should
disappear at the onset of such a sudden deconfinement transi-
tion, characteristic of quark-gluon plasma hadronization and
freeze-out from a deeply supercooled, negative pressure state.
Nevertheless, if a chiral phase transition occurs in

√
sNN =

200 GeV Au +Au collisions at RHIC, these back-to-back cor-
related particle-antiparticle pairs should be present. In this
regard, they could also be employed as a model independent
experimental tool to test the validity of the Cramer-Miller ap-
proach.
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