156

Brazilian Journal of Physics, vol. 38, no. 1, March, 2008

Energy-Momentum Problem of Bell-Szekeres Metric in General
Relativity and Teleparallel Gravity

M. Sharif and Kanwal Nazir
Department of Mathematics, University of the Punjab,
Quaid-e-Azam Campus, Lahore-54590, Pakistan

Received on 4 December, 2007

This paper is devoted to the investigation of the energy-momentum problem in two theories, i.e., General
Relativity and teleparallel gravity. We use Einstein, Landau-Lifshitz, Bergmann-Thomson and Moller’s pre-
scriptions to evaluate energy-momentum distribution of Bell-Szekeres metric in both the theories. It is shown
that these prescriptions give the same energy-momentum density components in both General Relativity and
teleparallel theory. Moller’s prescription yields constant energy in both the theories.
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I. INTRODUCTION

One of the most interesting problems which remains un-
solved, since the birth of General Theory of Relativity (GR),
is the energy-momentum localization. To find a generally ac-
cepted expression, there have been different attempts. How-
ever, some attempts to define the energy-momentum density
for the gravitational field lead to prescriptions that are not
true tensors. The first of such attempts was made by Ein-
stein [1] himself who proposed an expression for the energy-
momentum distribution of the gravitational field. Following
Einstein, many scientists like Landau-Lifshitz [2], Papapetrou
[3], Bergmann-Thomson [4] and Mdller [5] introduced their
own energy-momentum complexes. All these prescriptions,
except Moller, are restricted to do calculations only in Carte-
sian coordinates.

The notion of energy-momentum complexes was severely
criticized for a number of reasons. Firstly, the nature of a
symmetric and locally conserved object is non-tensorial and
thus its physical interpretation appeared obscure [6]. Sec-
ondly, different energy-momentum complexes could yield dif-
ferent energy-momentum distributions for the same gravita-
tional background [7,8]. Finally, energy-momentum com-
plexes were local objects while it was usually believed that
the suitable energy-momentum of the gravitational field can-
not be localized [9]. An alternate concept of energy, called
quasi-local energy, was developed by Penrose and many oth-
ers [10,11]. Although, these quasi-local masses are concep-
tually very important, yet these definitions have serious prob-
lems. Chang et al. [12] showed that energy-momentum com-
plexes are actually quasi-local and legitimate expressions for
the energy-momentum.

Virbhadra [13-15] and his collaborator [16] showed that dif-
ferent energy-momentum complexes yield the same results for
a general non-static spherically symmetric metric of the Kerr-
Schild class. These definitions comply with the quasi-local
mass definition of Penrose for a general non-static spherically
symmetric metric of the Kerr-Schild class. However, these
prescriptions disagree in the case of the most general non-
static spherically symmetric metric. Aguirregabiria et al. [17]
proved the consistency of the results using different energy-
momentum complexes for any Kerr-Schild class metric. Xulu

[18,19] extended this investigation and found the same energy
distribution in the Melvin magnetic and Bianchi type I uni-
verses. Chamorro and Virbhadra [20] and Xulu [21] studied
the energy distribution of the charged black holes with a dila-
ton field. Ramdinschi and Yang [22], Vagenas [23], Gad [24]
and Xulu [25] investigated the energy distribution of the string
black holes using different prescriptions. Using Einstein and
Landau-Lifshitz complexes, Cooperstock [26] and Rosen [27]
found that total energy of the closed Friedmann-Robertson-
Walker (FRW) spacetime vanishes everywhere. With the help
of Einstein energy-momentum complex, Banerjee and Sen
[28] found that the total energy density of Bianchi type-I uni-
verse is zero everywhere. However, there exist examples [29-
32] which do not support this viewpoint.

It has been argued [33,34] that the energy-momentum prob-
lem can also be localized in the framework of the teleparal-
lel theory (TPT) of gravity. This theory has been considered
long time ago in connection with attempts to define the en-
ergy of the gravitational field. Moller [35] was probably the
first to notice that the tetrad description of the gravitational
field allows a more satisfactory treatment of the gravitational
energy-momentum than does GR. Using the teleparallel ver-
sion of Einstein and Landau-Lifshitz complexes, Vargas [36]
found that total energy of the closed FRW spacetimes van-
ishes everywhere. This result agrees with the previous work of
Cooperstock [26] and Rosen [27]. It has been shown [37] that
the results of Bianchi types I and II in TPT are consistent with
the results in GR. Recently, Salti et al. [38,39] have calculated
energy-momentum densities for some particular spacetimes
by using different prescriptions both in GR and TPT and found
the same results. However, there exist some spacetimes that
do not provide consistent results both in GR and TPT. Sharif
and Jamil [40] considered Lewis-Papapetrou metric and found
that the results in TPT do not coincide with those obtained in
GR [41].

This paper explores Bell-Szekeres metric by evaluating
its energy-momentum distribution using different prescrip-
tions both in GR and TPT. We would like to present results
rather giving the details as these are available in the literature
[40,41]. The paper has been organized as follows: Section 2 is
devoted to present the prescriptions of the Einstein, Landau-
Lifshitz, Bergmann-Thomson and Moller energy-momentum
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both in GR and TPT. In section 3, we find the energy-
momentum distribution of Bell-Szekeres metric both in GR
and TPT using these prescriptions. Finally, section 4 provides
a summary and discussion of the results obtained.

II. ENERGY-MOMENTUM COMPLEXES

In this section, we shall briefly outline the Einstein,
Landau-Lifshitz, Bergmann-Thomson and Mboller prescrip-
tions used to calculate energy-momentum distribution of a
metric both in GR and TPT.

A. Energy-Momentum Complexes in GR

For Einstein prescription, the energy-momentum density is
given in the form [5,42]

1
®Z:ﬁH5C£7 (a7b702071a273)7 (1)
where H2= -HS is given by
8
HY = [ g(ghdgee — godgbe)] . )

V=g
Here g is the determinant of the metric tensor g,y and comma
denotes ordinary differentiation. Notice that ®8 is the energy
density, ©) (i =1,2,3) are the momentum density compo-
nents and @y are the energy current density components. The
momentum four-vector is defined as

Da = / /V / Oldx! dx’dy’, 3)

where pg gives the energy and pi, py and p3 are the momen-
tum components while the integration is taken over the hyper-
surface element described by ¢ = constant. Einstein’s conser-
vation law becomes

oeb
= @

Landau-Lifshitz energy-momentum density can be given
in the form [2]

Labzigabcdc 3
167 cdy ( )

where
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ab cd

el = (—g) ("¢

—g“gh). (6)

The quantities L% and L% represent the energy density and
the total momentum (energy current) densities respectively.

The energy-momentum prescription of Bergmann-
Thomson is given by [4]

1
Bah — Mahc 7
1 6TC ,Co ( )

where

Mabc — gadvjc’ (8)

with

Ve =

8d _ be cf _ ce bf - 9
ﬁ[ g(g”g” —g“g” )y )

The quantities B and B represent energy and momen-
tum densities respectively. The Bergmann-Thomson energy-
momentum satisfies the following local conservation law

aBab

in any coordinate system. The energy-momentum compo-
nents are given by

p“:///B“deldxzdx3. (11)
\%4

Using Gauss theorem, the above integral takes the form

1
pa= 1o | [ Himas, (12)

where n;, is the outward unit normal vector to an infinitesimal
surface element dS. The quantities p; give momentum com-
ponents while pg gives the energy.

All the energy-momentum complexes mentioned above
are coordinate dependent and give meaningful results only
when the calculations are carried out in Cartesian coordinates.
To overcome this deficiency, Moller [5] introduced another
energy-momentum pseudo-tensor Mf; which is coordinate in-
dependent given as

1 .
MP = —Kbe (13)

where
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Kgc = \/_g(gade gaed)ghegcd (14)

and Kt’l’" is antisymmetric in its upper indices. This satisfies
the conservation law

oM?
oxb

=0, 5)

where Mg is the energy density, M? are momentum density
components and M, are the components of energy current
density.

B. Energy-Momentum Complexes in TPT

The teleparallel version of Einstein, Bergmann-Thomsan
and Landau-Lifshitz energy-momentum complexes are given
[36], respectively, as

1
hE", = EUP”VN, (16)
1
hB"P = E[g“eUe "V)v], (17)
1
h® = —[hg®Us ™ ], (18)

where h = det(h%,) and U," V is the Freud’s superpotential

given as
Up™ = hS,". (19)
Here SPH is the tensor
SPHV *mlTp'w+ 3 (T,UPV TVP.U)Jr
ms3 9
- (T — g™ T (20)

with my, my and m3 as the three dimensionless coupling con-
stants of the teleparallel gravity. For the teleparallel equivalent
of GR, the specific choice of these three constants are

my=—, m3=—1. 21

— 2

To calculate this tensor, we evaluate Weitzenbdck connection
[43]

L = ha®ovhe,, (22)
which is used to find the corresponding torsion [44]

79y =T%,—T%,. (23)
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Thus the momentum four-vector for Einstein, Bergmann-
Thomsan and Landau-Lifshitz energy-momentum complexes
will be

= /)E hEdxdydz, (24)

_ / hBdxdydsz, 25)
X

_ 0

- /Z hL0dxdydz. (26)

Now we discuss Moller energy-momentum complex in the
context of TPT. Mikhail et al. [33] defined the superpotential
(which is antisymmetric in its last two indices) of the Moller
tetrad theory as

V8
UYP = 7 P [0Pg g, —
Mg K*P° — gy, (1 —20) KPX], (27)
where
Pipo = 8Lghe + 85 gun — 8Lgyh. (28)
%)

and gy is a tensor quantity defined by

gho = 86 — 8%5h. (29)

Here K°PX is a contortion tensor, A is a free dimensionless
coupling constant of TPT, K is the coupling constant and ¢,, is
the basis vector field given by

Ou =T, (30)

The energy-momentum density is defined as

My =U," . 31)

The energy E contained in a sphere of radius R is expressed
by the volume integral as

R) = / . / / Ulﬁ)p!pdx*%, (32)

R) = /r:R / / Mydx. (33)
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III. BELL-SZEKERES METRIC

It is well-known that exact plane gravitational waves are
simple time dependent plane symmetric solutions of the Ein-
stein field equations [45]. The colliding plane wave space-
times have been investigated extensively in GR [46] due
to their interesting behaviour. The first exact solution of
the Einstein-Maxwell equations representing colliding plane
shock electromagnetic waves with co-linear polarizations was
obtained by Bell and Szekeres [47]. This solution is confor-
mally flat in the interaction region and is represented by the
metric

ds? = 2dudv+e Y (e dx* + eV dy?), 34)
where the metric functions U and V depend on the null coordi-
nates « and v. The complete solution of the Einstein-Maxwell
equations is

159
with

1 1
f = E—sinzP, g:i—sian. (37)

Here P = aub(u), Q = bvB(v), where 0 is the Heaviside unit
step function, a and b are arbitrary constants.

The Cartesian form of the metric is found by substituting
t=u+vandz=v—u

1 1 t— 1 t+
ds* = ~di® —cos?{=b(t —2)0(—) + ~a(t +2)8( Z)}d 2
2 2 2’72
1 t—z 1 t+z 1
_ 27 _ tTk - 2 42
cos {zb(z 1)6( 5 )+ 2a(t+z)9( ) }dy 2dz .

(3%)

A. Energy-Momentum Distribution in GR

U = —log(f(u)+g(u),
V. = log(rw—pq) —log(rw+ pq), (35) In this section, we find the energy-momentum distribu-
tion of Bell-Szekeres metric using Einstein, Landau-Lifshitz,
where Bergmann-Thomson and Méller’s prescriptions in GR.
1 1 1 1
r= G+ p=(G-17,
2 2 . s -
1 | 1 1 Using Einstein prescription, the components of the energy-
w o= (5 +g2)2, ¢q= (5 —g)? (36)  momentum density of Bell-Szekeres metric turn out to be
|
1 f—
0% = —lcos{b(r —2)0 ( }{2be( %)+ bl =20 ()P
. r—
+ bsm{b(t—z)e(—)}{49 (—)+(t—z)9”(TZ)}
r+
+ afacos{a(t +2)8("1=2 )}{2@( Z)
, ) , 1tz
+ (e (S )} +Sm{a(t+Z)9( 5 Hae (S 5)
H—
+ 0" (.
®10 _ @20 =0
t —
0% = feos{blt—90( ) H208( ) + bl — 90 ()

+ bsin{b(tfz)G(t—
+ a{—acos{a(t+z)6(
+ (r+z){e’(t

+ (+ )9"( SI

)}{49’(7)+(t

Z

—290"(55)}

t+z

)}{29( )
;Z)} —sin{a(t+z) (

t+z

>}{49’( )
(39)

When we use Landau-Lifshitz complex, we obtain the following energy-momentum density components
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% = [2cos{2b(t — z)e(t )}{Zbe( 5)+b(r— Z)G(I%Z)}Z

256
+ bsin{2b(e —2)8( ) Hao' () + <— o (5)
+ 2bsin{b(t—2)0 <—>}{2asm< <r+z>e<%>><ze<%z>
+<r—z>e<’21>><ze< >+<r+z>e’<%z>>
+ coslar+2)8(— ) @46/ (5) + (- 20" (5 5))

r+z
+ 2cos{b(r—z)e(t—z)}{cos{a(zﬂ) (’iz){4 20%(

r—z

t+z
—)
+ {2605 bl —00 (5 >}2+4a<t+z>e<fgz)e(#>

+ d(+ )29’( )%} +asinfa(t +2)8( < )}{49'(t+z)

t+z

+(t+Z)9"(T)}}}+a{2acos{2€l(r+2)( )}{29( )

(1420 ()1 +sin{2a(r+2)0( ) He e(’”)

+ <t+z>e“<t“>}}]

L' = ?=o,

B0 = s Peos(2bli—20( 5} 260( S5 4 b — 2 (S
+ zbcos{a<r+z> (5 sinfbr - 2)0(55)) Hae >
+ (1= 2)8" ()} +bsin{2b(1 - z>e<7>}{4e’<7>
+ (1-2)8" ()} +2c0s{b(r — 2)8( ) eos{ale

t+z t+z

+ (== >}{2be< %) —2a0(5) 4 (- )0 (L

5)

— at+ )e( )}{m( 424 9(t+z)+b(t— 012

)
2
¥ oali+ )G(i)}fasm{a(ﬂrz)( )}{49(“)

+ (420" ()} +af- 2acos{2a<r+z> (’“)}{zeU“)
+ (t—i—z)e(H—TZ)} —sin{2af(r+2)0( )}{49(’“)
t+Z

+ (t+2)0" ()1 (40)
The energy-momentum distribution in Bergmann-Thomson’s prescription will become

B = o feostble—2)0( 1200 )+l 00 ()P

32n
+ bsin{b(1 - )0 <—>}{4e’<—>+< ~90" (55
+ afacos{a(r +2)0( )}{ze(“) P (P
- sin{a<r+z>e<’“>}{4e(’”) +(r+20" ()
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BlO — B20 =0
30 1 1l =22
B = o leos{blt —2)8( ) H2b0( ) + bl — 085}
. t—z =z o t—z
t+z r—z
+ af~acos{a(t+2)0(" )}{29( )+ (t+2){0/(—))
. r+z
~ sinfa(t +2)0(2° )}{49 (=)
t+z
+ (420" () (41
Finally, energy and momentum densities in Moller’s pre- and its inverse is
scription take the form
0 _ —
M® =0, (a=0,1,2,3) (42) h’ = V2,
L 1 t—z r+z
B. Energy-Momentum Distribution in TPT | — _ . i
hy sec[z{b(t 2)6( 5 )+a(t+2)0( 5 )H,
The tetrad components, in Cartesian coordinates, of Eq.(38) 1 t—z t+z
are given as hy? = SeC[E{b(Z —2)6( 2 ) —a(t—!—z)@(—z )},
oo L h = V2. (44)
0 \/57
1 _ - r—z, 1 Itz Using these values, we can find the Weitzenbdck connections
I = cos{7b{t=2)6( 2 )+ Za(t +2)8( 2 b and the corresponding torsion tensor. These are then used to
find the components of the superpotential that are essential
Wy = cos{=b(r— Z)e(i Z) 1 a(t+ Z)e(t +Z)}’ to obtain energy-momentum density components. When we
2 2 2 make use of the components of superpotential in Eqs.(16)-
1 (18), the energy-momentum density components of Einstein,
h33 = \ﬁ 43) Landau-Lifshitz and Bergmann-Thomson become

REY = feos{b(r —90(' 5 H200( 5+l 09 ()Y
+ bsin{b(t—z>e<%z>}{4e’<"7z>+<r—z>e"<%z>}
+ afacos{a(r+2)0( ) H20()
(1420 ()P +sinfa(r+2)0( ) HAO ()
T <z+z>e”<’“>}}1
hE'Y = hE? =0,
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WEY = feos{bls—20( S 5 H206( S ) 4 bla 20 ()P
+ bsin{b(t—2)0 (—)}{49’(7”( *Z)eﬁ(%)}
+ a{—acos{a(r+2)0 (H_Z)}{ZG(H_Z)

+ (+210' ()P = sinfa(r+2)0( ) Hae (S

+ (+290" (S,

)

h? = 2516n[200s{2b(t 2)0 ( }{Zbe( %) bt~ )QI(FTZ)}Z
+ bsin{2b(t—z)9(zT }{49/ T) ( — )e”(I_TZ)}
+ bsin{p(s —90(5 %)} asinfa(r+ 90( S5 H20(' )

+ (-0 (S H20( ) + 0+ )e’<7>}
+ cosfalr+20( S5 H40 () +i -0 ()

+ 2cos{b<z—z>e<"7z>}{cos{a<z+z>e<7>{4 29%’%)
T+ {200( ) + bl =0 (S P4 +90( e ()
+ @ +2P0 ()} +asinfa(r+2)8( ) 40/ ()
o >e"t”)}}w{zacos{za(wz ”Z }{29(’“)
(420 ()P + sin{2a(r+2)0 (’“){49(’3%
+ <r+z>e"<t“>}}}}}]

L0 = hLZO 0,

B =~ [2cos{2b(i - z>e<’ S H2p8( ) o -0 ()P

256
+ 2beosa(r+2)8( )} sin{b(r - z>e<’ )}{4e'<7>

+ (—20"(5F )}+b51n{2b(t 298N () + (1 -20" (1))

t“)}{%e( %) —2a0(2%)

1+z
2 )
+ b —20 (5 +al+ 20/ (5) —asinfalr+2)0( ) HAO ()
14z

+ 2c0s{b(t—z) (7)}008{0(“*‘2) (

+ ble- >e’<%z>f (r+28' () H260( ) + 24 e<

+ (1+28"(S5)}+a{—2acos{2a(1+2)0( >}{ze<’“

+ <r+z>e'<—>} — sin{2a(t +2)0 (’”)}{4@'(“)

+ (428 (M,

and

B — L feos(b0—0( S H20( 55 +b0— 0S5
t—z

+ bsin{b(r—2)0( =% Z)}{46( )+ -2)0" ()}
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+ a{acos(a(r+z)g(%))(ze(%)
+ (t+z)e’(t%z))2+sin(a(z+Z)e(%)){4e,(t%z)
20" (5O))

hB = hB =0,

hB* = ﬁ[eos{b(z—z)G(t_TZ)}{zbe("TZ)+b(t_z)9,(r—Tz)}2

t—z

+ bsin{b(t—z)@(t_TZ)}{wl(l_Tz)+(f—1)9//(7)}

+ a{—acos{a(t+2)6(
t—z
2

£ +20" (M,

+ (t+2)(0(

respectively.

t+z
)

))? —sinfa( +2)0( ) Hao'(

Heo()

t+z
)
(45)

Similarly, we can proceed to find energy-momentum density components using Moller’s prescription in TPT. The tetrad

components of Eq.(34) are given as

S O

hy =

~

cos{aub(u

o
O O —
o

and its inverse

I o

[S1

0

0
ht' = )
0

S O
OO = =

+bv8(v)}

sec{au®(u)+bvO(v)}

0
0
0 (46)
cos{aub(u) —bvO(v)}

0
0
0 7)
)_

sec{aub(u) —bvo(v)}

Consequently, the energy-momentum density components turn out to be

Mo =

a
K

IV. DISCUSSION

The problem of energy-momentum localization has been a
subject of many researchers but still remains un-resolved. Nu-
merous attempts have been made to explore a quantity which
describes the distribution of energy-momentum due to matter,
non-gravitational and gravitational fields. This paper contin-
ues the investigation of comparing various distributions pre-
sented in the literature in the framework of GR and TPT. The
more information that is assembled on the subject, the better.
We have used four different prescriptions namely FEinstein,
Landau-Lifshitz, Bergmann and Mbéller to calculate energy-

M2 = 0,
[2acos{2au®(u)}{0(u) + ud' (u)}>
+ sin{2au6(u)}{26'(u) +u6" (u)}].

(48)

(

momentum distribution of a Bell-Szekeres metric in the con-
text of both GR and TPT. The resulting non-vanishing com-
ponents of the energy-momentum density are displayed in the
following tables. In these tables, EMD will stand for energy-
momentum density.

Energy and momentum become constant for Méller’s pre-
scription in GR.

EMD |Expression
10 412acos{2au®(u) }{O(u) + ud’ (u)}>
+sin{2au6(u) }{26 (u) + u0" (u)}]

Notice that energy is constant in both GR and TPT.
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From these tables, it follows that the energy-momentum
density components turn out to be finite and well-defined in
each case. It is interesting to note that we obtain same results
for all the four prescriptions used here both in GR and TPT.
We find constant energy for Méller’s prescription in both these
theories. The summary of the results is the following:

an — hEaO — BaO — hB(/lO7
LaO _ hLaO
M) = MY, (a=0,1,2,3).

This indicates that both GR and TPT are equivalent theo-
ries for Einstein, Bergmann-Thomson, Landau-Lifshitz and
Moller’s prescriptions.

It has been shown [48] that for a given spacetime many
quasi-local mass definitions do not give agreed results. In GR,
several energy-momentum expressions (reference frame de-
pendent pseudo-tensors) have been proposed. All this makes
it difficult to decide which one to use, and raises a suspicion
that they could give different energy-momentum distributions
for one fixed spacetime. We can conclude that the use of the
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energy-momentum complexes may not be sufficient to find the
energy-momentum distribution of the physical systems.

Finally, we would like to mention here that the tetrad for-
malism itself has some advantages. These advantages come
mainly from the independence of the tetrad formalism from
the equivalence principle and consequent suitability to the
discussion of quantum issues. Some classic solutions of the
field equations have already been translated into the teleparal-
lel language. Thus TPT seems to provide a more appropriate
environment to deal with the energy problem.
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Table 1(a) Bell-Szekeres Metric: Einstein’s Prescription in GR and TPT

EMD

Expression
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EMD
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Table 1(b) Bell-Szekeres Metric: Landau-Lifshitz’s Prescription in GR and TPT

EMD Expression

2557: [2cos{2b(r — )}{ZbG(TZ) b(t—2z)8 ( 5 )}
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EMD | Expression

h LOO
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Table 1(c) Bell-Szekeres Metric: Bergmann’s Prescription in GR and TPT

EMD

Expression
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Table 1(d) Bell-Szekeres Metric: Moller’s Prescription in GR and in TPT
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