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Magnetically Driven Maser Effect in the Resonant Dynamics of V15 Molecular Nanomagnets
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Resonant dynamics of magnetic molecules with spin 1/2 ground state, such as V15, is theoretically studied.
In our model calculation, crystals of this molecular nanomagnet are probed by time-dependent magnetic fields,
which continuously invert populations of spin states. If the sample is placed in a resonant cavity, relaxation of
excited states, via spin-photon interaction, allows for stimulated emission of radiation in the microwave range
at resonance.
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I. INTRODUCTION

Recent interest on molecular nanomagnets has grown sig-
nificantly due to the spectacular magnetic effects they exhibit,
namely the pronounced magnetic hysteresis and the quan-
tization of the magnetic moment[1]. Potential applications
of such magnets for current and future technologies include
information storage, construction of nanomagnetic Maser-
like devices, and quantum computation. The name Single-
Molecule Magnets (SMM) has been coined to mean that in-
dividual molecules act as magnets. They can be prepared in
long-lived excited quantum states by simply applying a mag-
netic field[2], and exhibit a stepwise magnetic hysteresis in a
time-dependent magnetic field. Quantum relaxation of spin
states at low temperatures is very sluggish, and has been in-
tensively studied within the framework of the Landau-Zener-
Stueckelberg(LZS) effect[3–5]. Large spin high-anisotropic
SMM are on the verge between classical and quantum ob-
jects. For large spin, the dipolar interaction may remain as
the relevant coupling between molecules, its relative effect
being proportional to the square of the spin value[6]. On the
other hand, low spin and weakly anisotropic SMM are strong
candidates to perform quantum computation, since they dis-
play quantum coherence and show a slow relaxation of the
magnetization, in spite of the absence of any anisotropy en-
ergy barrier. A protoype of such a system is the molecu-
lar complex V15[7], whose ground state has S = 1/2, with a
weak anisotropy and no dipolar interactions between mole-
cules. The low value of the spin is due to antiferromagnetic
coupling between V 4+(S = 1/2) ions within the molecular
complex. The molecule structure is very peculiar, with two al-
most planar hexagons sandwiching a central triangle. Spins of
the hexagons form closed antiferromagnetic rings, since frus-
tration effects decouple the triangle from the hexagons. As a
net result, one describes its magnetic properties using a simple
antiferromagnetic (AFM) Heisenberg model on a triangle:

H = J0 (S1 ·S2 +S2 ·S3 +S3 ·S1) , (1)

where S1, S2 and S3 are the spin operators (S = 1/2) for the
three sites, respectively, and J0 > 0 is the AFM coupling.
The ground state of this system consists of two degenerate
Kramers doublets (S = 1/2), with a S = 3/2 excited state sep-

arated from the ground by an energy of the order of 3.8K.
The ground state has been probed by recent resonant photon
absorption experiments, which support the single-molecule
interpretation picture[8]. Inelastic neutron scattering experi-
ments suggest that the ground state degeneracy is partly lifted
by deviations from trigonal symmetry and the presence of the
Dzyaloshinskii-Moriya interaction, but the effect is very small
compared to the energy that separates the spin 1/2 ground
from the excited spin 3/2 state[9]. At any rate, the Kramers
degeneracy can not be lifted, and the ground state is at least
double degenerate. Throughout this paper, we will consider
only two states (m = −1/2 and m = +1/2) as relevant to
the problem, and we will ignore the splitting between the two
Kramers doublets. Our aim in this paper is to study the effect
of stimulated radiation from molecular nanomagnetic crystals,
considering a fully quantum mechanical model, in which the
electromagnetic radiation enters as a quantized field. In this
context, a striking effect has been predicted[10], where mole-
cular nanomagnetic crystals exhibit a giant magnetic relax-
ation due to Dicke superradiance of electromagnetic waves
[11]. In recent electron spin resonance (EPR) experiments,
it has been observed a pronounceable resonant absorption of
electromagnetic radiation by molecular nanomagnets[12–16].
In turn, they become a powerful source of coherent electro-
magnetic radiation when the wavelength of the emitted pho-
tons exceeds the linear size of crystals. When this condition is
achieved, the molecules can coherently interact with the radi-
ation emmitted, and the phase of the emitted photons may be
considered the same throughout the sample[10]. Inside a res-
onant cavity, molecular magnets exhibit a strong dependence
of the magnetization on the geometry of the cavity and this ef-
fect was observed experimentally, providing strong evidence
for the coherent microwave radiation given off by the crystals.
These observations open the possibility of building nanomag-
netic microwave lasers pumped by magnetic fields[17].

In this paper, we adopt a model, whose essential ingredients
include:

i) coupling of individual spin 1/2 molecules with a time-
varying magnetic field Bz(t) along the quantization axis.
This way, the low and high energy states will be contin-
uously changing with time, creating the effect of spin-
population inversion. Note that this is different from
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most models proposed in the literature, where the mag-
netic field Bz is constant, and a time-dependent field is
applied in the transverse direction;

ii) a quantized electromagnetic field inside a resonant cav-
ity, which allows the relaxation of excited states by
means of coherent photon emission, enhancing the ra-
diation field.

Finally, we will analize the semiclassical limit, in which the
photon-field can be treated as a classical electromagnetic field.

The content of the paper can be described as follows: in the
next Section, we formulate the theoretical basis for analyzing
spin dynamics, discussing the Hamiltonian. In Section III, we
analyze the dynamics of a pure quantum mechanical state ini-
tially prepared in one of the double degenerate ground states
of the system. We compute the correlation amplitude between
the initial and the evolved state. Analytical approximated ex-
pressions are obtained to be compared with numerical results.
In Section IV, we consider the photon field as a classical vari-
able and obtain, in close analytical way, the conditions for a
maser-like effect. Finally, in the last Section a few conclusions
and remarks are added.

II. HAMILTONIAN AND QUANTUM DYNAMICS

We start considering the two lowest-level states (S = 1/2,
with m = +1/2 and m = −1/2) of a molecule and a second
quantized term in photon variables describing the radiation
field in the cavity:

H0 =−gµBSB0(t)
(

1 0
0 −1

)
+~ωa†a

(
1 0
0 1

)
, (2)

where the Pauli matrix

σz =
(

1 0
0 −1

)

yields the splitting of the levels in the presence of a time-
dependent magnetic field B0(t) applied along the quantization
axis. The operator a†(a) is the photon creation (annihilation)
operator. Inside a resonant cavity, only photons with a prese-
lected frequency ω can be emitted or absorbed. The basis of

H0 is given through the kets {|S,n >} and {|−S,n >}, being
n the number of photons in a given state. We will consider
that a general state can be written as follows:

|Ψ >= {AS|S > +A−S|−S >}⊗
∞

∑
n=0

αn|n >

The interaction between the molecular spin and the dipolar
component of the electromagnetic radiation inside the cavity
is considered as a perturbation:

HI =−~Γ
(

0 1
1 0

)
(a† +a) , (3)

where the Pauli matrix

σx =
(

0 1
1 0

)

flips the molecule from one level to the other (with the emis-
sion or absorption of a photon). One can see that our model
consists of a two level system coupled to a quantized har-
monic oscilator. Despite the simplicity of the above men-
tioned model, no exact analytic solution is yet known[18].
Now, we consider the quantum dynamics in the interaction
picture, taking into account that the non-perturbed (diagonal)
hamiltonian H0 is time dependent. In this case, operators
evolve according to the equation:

i~
∂O
∂t

= [O,H0]

and for the interaction Hamiltonian we get

HI(t) = eiW (t)HIe−iW (t) , (4)

being

W (t) =
1
~

∫ t

0
H0(t ′)dt ′ (5)

The temporal evolution of an initial state ket |Ψ0 > will be
given by the unitary evolution operator UI in the interaction
picture. The latter can be written in the form of a Dyson series:

UI(t,0) = 1− i
~

∫ t

0
dt1eiW (t1)HIe−iW (t1) +

+
(−i
~

)2 ∫ t

0
dt1eiW (t1)HIe−iW (t1)

∫ t1

0
dt2eiW (t2)HIe−iW (t2) + ... , (6)

with |Ψ(t) >= UI(t,0)|Ψ0 >. We can express the interaction hamiltonian HI in the form below:

eiW (t)HIe−iW (t) =−~Γ
(

0 H12
H21 0

)
, (7)



Brazilian Journal of Physics, vol. 37, no. 3B, September, 2007 1149

being

H12 = a† exp
[

i
(

ωt− 2gµBS
~

∫ t

0
B0(t ′)dt ′

)]
+

+aexp
[
−i

(
ωt +

2gµBS
~

∫ t

0
B0(t ′)dt ′

)]
(8)

H21 = H†
12 = a† exp

[
i
(

ωt +
2gµBS
~

∫ t

0
B0(t ′)dt ′

)]
+

+aexp
[
−i

(
ωt− 2gµBS

~

∫ t

0
B0(t ′)dt ′

)]
(9)

One must remember that H12 and H21 are infinite-dimensional in the Fock space of photons. We write UI in the following form

UI = 1+ iΓ
∫ t

0
dt1

(
0 H12(t1)

H21(t1) 0

)
−

−Γ2
∫ t

0
dt1

∫ t1

0
dt2

(
H12(t1)H21(t2) 0

0 H21(t1)H12(t2)
f
)

+ ... (10)

The above expressions admit any time-varying magnetic field B0(t). For sake of convenience, we will restrict our attention to
the sinusoidal dependence:

B0(t) = B0 cos(Ωt), (11)

and in this case (8) and (9) reduce to

H12(t) = a† exp [i(ωt− r sin(Ωt))]+aexp [−i(ωt + r sin(Ωt))] , (12)

H21(t) = a† exp [i(ωt + r sin(Ωt))]+aexp [−i(ωt− r sin(Ωt))] , (13)

where we have defined

r =
2gµBSB0

~Ω
. (14)

The frequency Γ in HI represents the coupling with the dipolar field, and is small when the wavelength of the radiation field is
far longer than the molecular dimension. In this case, first order perturbation theory applies, leading to:

UI = 1+ iΓM1 +O(Γ2) (15)

and

M1 =
(

0 a†F1 +aF2
a†F∗2 +aF∗1 0

)
. (16)

The dynamics of the system will be governed by the functions F1(t) and F2(t):

F1(t) =
∫ t

0
dt1 exp[i[ωt1− r sin(Ωt1)]] =

J0(r)
iω

(eiωt −1)+

+2
∞

∑
m=0

[
J2m+2(r)

ω2− (2m+2)2Ω2 Λ1,m(t)− i
J2m+1(r)

ω2− (2m+1)2Ω2 Λ2,m(t)
]
, (17)

F2(t) =
∫ t

0
dt1 exp[−i[ωt1 + r sin(Ωt1)]] =

J0(r)
iω

(1− e−iωt)+

+2
∞

∑
m=0

[
J2m+2(r)

ω2− (2m+2)2Ω2 Λ∗1,m(t)− i
J2m+1(r)

ω2− (2m+1)2Ω2 Λ∗2,m(t)
]
, (18)

being J2m+1(r) and J2m+2(r) the Bessel functions of first kind, and

Λ1,m(t) = iω− iωeiωt cos[(2m+2)Ωt]− (2m+2)Ωeiωt sin[(2m+2)Ωt] (19)

Λ2,m(t) = −iωeiωt sin[(2m+1)Ωt]+ (2m+1)Ωeiωt cos[(2m+1)Ωt]− (2m+1)Ω. (20)
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From the above formulae, a resonant behavior occurs when the photon frequency ω is an integer multiple of Ω, say ω = mΩ,
and the dominant behavior of F1 and F2 near that condition is given by:

F1 ≈ Jm(r)[(−1)mi(1− e2iωt)+2tω]
2ω

(21)

F2 ≈ (−1)mF∗1 = (−1)m Jm(r)[(−1)m+1i(1− e−2iωt)+2tω]
2ω

(22)

In the next Section we will analyze the dynamics of a pure
quantum mechanical state initially prepared as an eigenstate
of H0.

III. DYNAMICS OF QUANTUM STATES

To fix ideas, consider a quantum state prepared in the mag-
netic state |S = +1/2 > of the molecule, in the form:

|Ψ0 >= |S >
∞

∑
n=0

αn|n > (23)

where the mean number of photons at t = 0 is given by

n0 =< a†a >0=
∞

∑
n=0

n|αn|2.

To first order perturbation theory, the evolved state |Ψ(t) >=
UI |Ψ0 > reads

|Ψ(t) > ≈ 1√
1+Γ2[(n0 +1)|F2|2 +n0|F1|2

×

×
[
|Ψ0 > +iΓ|−S >

∞

∑
n=0

αn

(
F∗2
√

n+1|n+1 > +F∗1
√

n|n−1 >
)]

. (24)

Observe that we have renormalized the evolved state. The cor-
relation probability function defined as C(t) = |< Ψ0|Ψ(t) >
|2, which is simply the probability of finding the system in the
initial state at later times, yields

C(t) =
1

1+Γ2[(n0 +1)|F2|2 +n0|F1|2] , (25)

and the above expression can be approximated at the resonant
condition ω = mΩ by the behavior of F1 and F2 given in (21)
and (22):

C(t)≈ 1
1+Γ2|F1|2(2n0 +1)

, (26)

with

|F1|2 =
|Jm(r)|2

4ω2

(
4sin2 ωt +4tωsin2ωt +4ω2t2) .

For long times (tωÀ 1), the leading behavior is quadratic in
time

|F1|2 ≈ |Jm(r)|2t2 ,

and we can approximate the above expression as follows:

C(t)≈ 1
1+ t2/τ2 , (27)

with the correlation time τ defined as:

1
τ

= Γ|Jm(r)|
√

2n0 +1. (28)

The value 1/τ can be interpreted as the rate of emission
of photons, since the nanomagnet will relax to lower en-
ergy states by emitting photons. For large values of the
constant r, maxima of the transition rate will be given by
r = 2gSµBB0/(~ω/m) ∼ ζπ, with ζ À 1 a constant depend-
ing on the order of the Bessel function, yielding

(
1
τ

)

max
≈ Γ

√
~(ω/m))
πgSµBB0

√
2n0 +1.

Next, we show some examples. To illustrate the evolution
of a quantum state, we consider the initial mean number of
photons n0 = 0, i.e. the vacuum for the cavity field, and the
molecular spin in the S = 1/2 state (in this case the initial state
is |Ψ0 >= |S,0 >). The resonant cavity is adjusted to the fre-
quency f = ω/2π = 10 GHz and the spin-photon interaction
constant is taken as Γ = 2 GHz. In Fig. 1 to 3, we show the
correlation probability C(t) as a function of time, for given
values of r and m = ω/Ω. At a given ratio m = ω/Ω, the
parameter r was set to give the maximum value of the Bessel
function Jm(r). The parameters for the first two figures satisfy
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the resonant condition (m an integer). One can see that the
behavior for m even or odd is qualitatively the same. Except
for the stepwise character of the correlation function, the over-
all behavior of C(t) can be estimated by the expression (27),
with the relaxation time given by (28). Note the irreversible
character of C(t) at the resonance, due to the relaxation of
the molecule by successive photon emissions, which occurs
in time at integer multiples of the period T = 2π/Ω.

FIG. 1: Correlation function C(t) as a function of time, considering
Γ = 2×109 s−1, ω = 2π×1010 rad/s, Ω = ω/m, m = 8 and r = 9,65.
The dotted line corresponds to the approximate behavior given by eq.
(27).

FIG. 2: Correlation function C(t) with parameters Γ and ω kept the
same as for the previous figure, m = 11 and r = 11,94. The dotted
line corresponds to the approximate behavior given by eq. (27).

A quite different situation occurs for a non-integer value of
the ratio ω/Ω, as shown in Fig. 3 for m = 9,31. There are
revivals of the initial state at latter times, in the form of an
absorption-emission cycle not completely periodic.

The above results were obtained within first order perturba-
tion theory. Consequently, the long-time behavior should in-
clude corrections due to multiple photon processes. However,

FIG. 3: Correlation function C(t) for a non-integer ratio ω/Ω. In this
case we have chosen m = 9,31 and r = 11,45.

FIG. 4: Number of photons for the field 〈n〉= |A(t)|2 in the semiclas-
sical approximation using f = ω/2π = 10 GHz, Γ = 1 GHz, M0 = 0,
N0 = 0.5, n0 = 0, m = 9 and r = 10. The dotted line corresponds to
the approximated solution (40).

we believe that the essential physics is contained in the results
discussed above. To support this view, in the next section we
analyze the radiation field using the semiclassical approxima-
tion. We predict a masser effect at resonances.

IV. SEMICLASSICAL THEORY

The semiclassical theory is based on two fundamental as-
sumptions: i) the cavity radiation field is described by a co-
herent state, which is the most nearly classical state (it min-
imizes the uncertainty relations); ii) the total density matrix
is written as a product, whose factors are related to spin and
photon degrees of freedom. In other words, we assume that
spin variables are uncorrelated with those of the field[19]. For
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FIG. 5: Number of photons for the field 〈n〉= |A(t)|2 in the semiclas-
sical approximation using f = ω/2π = 10 GHz, Γ = 1 GHz, M0 = 0,
N0 = 0.5, n0 = 1, m = 10 and r = 12.

FIG. 6: Number of photons for the field 〈n〉= |A(t)|2 in the semiclas-
sical approximation with f , Γ, M0 = 0 and N0 = 0.5 kept the same
as the previous case, n0 = 49, m = 9 and r = 10. The dotted line
corresponds to the approximated solution (40).

a coherent state |z〉, we have the results

a |z〉 = z |z〉 , (29)

〈z|a† = 〈z|z∗, (30)

〈n〉 = |z|2 . (31)

So, the semiclassical approximation can be thought to be ob-
tained by replacing the photon operators by complex num-
bers. Chosing the amplitude of the coherent state as real, we
get a†,a →

√
〈n〉. Then the equation of motion for the mean

number of photons 〈n〉 will be given by:

dA
dt

=−Γsin(ωt)[ρ12eir sin(Ωt) +ρ21e−ir sin(Ωt)] (32)

FIG. 7: Number of photons for the field 〈n〉= |A(t)|2 in the semiclas-
sical approximation obtained from equations (32)-(35) using M0 = 0,
ρ12(0) = ρ∗21(0) = iN0 = 0.5i, n0 = 625, m = 5 and r = 45. The dot-
ted line is the approximated number of photons given by eq.(40). The
dotted line corresponds to the approximated solution (40).

with A =
√
〈n〉. The density matrix ρ of the spin system sat-

isfies the following set of coupled equations:

∂M
∂t

= 4iΓ[ρ21e−ir sin(Ωt)−ρ12eir sin(Ωt)]Acos(ωt) (33)

∂ρ12

∂t
= −2iΓe−ir sin(Ωt)MAcos(ωt) (34)

∂ρ21

∂t
= 2iΓeir sin(Ωt)MAcos(ωt), (35)

where M = ρ11−ρ22. In general the solution must be accom-
plished by numerical methods. A simple solution is obtained
if one assumes ρ12 = ρ∗21 = iN, being ρ12−ρ21 = 2iN, i.e. the
off-diagonal elements depends on a single real parameter. It
can be shown that the other possibilty, ρ12 = ρ21 = R does not
lead to a maser effect. For the former case we have:

∂M
∂t

= 8ΓNAcos(r sin(Ωt))cos(ωt), (36)

∂N
∂t

= −2ΓMAcos(r sin(Ωt))cos(ωt), (37)

dA
dt

= 2ΓN sin(r sin(Ωt))sin(ωt). (38)

An approximate solution near the initial value A0 ≈ 0 for the
photon field A is easily obtained, yielding:

A(t) = A0 +ΓN0Re(F1−F2) (39)

In the case of ω = (2m + 1)Ω the above solution for A grows
linearly with time:

A(t)≈ A0 +2ΓN0J2m+1(r)
(

t− sin(2ωt)
2ω

)
(40)

and consequently, the number of photons increases quadrati-
cally with time. In contrast, for ω = (2m + 2)Ω the approx-
imate solution is nearly constant, with A(t) ≈ A0, displaying
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ripples around this value. This even-odd symmetry breaking
at resonance, is at variance with the pure quantum case treated
in the previous section, where both resonance conditions pre-
sented similar behaviors, i.e. an increase of the photon number
due to relaxation of the molecular states, no matter if m was
even or odd. In any case, for the semiclassical approximation,
a maser effect is predicted for ω = (2m + 1)Ω. To illustrate
this phenomenon, we show in Figs. 4 to 7, the photon num-
ber as a function of time, for some temperatures. In Fig. 4
and 5, we take the limit kBT → 0, and the initial photon num-
ber n0 → 0(A0 → 0). Other parameter values are M0 = 0 and
N0 = 0.5. In Fig. 4, we have chosen n0 = 0, m = 9 and r = 10,
while for Fig. 5, n0 = 1, m = 10 and r = 12 (the corresponding
value of r is always chosen to maximize the Bessel function).
From Fig. 4, it is clear that the overall behavior of the photon
number for m odd is closely related to the solution given by
expression (40), and shown by the dashed line, corresponding
to a quadratic increase of the number of photons with time.
In contrast, when m is even, there is an oscillatory behavior,
at least for short times, which reminds the quantum revivals.
Figures 6 and 7 refer to examples at finite temperatures for m
odd. For Fig. 6, T = 24 K, corresponding to the initial value
n0 = kBT/(~ω) = 49 for the number of photons, while Fig. 7
is at room temperature (T = 300K), corresponding to n0 = 625
photons. Fig. 7 was obtained solving numerically the full set
of equations (32)-(35) due to the fact that for high number of
photons the system clearly displays nonlinearities and the real
part of ρ12 grows significantly with time. We have taken the
initial values ρ12(0) = ρ∗21(0) = 0.5i = iN0. It is clear that the
photon number will increase inside the cavity. In practice, it
will increase until a saturation limit. The divergent behavior
here obtained is due to the fact that losses are not taken into
account. Such losses are provided by photons leaving the cav-
ity and by excitation of other energy states. In fact, the real
system which we are concerned here, is not as simple as a
two-level object. In addition, the cavity field should include
contributions from other photon modes, which we neglected
from the beginning.

V. CONCLUSIONS

We have developed the quantum dynamics of molecular
nanomagnets, taking into account the quantized photon field

of the cavity. In first approximation, the magnetic molecules
were treated as two-level systems. The temporal evolution of
quantum states were studied in details in this paper, consider-
ing a time-varying magnetic field Bz(t) = B0 cos(Ωt), applied
along the quantization direction. The above field produces the
necessary population inversion in a periodic way.

The spin system couples with the dipolar component of
the cavity field, allowing transitions between both molecular
states with photon emission and absorption. The emission of
photons is enhanced at the resonant condition, when the ratio
between photon frequency ω and the applied field frequency
Ω is an integer number m = ω/Ω. At resonance, the energy
is pumped from the applied magnetic field to the cavity radi-
ation field, inducing a relaxation process depicted by Fig. 1
and 2. This striking phenomenon was illustrated in the pre-
vious section, via the semiclassical theory. In turn, the case
of non-integer m produces a revival of the initial state, which
means that emission and absorption of photons occur in al-
most periodic sequences, very similar to Rabi periods.

Qualitative insights can be obtained via the semiclassical
approximation, which is more suitable for practical purposes
at room temperatures. Within this theory, the macroscopic
state of the cavity field is described by the coherent states in-
troduced by Glauber [20]. In this case, a maser effect is ob-
tained at resonance, only when m is an odd number. When
the temperature is increased, the initial photon number is also
increased, and the dynamics is complicated by non-linear ef-
fects.

While the description of individual molecular complexes
must be intrinsically quantum mechanical, large assemblies
of molecules (as for instance, in a crystal) can be treated by
semiclassical techniques with good accuracy. The theory de-
veloped in this paper applies to the case of V15 molecular com-
plexes. Typical values of parameters are found in Ref. [8].
The spin 1/2 ground state shows resonant photon absorption
in the 1-20 GHz range, with applied magnetic fields of the or-
der of 0.1-1 T. Wavelength of the radiation, for the above fre-
quency values, ranges from 2 to 20 cm (microwave range). If
we adopt the above values for our model, we expect a cooper-
ative behavior, encompassing the whole system, of molecules
interacting coherently with the radiation field.
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