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A New Scheme for Calculation of the Multiplicity Distributions in Hadronic Interactions
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We generalize an existing geometrical approach for multiparticle production in hadronic interactions, in which
the overall multiplicity distribution is given by summing contributions coming from each impact parameter b
of the incident hadronic system. In the previous work, the process occurring at a fixed impact parameter b was
interpreted as due to an elementary collision with formation of an object similar to the one in e−e+ annihilations.
Here, we extend the model allowing the possibility of formation of more than just one string. The output seems
to be more consistent with data.
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I. INTRODUCTION

Due to the lack of a computable fundamental theory, to
describe the experimental data on multiplicity distributions,
our strategy to investigate multiparticle production in hadronic
collisions is still phenomenological and based on a wide class
of models and some theoretical principles. Measurements of
charged particle multiplicity distributions have revealed in-
trinsic features in hadronic interactions and provide important
constraints on such models and can also indicate some suitable
calculational schemes for further theoretical developments in
QCD. In this work, we generalize an existing phenomenolog-
ical procedure, referred to as geometrical approach, where
the incident hadrons are treated as spatially extended objects
and their collisions depicted as an ensemble of elementary in-
teractions, characterized by the impact-parameter dependent
available energy for producing particles. This approach al-
lows simultaneous description of several experimental data
from elastic and inelastic channels, once the inelastic overlap
function is given and some parametrization both of the num-
ber of particles produced in elementary interactions and their
distribution are assumed.

Observing that in e−e+ annihilation probably one qq̄ pair
has triggered the multitude of final particles and this might be
happening also in the above mentioned elementary interaction
in hadronic collisions (either qq̄ or q(qq) string in this case), it
has been assumed that the average multiplicity of the latter is
identical to the former and its energy dependence given by the
experimental data on e−e+ annihilation and parametrized in a
general power law form ∼ sA (s is the center-of-mass energy
squared). The idea of string formation for multiparticle pro-
duction is similar to Lund model [1] and it has been applied
also for hadron-hadron collisions by Rio de Janeiro group [2].
Two fit values of A = 0.258 and A = 0.198 have been obtained
in the previous study [3], the first one giving a better account
of lower energy data whereas the second one higher energy
data. However, when the formalism is applied to multiplicity
distribution in

√
s = 546GeV p̄p collisions, the latter, which

was expected to be more appropriate for this case, yielded a
too narrow distribution, whereas the former, which overesti-
mate the multiplicity in high energy region, gave a better ac-
count of the existing data [4]. This result may indicate that

in actual hadron-hadron collisions the probability of creating
two (or more) qq strings, besides the formation of just one
qq pair, giving a larger multiplicity, is important. This is also
physically more reasonable, since hadrons are composite ob-
jects.

The main object of the present paper is to show a new
scheme of calculation for the overall multiplicity distributions
in hadronic collisions, based on multistring formation. We
shall begin, for completeness, by presenting the basic idea of
geometrical approach in the next Section. In Sec. 3, we dis-
cuss an extension to multi-string models, giving two alterna-
tive treatments, namely, independent-string model and fused-
string model. Discussions of the new results and concluding
remarks are given in Sec. 4.

II. GEOMETRICAL APPROACH

The elastic and diffractive scatterings are intimately related
to the soft hadronic interaction (low pT ) and the differential
cross section is an important physical observable in the elas-
tic channel. From this, other quantities may be obtained, such
as the integrated elastic cross section σel and the total cross
section σtot , through the unitarity condition. In counterpart,
in the inelastic channel, the charged multiplicity distribution
may be used to test specific models on hadronization mecha-
nisms. In this work we would like to investigate the effects, on
the overall multiplicity distributions, of the formation of two
(or more) strings originated by qq (or q(qq)) pairs during the
hadronization process in pp and pp̄ collisions. For this pur-
pose we will begin discussing the basic ideas associated with
the geometrical approach.

A. Basic Formalism

A geometrical approach has been discussed in reference [3]
and, for completeness and especially to define the notation,
we shall briefly review the main points here. In this approach
hadrons are drawn as composite objects with some internal
structure and the impact parameter formalism is used. By
using the eikonal approximation, the connection between the
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elastic and the inelastic channels is established through the
unitarity condition. Thus, it is possible to obtain simultaneous
descriptions of some experimental data such as the differential
elastic cross section, the inelastic cross section and multiplic-
ity distribution. Specifically, the inelastic overlap function G in
is related with the eikonal Ω by

Gin(s,b) = 1− e−2Ω(s,b), (1)

where b is the impact parameter and
√

s the center-of-mass
energy. The inelastic cross section, σin(s), can be obtained
directly from Gin(s,b) as

σin(s) =
∫

d2bGin(s,b) . (2)

Neglecting the real part of the amplitude and spin effects, the
s-channel unitarity relation gives the differential elastic cross
section, dσel/dt, as [5]

dσel

dt
=

∣∣∣∣√π
∫ ∞

0

[
1− e−Ω(s,b)

]
J0(b

√−t)bdb

∣∣∣∣
2

. (3)

In this work, the physical observable of interest is the over-
all (charged) multiplicity distribution and, in the impact para-
meter formalism, this may be constructed by summing con-
tributions coming from hadron-hadron collisions taking place
at fixed impact parameter b. In this way, the idea of a nor-
malized multiplicity distribution at each impact parameter b
is introduced [6]. Thus the overall multiplicity distribution is
written as

Pn(s) =
σn(s)
σin(s)

=

∫
d2bGin(s,b)

[
σn(s,b)
σin(s,b)

]
∫

d2bGin(s,b)
, (4)

where the topological cross section σn is decomposed into
contributions from each impact parameter b with weight
Gin(s,b). We recall that the quantity in brackets can be in-
terpreted as the probability of producing n particles at impact
parameter b and that it should scale in KNO sense due to its
elementary structure [3]. Then, in general,

Pn(s) =

∫
d2b Gin(s,b)

<n(s,b)>

[
< n(s,b) > σn(s,b)

σin(s,b)

]
∫

d2bGin(s,b)
, (5)

where < n(s,b) > is the average number of particles pro-
duced at b and

√
s due to the interactions among hadronic

constituents involved in the collision. Let us write this quan-
tity as [3]

< n(s,b) >=< N(s) > f (s,b), (6)

where < N(s) > is the average multiplicity at
√

s and call
f (s,b) multiplicity function. Now, similarly to KNO, let us
introduce for each b the elementary multiplicity distribution

ψ(1)
(

n
< n(s,b) >

)
=< n(s,b) >

σn(s,b)
σin(s,b)

. (7)

Thus, with Eqs. (6) and (7), Eq. (5) becomes

Φ(s,z) =

∫
d2b Gin(s,b)

f (s,b) ψ(1)
(

z
f (s,b)

)
∫

d2bGin(s,b)
, (8)

where Φ(s,z) =< N(s) > Pn(s), and z = n/ < N(s) > repre-
sents the usual KNO scaling variable.

Now to obtain the multiplicity function f (s,b) in terms of
the eikonal Ω, we assume that

1. the fractional energy
√

s′ that is deposited for particle
production in a collision at b is proportional to Ω, which
is usually understood as the target thickness,

√
s′ = βΩ(s,b) ; (9)

2. in hadron-hadron collisions at b, the average number
of produced particles depends on the energy

√
s′ in the

same way as in e−e+ annihilations, which is approxi-
mately represented by a power law in

√
s [3] (This be-

havior can arise, for instance, from a simple picture of
branching decay producing a tree structure [7].)

< n(s,b) >= γs
′A. (10)

Combining Eqs. (9), (10) and (6), we have

f (s,b) = ξ(s)[Ω(s,b)]2A, (11)

with ξ(s) determined by the usual normalization conditions on
Φ,

∫ ∞

0
Φ(s,z)dz = 2 =

∫ ∞

0
Φ(s,z)zdz. (12)

The first of these conditions is satisfied, if ψ(1) also obeys the
same normalization condition. As for the second one, how-
ever, if ψ(1) obeys the same condition, it serves to determine
ξ(s) as an energy dependent quantity, giving

ξ(s) =
∫

d2bGin(s,b)∫
d2bGin(s,b)[Ω(s,b)]2A . (13)

Adopting an appropriate parametrization for G in, ψ(1) and an
adequate value for A, we can test the formalism embodied in
Eq. (8), with Eqs. (11) and (13), making direct comparisons
with overall multiplicity-distribution data. In the following,
we will shortly discuss the results obtained in Ref. [3], before
going to the next Section where this approach will be general-
ized.

B. Simple One-String Model: Inputs and Results

The formalism of geometrical approach is based on the idea
that in hadron-hadron collisions, taking place at a fixed value
of b, particles are produced due to the elementary interaction
between quarks and/or gluons. As pointed out in [8], what
the elementary hadronic processes are depends on the model



1166 Brazilian Journal of Physics, vol. 37, no. 3B, September, 2007

used, and, what the elementary multiplicity distribution ψ 1
should be also varies from model to model. On these argu-
ments and following other authors [6], Beggio, Menon and
Valin [3] considered the experimental data available on e−e+

annihilations as possible and limited source of information
concerning elementary hadronic interactions, without looking
for connections between e−e+ annihilations and p(p)− p col-
lisions. Thus, assuming a gamma distribution normalized to
2,

ψ(1)(z) = 2
kk

Γ(k)
zk−1e−kz, (14)

for e−e+ multiplicity distributions, experimental data cover-
ing the interval 22.0 GeV ≤ √

s ≤ 161 GeV were fitted, ob-
taining k=10.775 ± 0.064 (χ2/NDF = 2.61). Also, the av-
erage multiplicity data in e−e+ annihilations, were fitted by
Eq.(10), giving A=0.258 ± 0.001 (χ 2/NDF = 8.89) in the
interval 5.1 GeV ≤ √

s ≤ 183 GeV, and A = 0.198± 0.004
(χ2/NDF = 1.7) for the set in the interval 10 GeV <

√
s ≤ 183

GeV, respectively. For the sake of discussions presented in the
next Section, we have collected, in Fig. 1, the average multi-
plicity data in the interval 10 GeV <

√
s ≤ 200 GeV [9] and,

compared with a new fit to Eq. (10), with γ=3.36 and A=0.200
with (χ2/NDF = 0.94). The A parameter is essencially the
same of the one of those used in Ref. [3].
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FIG. 1: Average charged multiplicity data for e−e+ annihilation [9]
and the fitted power law, Eq. (10).

Adopting the Henzi - Valin parametrization [10] for
Gin(s,b), which describes well the energy dependence of the
differential elastic distributions, the authors of Ref. [3] con-
cluded that the energy evolution of the overall hadronic mul-
tiplicity distributions, from ISR to Collider (30 ∼ 500GeV),

is correctly reproduced without changing the underlying el-
ementary interaction, in agreement with what could be ex-
pected from QCD [3].

As mentioned above, the Geometrical Approach is based
on the idea of multiparticle creation due to the interactions
between hadronic constituents in collisions taking place at
b. It is at this point that specific models for the hadroniza-
tion mechanisms could be introduced. However, we shall
keep the previous assumption that the e−e+ annihilation data
are a possible source of information concerning the elemen-
tary hadronic interactions. In fact, Basile et al. [11] found
that the average multiplicity in pp collisions is similar to that
for e−e+ collisions. It was concluded that the multiparticle
production mechanism is the same in both processes, con-
trolled mainly by the amount of energy available for parti-
cle production. It is important, for our purpose in this paper,
to look at some aspects of physical scenario associated with
hadron production both in e−e+ annihilations and pp colli-
sions. In e−e+ collisions, they are annihilated into a virtual
photon or Z, which decays into a qq pair. The primary quarks
radiate gluons, which can radiate further gluons or be con-
verted into qq pairs giving rise to a parton cascade. Subse-
quently the partons hadronize and the unstable hadrons decay
[12] (e−e+ −→ Z/(γ) −→ qq̄ −→ hadron). To implement our
analysis let us call a qq̄ pair creation as “one chain” forma-
tion. In the previous work, two values for the exponent in Eq.
(10) were obtained, namely, A=0.258 and 0.198. As shown
there, indeed smaller value of A gives a narrower overall mul-
tiplicity distribution in hadronic collisions as compared to the
one with larger A. However, despite a better agreement with
the overall multiplicity distribution data at

√
s = 546GeV that

A = 0.258 gave, we should prefer A = 0.198, that better fits
the e−e+ average multiplicity data at high-energy domain, to
be consistent with our basic assumption that e−e+ annihila-
tions are a possible source of information on hadronization
mechanism. The fact that A = 0.258, which enhances larger
multiplicities, gave a better account of pp̄ multiplicity distri-
bution data may indicate that, instead of one chain with larger
multiplicity, two or more chains are being formed. This is also
a physically more realistic description of interaction between
compound objects such as hadrons, because we expect that
more than one elementary collisions tend to occur in smaller
b collisions, where the overlap of hadronic matter is larger
and hence two or more qq pairs, or equivalently two or more
chains could be produced. What are the effects of formation
of two or more chains in hadronic interactions? In the next
Section we shall generalize the framework presented above,
to include the contributions of various chains in multiparticle
production.

III. GENERALIZATION TO MODELS WITH MULTIPLE
STRINGS

In this Section, we shall modify the original geometrical
approach, on the assumption that there may occur formation
of several chains in hadronic interactions. Let us start by ex-
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panding Gin(s,b), given by Eq. (1), in the following form

Gin(s,b) =
∞

∑
i=1

[2Ω(s,b)]i

i!
e−2Ω(s,b) (15)

≡
∞

∑
i=1

G(i)(s,b). (16)

Since 2Ω(s,b) could be interpretted as the “thickness” of in-
teracting hadrons at b and

√
s , we expect that, in eikonal ap-

proximation, the probability of forming i chains in a collision
at b and

√
s is some thing proportional to the i-th term of the

expansion above (15). Let us call it overlap function for for-
mation of i chains, G(i)(s,b).

By integrating Eq. (16), term by term, we obtain the total
inelastic cross section as a sum of partial cross sections for
formation of multiple number of chains

∫
d2bGin(s,b) =

∞

∑
i=1

∫
d2bG(i)(s,b)

⇒ σin(s) = σ(1)
in (s)+ σ(2)

in (s)+ σ(3)
in (s)+. . . (17)

Now, dividing this by σin(s), we can define the i-chain forma-
tion probability, q(i)(s), as

q(i)(s) =
σ(i)

in (s)
σin(s)

=
∫

d2bG(i)(s,b)∫
d2bGin(s,b)

. (18)

Remark that, in view of Eq. (17), the correct normalization
condition

∞

∑
i=1

q(i)(s) = 1 (19)

is automatically satisfied.
Based on this new formalism, we can obtain all the ele-

ments for the calculation of the overall multiplicity distribu-
tions, considering formation of various chains in the interac-
tions among hadronic constituents. In the following subsec-
tions we will consider two possible schemes for this purpose.

A. Independent-String Model

First, let us suppose our i strings introduced above decay
independently. Then, the overall multiplicity distribution is a
sum of the multiplicity distributions associated with each set
of i chains, φ(i)

Φ(s,z) =
∞

∑
i=1

φ(i)(s,z), (20)

with

φ(i)(s,z) =

∫
d2b G(i)(s,b)

f (i)(s,b)
ψ(i)

(
z

f (i)(s,b)

)
∫

d2bGin(s,b)
. (21)

Here, ψ(i) represents the elementary multiplicity distribution
at the impact parameter b and, now, the weight function is

the inelastic overlap function associated with i chains and
f (i)(s,b) the multiplicity function of i chains. As for the lat-
ter, remark that the average multiplicity depends now on the
number of chains produced in the collision. Thus, let us write
the average multiplicity associated with each i chains as

< n(s,b) >(i)= iγs
′A. (22)

By analogy with Eq. (6), this is related to the multiplicity
function of i chains as

< n(s,b) >(i)=< N(s) > f (i)(s,b). (23)

Recalling that the fractional energy deposited at b for particle
production is proportional to Ω, as expressed by Eq. (9), the
multiplicity function of i chains is written

f (i)(s,b) = iξ(s)[Ω(s,b)]2A. (24)

By integrating Φ(s,z), given by Eq.(20), and using
Eqs.(18,19), we obtain∫ ∞

0
Φ(s,z)dz = 2

∞

∑
i=1

q(i)(s) = 2, (25)

so it correctly obeys the normalization condition, Eq.(12). We
can also verify that ξ is given as

ξ(s) =
∫

d2bGin(s,b)∫
d2b [Ω(s,b)]2A

[
∑∞

i=1 iG(i)(s,b)
] . (26)

Now, let us consider how to specify ψ(i) in Eq. (21). Con-
fining ourselves just to two independent-string formation, we
need to specify ψ(1) and ψ(2). On the assumption that the mul-
tiplicity distribution of each chain is independent and have the
same form of ψ(1), we may write ψ(2) as a convolution product

ψ(2)(z) = 2
∫ z

0

[
1
2

ψ(1)(z′)
][

1
2

ψ(1)(z− z′)
]

dz′, (27)

where the factors 2 and 1
2 are due to the normalization condi-

tion. With ψ(1) being given by Eq. (14), we obtain

ψ(2)(z) = 2
(2k)2k

Γ(2k)
z2k−1 exp(−2kz), (28)

which can be verified that is correctly normalized as∫ ∞

0
ψ(2)(z)dz = 2 =

∫ ∞

0
ψ(2)(z)zdz . (29)

For the general case of i independents chains, we have

ψ(i)(z) = 2
(ik)ik

Γ(ik)
zik−1 exp(−ikz). (30)

With the results above we have all the necessary elements
to test the formalism embodied in Eqs. (20) and (21). For in-
stance, if we limit ourselves only to one or two independent-
chain formation, the overall multiplicity distribution is explic-
itly given by

Φ(s,z) =

∫
d2b G(1)(s,b)

ξ(s)[Ω(s,b)]2A ψ(1)
(

z
ξ(s)[Ω(s,b)]2A

)
∫

d2bGin(s,b)

+

∫
d2b G(2)(s,b)

2ξ(s)[Ω(s,b)]2A ψ(2)
(

z
2ξ(s)[Ω(s,b)]2A

)
∫

d2bGin(s,b)
. (31)
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FIG. 2: Scaled multiplicity distribution data for inelastic pp at√
s = 546GeV [4] compared to theoretical prediction using the

Independent-String Model, Eqs. (20) and (21) (solid-line). φ(i)(i =
1,2) (dashed lines) are the multiplicity distributions for one and two
chains given by Eq. (21).

We show, in Figure 2, the result of computation of this Φ at
the CERN p̄p-Collider energy (

√
s = 546GeV) together with

the experimental data [4]. Here we fixed the value of A = 0.2
as obtained in Section 2, Gin is that obtained by Henzi and
Valin [10], G(i)(s,b) (i =1,2) given by Eq. (16), ψ (1) and ψ(2)

by Eqs. (14) and (28) and the value of ξ(s) was obtained with
Eq. (26). We also expressed Φ in terms of the modified scal-
ing variable z′ = n−No/ < n−No > with No representing the
average number of leading particles, an essentially energy in-
dependent quantity whose value is 0.9 [3, 13]. One can clearly
see the disagreement of the theoretical curve when compared
to the data in the entire z′ interval. It is broader than φ(1) as
we would like, but too broad.

We would like to observe that others forms could be used as
imput to Eikonal function Ω, however, the overall multiplicity
distributions, in the geometrical approach, are stable against
variations on the details about Ω [3].

B. Fused-String Model

Now, let us formulate a modified version of the preceding
model, in which the constituents of the incident hadrons inter-
act at certain b, initially forming i chains (i qq pairs). How-
ever, since they are formed in a very small region of typical
hadron size, it is natural that they are subsequently fused to
from just one larger chain. We make the simplest assumption
that this final chain decays producing particles with distribu-
tion ψ(1) given by Eq. (14), as in the simple one-string model.

We shall still assume that the average energy of each initial
chain is equal and given by Eq. (9), so that the total energy√

s′ of a fused chain, originated from i initial chains, is written

√
s′ = iβΩ(s,b), (32)

with i representing the number of initial chains created in the
interaction.

0 1 2 3 4 5
1E-4

1E-3

0,01

0,1

1

A=0.200
ξ = 1.250

Fused-String Model

 

 

Φ   
 (z

')

z'

 52.6 GeV
 2 Chains
 3 Chains
 4 Chains

FIG. 3: Overall scaled multiplicity distribution data for inelastic
pp at ISR energy [14], compared to theoretical prediction using the
Fused-String Model, Eqs. (35) and (36).

As for the average multiplicity of the fused chain, we as-
sume it depends on the energy

√
s′ in the same way as the one

expressed by Eq. (10). Thus, to adequate the notation, let us
rewrite the average multiplicity originated from i initial chains
as

< n(s,b) >(i)= γs
′A, (33)

and the multiplicity function has the same form as Eq. (23).
Combining the Eqs. (32), (33) and (23) we obtain

f (i)(s,b) = i2Aξ(s)[Ω(s,b)]2A. (34)

In this model the overall multiplicity distribution Φ(s,z) is still
given by Eq. (20) but, due to the fusion of the i chains into
a final chain, the multiplicity distribution φ(i)(s,z) associated
with this fused chain is written as

φ(i)(s,z) =

∫
d2b G(i)(s,b)

f (i)(s,b)

[
ψ(1)( z

f (i)(s,b)
)
]

∫
d2bGin(s,b)

. (35)
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Naturally Φ obtained in the fused-string model, given by
Eqs. (20) and (35), must obeys the usual normalization con-
dition expressed by Eq. (12), which gives ξ as

ξ(s) =
∫

d2bGin(s,b)∫
d2b [Ω(s,b)]2A [∑∞

i=1 i2A G(i)(s,b) ]
. (36)

By fixing the value of A = 0.2 as before, adopting G in from
analysis by Henzi and Valin as discussed in the last subsec-
tion and observing that ξ(s) is now obtained by Eq. (36), we
have computed the overall multiplicity distribution at ISR and
Collider energies. The theoretical curve at

√
s=52.6 GeV is

shown in Fig. 3 together with the experimental data [14] and
we can see that the curve with formation of up to three ini-
tial chains shows good agreement with the data. Comparison
at Collider energy is shown in Fig. 4. It is seen that a better
agreement with data is obtained, if we assume formation of up
to four initial chains in this case.
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1

A  = 0.200
ξ = 1.136

Fused-String Model

 546 GeV
 2 Chains
 3 Chains
 4 Chains

 
 

Φ   
 (z

')

z'

FIG. 4: Overall scaled multiplicity distribution for inelastic pp data
at Collider energy [4] compared to theoretical prediction using the
Fused-String Model, Eqs. (35) and (36).

IV. DISCUSSION AND CONCLUDING REMARKS

In the preceding Section, we have generalized an existing
geometrical approach for multiplicity distributions in hadron-
hadron inelastic interaction [3], allowing the production of
two or more qq (or q(qq)) strings in the interaction. By
modifying the previously proposed Simple One-String Model,
we have formulated two alternative models: i) Independent-
String Model, where the produced multiple chains decay in-
dependently; and ii) Fused-String Model, where the multiple
initial chains are fused into one before the decay into final
produced particles. We have shown that although both of the
models do predict the broadenning of the distribution as ex-
pected, the curves from Independent-String Model become
too broad, already with two chains, revealing clear discrep-
ancy with all the data at Collider energies, as shown in Fig. 2.
As for the Fused-String Model, the predictions compare bet-
ter with the data, giving reasonable agreement with up to three
chains at

√
s = 52.6GeV (Fig. 3), and with up to four chains

at
√

s = 546GeV (Fig. 4), so this version should be preferred
over the first one. This conclusion is also reasonable from the
physical point of view, because since the qq̄ pair formation
occurs in a rather small volume, it is natural that they evolve
into just one large chain instead of remaining many indepen-
dent chains.

The increase in the number of the initially formed strings
to fit the data as the incident energy increases is also natural,
since the parton number increases with increasing the incident
energy. In principle, according to Eqs. (16) and (20), the mod-
els described in the preceding Section should contain infinite
terms, corresponding to infinite number of chains, irrespective
of the incident energy. However, evidently there are physical
restrictions, such as the finite available energy and the finite
effective partons in the incident hadrons, which forbid to form
indefinitely large number of strings.
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