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Nonexistence of Regular Stationary Solution in a Metric Nonsymmetric Theory of Gravitation.
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It is proven that the field equations of a previously studied metric nonsymmetric theory of gravitation do
not admit any non-singular stationary solution which represents a field of non-vanishing total mass and non-
vanishing total fermionic charge.
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1. INTRODUCTION

In a series of papers [1] we have studied a metric nonsym-
metric theory of gravitation. Following the analysis of non-
symmetric theories in the paper of Damour, Deser and Mc-
Carthy [2] the theory was shown to be free of ghost-negative
energy radiative modes even when expanded about a Rieman-
nian background space. In the Minkowski flat space linear
approximation the antisymmetric part g[αβ] of the metric has
been made to obey both of Maxwell-type vacuum equations.
This is what guarantied the no-ghost behavior of the theory.
The implication for the motion of particles and light was an-
alyzed and the results are consistent with the four classical
solar tests of general relativity (GR). Next in [1-III] the elec-
tromagnetic field was included in the theory and the solution
of the field equations were obtained for a charged point mass.
The sources of the field are the energy-momentum-stress ten-
sor T αβ and the fermionic current density Sα.

Here we study the question of non-singular solutions fol-
lowing the pattern of GR [3,4].

Einstein [3] proved that the gravitational field equations of
GR, Rαβ = 0, of a field imbedded in a Minkowski space, do
not admit any non-singular stationary (i.e. with the metric
independent of time) solution which would represent a field of
non-vanishing total mass. Here we show that a similar result is
true for the present nonsymmetric theory: the field equations
do not admit any non-singular solution which would represent
a field of non-vanishing total mass and non-vanishing fermion
charge.

Einstein and Pauli (EP) [4] reduced the prove of the Ein-
stein proposition to its necessary elements with a more objec-
tive reasoning, which we will follow in our case.

The paper is organized as follows. After presenting the field
equations in Sec. 1, we discuss in Sec. 2. the non-singular
theorem. In Sec. 3 we draw our conclusions and highlight
future work.

2. THE FIELD EQUATIONS

The vacuum field equations of the theory are,

Uαβ +Λg(αβ) = 0 , 2.1

g(αβ),γ +g(ασ)Γβ
(σγ) +g(βσ)Γα

(σγ)−g(αβ)Γσ
(σγ) = 0, 2.2

g[αβ],β = 0 2.3

and

g[αβ,γ] ≡ g[αβ],γ +g[γα],β +g[βγ],α = 0 . 2.4

The notation () and [] designates symmetric and antisymmet-
ric parts. In the first equation the first term is the analogue of
the Ricci tensor. It is symmetric and contains only the sym-
metric part of the connection,

Uαβ = Γσ
(αβ),σ−

(
ln
−g√−s

)

,αβ
+Γσ

(αβ)

(
ln
−g√−s

)

,σ
−Γσ

(αλ)Γ
λ
(σβ) .

2.5
Here g is the determinant of gαβ, s the determinant of sαβ, the
inverse of g(αβ) (sαβg(αγ) = δγ

β), and we have used the rela-
tion Γσ

(σα) =
(
ln[−g/

√−s]
)
,α. Λ is the cosmological constant.

The next two equations involve the symmetric and antisym-
metric parts of gαβ =

√−ggαβ where gαβ is the inverse of gαβ
as defined by

gαβgαγ = gβαgγα = δα
γ . 2.6

The last equation is the null curl of g[αβ]. The second field
equation, (2.2), can be solved for the symmetric part of the
connection giving [1-I],

Γσ
(αβ) =

1
2

g(σλ) (sαλ,β + sλβ,α− sαβ,λ
)

+
1
4

(
g(σλ)sαβ−δσ

αδλ
β−δλ

αδσ
β

)
(ln

s
g
),λ . 2.7

Equations (2.3) and (2.4) are Maxwell-type field equations
and that is what have guaranteed the no ghost modes of the
field g[αβ] .

Equation (2.4) came from the relation

Λg[αβ]−Γ[α,β] = 0 2.8

where Γα = (Γµ
αµ−Γµ

µα)/2 = Γµ
[αµ] is the vector involving con-

tractions of the antisymmetric part of the connection. We see
that Γα plays the role of a potential.
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Inside the sources the right-hand side of (2.2) will remain
the same and equations (2.1), (2.3) and (2.4) would con-
tain, respectively, the source terms 8πGT̄(αβ), 4πG

√−gSα and
8πGT̄[αβ,λ]/Λ with T̄αβ = Tαβ − gαβT/2 , where Tαβ is the
stress tensor and T = gµνTµν.

3. THE PROBLEM OF THE NON-SINGULAR SOLUTION

We will put ourselves in the same frame of work of GR
[3,4] setting Λ = 0 in (2.1). Then our starting point, similar to
Rαβ = 0, is

Uαβ = 0 . 3.1

For β = 0 in the stationary situation this gives

Γσ
(α0),σ +Γσ

(α0)Γ
λ
(σλ)−Γσ

(αλ)Γ
λ
(σ0). = 0 3.2

and (2.2) for γ = 0 gives

g(σα)Γβ
(σ0) +g(βσ)Γα

(σ0) = 0 , 3.3

because Γσ
(σ0) = 0, by the relation mentioned just after (2.5).

Contracting (3.2) with g(αρ) we obtain, after a differentiation
by parts and use of (2.2),

(g(αρ)Γi
(α0)),i +Γσ

(α0)g
(αβ)Γρ

(βσ) = 0 , 3.4

where use has been made of time-independence for the first
term. Contracting (3.3) with Γρ

(αβ) we see that the second term

of (3.4) vanishes. Therefore, (g(ρα)Γi
(α0)),i = 0. For ρ = 0 we

have,

(g(0α)Γi
(α0)),i = 0 . 3.5

This relation corresponds to the GR relation in equation (13)
of EP. The method we have used to derive it corresponds to
the GR procedure in [5], as a much shorter road to arrive at
the one of EP. In Appendix A we show how to obtain (3.5)
by a method similar to the one of EP. Continuing, as reasoned
in EP , for a non-singular field this relation holds everywhere.
Hence by integrating over a volume V we can go to the surface
S that surroundings it. In this way we obtain the condition

∫

S(∞)
g(α0)Γi

(α0)n
idS = 0 , 3.6

ni being the unit vector normal to the spherical S taken at in-
finity. The field is supposed to be imbedded in a Minkowski
field. Therefore, we can use the field equations of the theory
of first approximation to calculate (3.6) . We then expand gαβ
around the Minkowskian flat space. Calling hαβ the devia-
tions from the flat space metric ηαβ =diag. (1,−1,−1,−1)
we write

gαβ = ηαβ +hαβ . 3.7

Then,

gαβ = ηαβ−hβα 3.8

with hβα = ηβµηανhµν.Therefore,

g(αβ) = ηαβ−h(αβ); g[αβ] = h[αβ] . 3.9

The inverse to g(αβ) is then

sαβ = ηαβ +h(αβ) = g(αβ) . 3.10

Thence, to first order, Γσ
(αβ) in (2.7) reduces to

Γσ
(αβ) =

1
2

ησλ (
h(αλ),β +h(λβ),α−h(αβ),λ

)
, 3.11

because ln(s/g) =h[µν]h[µν]/2, which is of sec-
ond order. This comes by expanding the relations
g−1 = εαβγδ εµνρσgαµgβνgγρgδσ/4! and s−1 = εαβγδ
εµνρσg(αµ)g(βν)g(γρ)g(δσ)/4!. Writing gαβ = g(αβ) + g[αβ]

we find, to second order, g−1 = s−1−h[µν]h[µν]/2. Therefore,
s/g = 1 + h[µν]h[µν]/2 leading to the second order value of
ln(s/g). Consequently Uαβ reduces to the first order form of
the Ricci tensor. From (3.1) it follows that to first order we
have, as in GR,

g00 = 1− 2m
r

; g(0i) = 0 ; g(i j) =−δi j(1+
2m
r

) . 3.12

These are the values of sαβ as well. As g(0i) = 0 the integrand
of (3.6) become g00Γi

(00)n
i = h00,ini/2 = m/r2. Plugging this

result into that equation we obtain

m = 0 , 3.13

as in GR.
In our case this constitutes the first part of the prove of the

proposition because, besides the matter stress-tensor we also
have the fermionic current as a source of the field. This in-
volves the antisymmetric sector of the field, equations (2.3)
and (2.4), which we then start to analyze. The α = 0 compo-
nent of the first one is

g[0i],i = 0 . 3.14

By integrating over a volume V as before we can, for a non-
singular field, go to the surface S that surroundings it with
radius r and centered at the origin. In this way we obtain the
condition ∫

S(∞)
h[0i]nidS = 0. 3.15

Here use has been made that at infinity we can use (3.9). In
that far Minkowski flat space region h[αβ] obeys, by (2.4), the
usual flat space Maxwell-type null curl equation. Therefore,
h[0i] behaves as its electric field counterpart, that is,

h[0i] =
F
r2

xi

r
=−h[0i], 3.16

where F =
∫ √−gS0d3x is the fermion charge of the system.

Taking this into (3.15) it follows that

F = 0 . 3.17

This completes the proof of the theorem.



Brazilian Journal of Physics, vol. 38, no. 3A, September, 2008 369

4. CONCLUSION

We have proved that the equations of a previously studied
metric nonsymmetric theory of gravitation of a field imbedded
in a Minkowski space, do not admit any non-singular static
solution which would represent a field of non-vanishing total
mass and non-vanishing total fermionic charge. This result is
the counterpart of the well know non-singular theorem in gen-
eral relativity. A topic for future work could be the extension
of the present study to the case in which the electromagnetic
field is also present. The field equations for the combined
gravitational-electromagnetic field have been developed in
[1-III] and the study would follow the same steps as described
here.

APPENDIX A: DERIVATION OF EQ. (3.5) BY THE EP
METHOD

We derive here equation (3.5) in a way that corresponds to
the one in [4].

Considering the variation δUαβ we have, after contracting it
with g(αβ) and differentiations by parts of the two first terms,

g(αβ)δUαβ = (g(αβ)δΓσ
(αβ)),σ− (g(αβ)δΓσ

(σα)),β

−g(αβ)
,σδΓσ

(αβ)−g(αβ)
,βδΓσ

(σα) +g(αβ)[δΓσ
(αβ)Γ

λ
(σλ)

+Γσ
(αβ)δΓλ

(σλ)−δΓσ
(αλ)Γ

λ
(σβ)−Γσ

(αλ)δΓλ
(σβ)] . A1

Now we use equation (2.2) for the third term and for the fourth
one the relation, that follows from it,

g(αβ),β +g(βµ)Γα
(µγ) = 0 . A2

Then cancellations will take place leaving only the two deriva-
tive terms, that is,

g(αβ)δUαβ = Bσ
,σ A3

where

Bσ = g(αβ)δΓσ
(αβ)−g(ασ)δΓρ

(ρα). A4

This corresponds to equation (6) of [4]. If both the original
and varied fields satisfy equation (3.1) we have δUαβ = 0, and,
therefore,

Bσ
,σ = 0 . A5

This corresponds to equation (6a) of [4]. We calculate now
the variation δΓσ

(αβ) produced by the infinitesimal coordinate
transformation

x̄α = xα + εα(x) . A6

For that purpose we need the transformation property of Γσ
(αβ)

under a coordinate transformation to the new system x̄µ. The

one for Γσ
αβ even for a nonsymmetric metric can be found in

[6]. The result for its αβ- symmetric part is

Γ̄µ
(νξ)(x̄) =

∂x̄µ

∂xσ
∂xα

∂x̄ν
∂xβ

∂x̄ξ Γσ
(αβ)(x)+

∂x̄µ

∂xα
∂2xα

∂x̄ν∂x̄ξ . A7

This result can also be obtained working the transformation of
the third order tensor density on the left-hand side of equation
(2.1). We show this in Appendix B.

To first order in the infinitesimal ξα we find, from (A7) and
from

Γ̄σ
(αβ)(x̄) = Γ̄σ

(αβ)(x)+ξρΓσ
(αβ),ρ , A8

the result

δΓσ
(αβ) = Γ̄σ

(αβ)(x)−Γσ
(αβ)(x)

= ξσ
λΓλ

(αβ)−ξλ
αΓσ

(λβ)−ξλ
βΓσ

(λα)−ξρΓσ
(αβ),ρ . A9

Choosing ξα(x) of the form, not affecting the stationary char-
acter of the field,

ξ0(x) = cx0, ξi(x) = 0 A10

with a constant c, we find

δΓ0
00 =−cΓ0

00, δΓ0
(0i) = 0, δΓ0

(i j) = cΓ0
(i j),

δΓi
00 =−2cΓi

00, δΓi
(0 j) =−cΓi

( jk) = 0 . A11

Inserting this in (A4) we find (noticing that Γρ
(0ρ) = 0)

Bi =−2cg(0α)Γi
(0α) . A12

In the time independent regime equation (A5) reduces to
Bi

,i = 0. Thence, as c is a constant equation (3.5) follows.

APPENDIX B: TRANSFORMATION OF Γσ
(αβ)

Calling Aαβ
σ the third order tensor density on the left-hand

side of equation (2.2) we have for its transformed

Āλµ
ν =

∂x̄λ

∂xα
∂x̄µ

∂xβ
∂xσ

∂x̄ν Aαβ
σ D , B1

where D =det.(∂xα/∂x̄λ), the determinant of the coordinate
transformation. Making use of

ḡ(λµ) =
∂x̄λ

∂xα
∂x̄µ

∂xβ g(αβ)D B2

and of its inverse

∂xρ

∂x̄λ
∂xσ

∂x̄µ ḡ(λµ) = g(ρσ)D , B3
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together with the relation [6]

∂D
∂x̄ν = D

∂x̄γ

∂xξ
∂2xξ

∂x̄ν∂x̄γ , B4

a little calculation leads to (A1). To see this we start with the
contribution of the first, (I), term ∂g(αβ)/∂xσ of Aαβ

σ . After a
differentiation by parts and use of the relations above we find

(I) =
∂x̄λ

∂xα
∂x̄µ

∂xβ
∂g(αβ)

∂x̄ν D =
∂g(λµ)

∂x̄ν +
∂x̄λ

∂xα
∂2xα

∂x̄ν∂x̄τ g(τµ)

+
∂x̄µ

∂xβ
∂2xβ

∂x̄ν∂x̄τ g(τλ)−g(λµ) ∂2xρ

∂x̄ν∂x̄γ
∂x̄γ

∂xρ . B5

The contribution of the second one is

(II) =
∂x̄µ

∂xβ
∂xσ

∂x̄ν
∂xρ

∂x̄ξ g(λξ)Γα
(ρσ) . B6

Those of the third and fourth ones are

(III) =
∂x̄λ

∂xα
∂xσ

∂x̄ν
∂xρ

∂x̄ξ g(µξ)Γα
(ρσ) . B7

and

(IV ) =−∂xσ

∂x̄ν g(λµ)Γρ
(ρσ) . B8

Adding these contributions and comparing with the explicit
expression of Āλµ

ν on the left-hand side of (B1) equation (A7)
follows.
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