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It is proven that the field equations of a previously studied metric nonsymmetric theory of gravitation do
not admit any non-singular stationary solution which represents a field of non-vanishing total mass and non-

vanishing total fermionic charge.
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1. INTRODUCTION

In a series of papers [1] we have studied a metric nonsym-
metric theory of gravitation. Following the analysis of non-
symmetric theories in the paper of Damour, Deser and Mc-
Carthy [2] the theory was shown to be free of ghost-negative
energy radiative modes even when expanded about a Rieman-
nian background space. In the Minkowski flat space linear
approximation the antisymmetric part gjop) of the metric has
been made to obey both of Maxwell-type vacuum equations.
This is what guarantied the no-ghost behavior of the theory.
The implication for the motion of particles and light was an-
alyzed and the results are consistent with the four classical
solar tests of general relativity (GR). Next in [1-III] the elec-
tromagnetic field was included in the theory and the solution
of the field equations were obtained for a charged point mass.
The sources of the field are the energy-momentum-stress ten-
sor T° and the fermionic current density S%.

Here we study the question of non-singular solutions fol-
lowing the pattern of GR [3,4].

Einstein [3] proved that the gravitational field equations of
GR, Ryp = 0, of a field imbedded in a Minkowski space, do
not admit any non-singular stationary (i.e. with the metric
independent of time) solution which would represent a field of
non-vanishing total mass. Here we show that a similar result is
true for the present nonsymmetric theory: the field equations
do not admit any non-singular solution which would represent
a field of non-vanishing total mass and non-vanishing fermion
charge.

Einstein and Pauli (EP) [4] reduced the prove of the Ein-
stein proposition to its necessary elements with a more objec-
tive reasoning, which we will follow in our case.

The paper is organized as follows. After presenting the field
equations in Sec. 1, we discuss in Sec. 2. the non-singular
theorem. In Sec. 3 we draw our conclusions and highlight
future work.

2. THE FIELD EQUATIONS

The vacuum field equations of the theory are,

Uap+Ag(ap) =0, 2.1

(aB) | o(00) B (Bo) (aB)
Wy +g %y T8 oy — 8Ty =0, 22
gl =0 2.3
and
8lapy) = &loply T 8ol p 8By =0 2.4

The notation () and [] designates symmetric and antisymmet-
ric parts. In the first equation the first term is the analogue of
the Ricci tensor. It is symmetric and contains only the sym-
metric part of the connection,
A
L) -

_ —8 —8
Voo =Tpo= () 47T (10 7) T
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Here g is the determinant of gqg, s the determinant of sqg, the
inverse of g(®B) (s Bg(‘w = Sy) and we have used the rela-
tion I, = (In[-g/v=s]) ,, A is the cosmological constant.

The next two equatlons 1nvolve the symmetric and antisym-
metric parts of g™ — /¢ where g™ is the inverse of gop
as defined by

gaﬁgay = gmgy(x = 5? . 2.6

The last equation is the null curl of gjg). The second field
equation, (2.2), can be solved for the symmetric part of the
connection giving [1-1],

1
Tfup) = 58 (S0 + 52,0~ Sapa)
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Equations (2.3) and (2.4) are Maxwell-type field equations
and that is what have guaranteed the no ghost modes of the
field 8 [aB] -

Equation (2.4) came from the relation

Aglog) —Tap =0 2.8

where I' = (T — o) /2 = I'“['Ow] is the vector involving con-
tractions of the antisymmetric part of the connection. We see

that I'y, plays the role of a potential.



368

Inside the sources the right-hand side of (2.2) will remain
the same and equations (2.1), (2.3) and (2.4) would con-
tain, respectively, the source terms 8nGT(og), 41G+/—gS* and
8nGTiop /A with Tog = Tog — 8apT /2 . where Tog is the
stress tensor and 7' = g"V7,y.

3. THE PROBLEM OF THE NON-SINGULAR SOLUTION
We will put ourselves in the same frame of work of GR

[3,4] setting A = 0 in (2.1). Then our starting point, similar to
RO‘B = 0, is

Ugp =0. 3.1

For B = 0 in the stationary situation this gives

A
T0).6 + Too)ton) — Doy T (o0)- =0 32

and (2.2) for y= 0 gives
gl +gPore, =0, 3.3

because FE’GO) = 0, by the relation mentioned just after (2.5).

Contracting (3.2) with g(®*) we obtain, after a differentiation
by parts and use of (2.2),

(8 Tg0)),i + T8 P T, =0, 3.4

where use has been made of time-independence for the first
term. Contracting (3.3) with F‘() ap) e see that the second term

of (3.4) vanishes. Therefore, (g(p“)Féa())),,- =0.Forp=0we
have,

(89T =0. 3.5

This relation corresponds to the GR relation in equation (13)
of EP. The method we have used to derive it corresponds to
the GR procedure in [5], as a much shorter road to arrive at
the one of EP. In Appendix A we show how to obtain (3.5)
by a method similar to the one of EP. Continuing, as reasoned
in EP, for a non-singular field this relation holds everywhere.
Hence by integrating over a volume V we can go to the surface
S that surroundings it. In this way we obtain the condition

/ gao

n' being the unit vector normal to the spherical S taken at in-
finity. The field is supposed to be imbedded in a Minkowski
field. Therefore, we can use the field equations of the theory
of first approximation to calculate (3.6) . We then expand gqp
around the Minkowskian flat space. Calling hqg the devia-
tions from the flat space metric ngg =diag. (1,—1,—1,-1)
we write

0 ids=0, 3.6

g(XB:n(xB+haB . 3.7
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Then,
g% =n*P — pPo 3.8
with AP = T]B“no‘"h,,v.Therefore,
g8 — B _ p(oB), gloB] — plof] 3.9
The inverse to g(*®) is then
Sop = MNap +(ap) = 8(op) - 3.10

Thence, to first order, F?OLB) in (2.7) reduces to

I
Tlop) = 5N (o p +hogra = hapa) » - 311

because In(s/g) :h[“"]h[y\,] /2, which is of sec-
ond order. This comes by expanding the relations
g = eopp Syvpcg““gﬁvg“’g“/m and 57! = eop
g‘uvpcg( 1) g(BY) g(10) g(30) /41, ertmg P = g(aB) 4 olap]
we find, to second order, g =5 — Rl i) /2. Therefore,
s/g = 1+h[”v]h[“v]/ 2 leading to the second order value of
In(s/g). Consequently Ugpg reduces to the first order form of
the Ricci tensor. From (3.1) it follows that to first order we
have, as in GR,

2m 2m
go():lfT 28(0;'):O;g(ij):*Sij(lJFT) . 3.12
These are the values of sqp as well. As g(® = 0 the integrand
of (3.6) become gOOFéOO)ni = hoon' /2 = m/r?. Plugging this
result into that equation we obtain

m=0, 3.13

as in GR.

In our case this constitutes the first part of the prove of the
proposition because, besides the matter stress-tensor we also
have the fermionic current as a source of the field. This in-
volves the antisymmetric sector of the field, equations (2.3)
and (2.4), which we then start to analyze. The o0 = 0 compo-
nent of the first one is

gl . —0. 3.14

By integrating over a volume V as before we can, for a non-
singular field, go to the surface S that surroundings it with
radius r and centered at the origin. In this way we obtain the
condition

/ ROy gs — 0. 3.15
(o)

Here use has been made that at infinity we can use (3.9). In
that far Minkowski flat space region hqg) obeys, by (2.4), the
usual flat space Maxwell-type null curl equation. Therefore,
hiog behaves as its electric field counterpart, that is,

F.x 0i
hioyy = 5~ = —h', 3.16

where F = [ /—gS%>x is the fermion charge of the system.
Taking this into (3.15) it follows that

F=0. 3.17

This completes the proof of the theorem.
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4. CONCLUSION

We have proved that the equations of a previously studied
metric nonsymmetric theory of gravitation of a field imbedded
in a Minkowski space, do not admit any non-singular static
solution which would represent a field of non-vanishing total
mass and non-vanishing total fermionic charge. This result is
the counterpart of the well know non-singular theorem in gen-
eral relativity. A topic for future work could be the extension
of the present study to the case in which the electromagnetic
field is also present. The field equations for the combined
gravitational-electromagnetic field have been developed in
[1-III] and the study would follow the same steps as described
here.

APPENDIX A: DERIVATION OF EQ. (3.5) BY THE EP
METHOD

We derive here equation (3.5) in a way that corresponds to
the one in [4].
Considering the variation 8U,g we have, after contracting it

with g(“B) and differentiations by parts of the two first terms,

g(“B)Sng - (g(aﬁ)gr?aﬁ))_o _ (g(“B)f)F?m)),ﬁ
—gloB) O o — 8 Bsr - +g [5r0
o 8 —8I% I o —I% 8 .. Al
oB) 9" (o)) (o2)" (oB) ~ (ah) O (oB)

Now we use equation (2.2) for the third term and for the fourth
one the relation, that follows from it,

g®) g gBre 0. A2

Then cancellations will take place leaving only the two deriva-
tive terms, that is,

g P80y =B o A3
where

_ p
B =g P51y o — g0 8T o) A4

This corresponds to equation (6) of [4]. If both the original
and varied fields satisfy equation (3.1) we have 8Uyg = 0, and,
therefore,

B°s=0. A5

This corresponds to equation (6a) of [4]. We calculate now
the variation 81"cs oB) produced by the infinitesimal coordinate

transformation
B =x%+e%x) . A6

For that purpose we need the transformation property of F?oqs)
under a coordinate transformation to the new system x*. The

369

one for FgB even for a nonsymmetric metric can be found in
[6]. The result for its of3- symmetric part is
ot 0x* oxP o 92x®
T Wt e AT

at o o 5 oDt 3 a3

ve)(F) =

This result can also be obtained working the transformation of
the third order tensor density on the left-hand side of equation
(2.1). We show this in Appendix B.

To first order in the infinitesimal £&* we find, from (A7) and
from

Ty (B) = Ty () +EPTp) - A8

the result

ST (o) = [lap) (¥) — o) (%)

A A A
=8 alap) —&" ol ag) — & 8l a0y

Choosing £*(x) of the form, not affecting the stationary char-
acter of the field,

_EPTO

) =ex’, Ex)=0 A10
with a constant ¢, we find
800 = —clhg, 8L(py =0, 8L = eIy,
89 = —2¢Lgg, 8Ly, = —cL{jy =0 All
Inserting this in (A4) we find (noticing that F?o 0) = 0)
B’ = —2¢g"T;,, . Al12

In the time independent regime equation (AS) reduces to
B’ ; = 0. Thence, as c is a constant equation (3.5) follows.

APPENDIX B: TRANSFORMATION OF F?ocﬁ)

Calling Agﬁ the third order tensor density on the left-hand
side of equation (2.2) we have for its transformed

_ A You ox°
O 0F 0x°  op
AV = 555555 ATD. Bl

where D =det.(dx%*/ dx*), the determinant of the coordinate
transformation. Making use of

ox* o
g — 2 27 GoB)p B2
g ox% gxB g
and of its inverse
axP 8x g(pc)D ’ B3

o7t oxH g
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together with the relation [6]

D & 925
8_ _ Dax 8_ X ’ B4
oxY 0x5 0xYoxY
a little calculation leads to (A1). To see this we start with the

contribution of the first, (I), term dg(®®) /9x® of AgB. After a
differentiation by parts and use of the relations above we find

L P L i
0x% gxB  oxY oxv 0x% 9%V Ix®
L Py gom XX BS
B 0xvox® 0xYoxY oxP
The contribution of the second one is
o 0xC oxP
i (Y] o'}
U =35 am 928 oo - B6
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Those of the third and fourth ones are

_ox (1E) e
(1) = % O a)Egg“ F(pc) . B7
and
9xC ()

Adding these contributions and comparing with the explicit

expression of 1&2,‘” on the left-hand side of (B1) equation (A7)
follows.
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