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(Received on 12 May, 2008)

The electromagnetic form factors of light and heavy pseudoscalar mesons are calculated within two covariant
constituent-quark models, viz., a light-front and a dispersion relation approach. We investigate the details and
physical origins of the model dependence of various hadronic observables: the weak decay constant, the charge
radius and the elastic electromagnetic form factor.
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I. INTRODUCTION

The light-front quantum field theory is discussed by N. Bo-
goliubov et al. in Ref. [1] and an early application to study
hadronic quark bound states may be found in Refs. [2, 3]. A
self-consistent relativistic treatment of the quark spins can be
performed within the light-front quark model, which allows
for a calculation of the reference-frame independent partonic
contribution to the form factor. The non-partonic contribution
cannot be generally calculated, however it can be eliminated
for space-like momentum transfers by an appropriate choice
of reference frame. Therefore, the partonic contribution ob-
tained in this specific reference frame yields the full form fac-
tor.

The light-meson sector, which includes the pion and kaon,
allows us to test QCD hypotheses on the subatomic structure
of hadrons at low and intermediate energies. Yet, many as-
pects of quantum field theory on the light-front and its appli-
cation to bound-state systems give rise to various open ques-
tions; for example, the problems of regularization and renor-
malization on the light-front. For the pion and kaon, the
light-front constituent quark model (LFCQM) has been stud-
ied [4, 5] to describe recent experimental data [6–9].

The description of these bound states using dispersion re-
lations (DR) was first developed in [10]. It was applied to
calculate light mesons form factors [11, 12] and used to elu-
cidate long-distance effects [13, 14] in weak decays of heavy
mesons. More recently the interplay between perturbative and
nonperturbative regions in the pion electromagnetic form fac-
tor was discussed within the DR approach [15], where it was
pointed out the dominance of the nonperturbative contribu-
tion up to rather high values of momentum transfers, going
beyond a previous analysis performed up to intermediate val-
ues of momentum transfers within light-cone sum rule ap-
proach [16].

The DR approach is based on a consistent treatment of the
two-particle singularities which arise in the triangle diagrams
describing elastic as well as inelastic meson-transition ampli-
tudes. In this dispersive approach, these amplitudes are given
by relativistic spectral integrals over the mass variables in

terms of Bethe-Salpeter amplitudes of the mesons and spec-
tral densities of the corresponding triangle diagrams. Thus,
elastic form factors are described by double spectral represen-
tations.

In this paper, we analyze the model dependence which, due
to vertex functions as well as the choice of a constituent quark
mass, usually arises in quark model calculations of elastic
form factors. In the light sector, we compute the pion and kaon
electric form factors for which experimental data is available;
we then use our models to make predictions for the charmed
sector. For simplicity we will assume point-like constituent
quarks, as our model assumptions are made directly on the
explicit form of wave functions and vertices. However, the
constituent quark may have a structure that depends on the
dynamical model of the bound state (see e.g. [17]).

II. ELECTROMAGNETIC FORM FACTORS

The space-like electromagnetic form factor of a pseu-
doscalar meson with mass M is generally given by the co-
variant expression

〈P(p′)|Jem
µ |P(p)〉= (p+ p′)µFem(q2) , (1)

with p2 = p′2 = M2 and the four-momentum transfer q = p′−
p, q2 < 0. The electromagnetic current is Jem

µ = q̄(0)γµq(0)
where q(0) denotes a current quark. Here, Fem(q2) describes
the virtual photon emission (absorption) amplitude by the
composite state of a quark of charge e1 and an antiquark of
charge e2. This form factor depends on the three independent
Lorentz invariants p2, p′2 and q2. The constituent quark am-
plitude of the electromagnetic form factor is assumed to have
the following structure

〈Q(p′)|q̄(0)γµq(0)|Q(p)〉= Q̄(p′)γµQ(p)ξc(q2) , (2)

where Q(p) represents the constituent quark. The form fac-
tor is normalized such that Fem(0) = e1 + e2 and we neglect
the anomalous magnetic moment of the constituent quark in
Eq. (2). The function ξc(q2) describes a constituent quark
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transition form factor. Since the quark model is not formally
derived from QCD, it is unknown. In the following we as-
sume that ξc ' ec = e1 or e2 owing to the fact that constituent
quarks behave like bare Dirac particles [18].

III. LIGHT-FRONT CONSTITUENT QUARK MODEL

The electromagnetic form factor for pseudoscalar particles
is calculated in the impulse approximation, using the Mandel-
stam formula

Fem(q2) =
e1Nc

(p+ p′)µ

∫ d4k
(2π)4 Tr

[
γ5S1(k− p′) ×

γµS1(k− p)γ5S2(k)
]

Λ(k, p)Λ(k, p′)+ [1↔ 2] , (3)

where Si(p) is the Feynman propagator of quark i with con-
stituent mass mi, Nc the number of colors, and Λ(k, p) is our
hadron-quark vertex function model. The bracket [1↔ 2] is a
shortcut for the subprocess of constituent quark 2 interacting
with the photon.

The momentum component Bethe-Salpeter (BS) vertex
model is chosen such that it regularizes the amplitude of the
photo-absorption process and constructs a light-front valence
wave function [4, 5, 19]. In the present study, we use two
different models for the vertex functions taken from previous
work, one of which has a non-symmetrical form under the ex-
change of the momentum of the quark and antiquark [4],

Λ(k, p) =
N

(p− k)2−m2
R + iε

, (4)

while the other has a symmetric form [5],

Λ(k, p) =
[

N
k2−m2

R + iε
+

N
(p− k)2−m2

R + iε

]
. (5)

The normalization constant N is obtained from Fem(0) = e1 +
e2.

The light-front constituent quark model for hadrons used
here is based on quantum field theory and our ansatz comes
with the choice of the BS vertex and point-like quarks. It is
worthwhile to mention that the present LFCQM reproduces
in its full complexity a covariant calculation. Technically, the
use of the Drell-Yan frame (longitudinal momentum transfer
q+ = q0 +q3 = 0) and the projection on to the light-front (per-
forming the integration on the minus momentum component
analytically in the Mandelstam formula) simplifies drastically
the computation of the form factor. This approach has been
applied to the pion [4, 5, 19], the kaon [20] as well as to the
ρ [21].

The use of light-front variables in the evaluation of the
Mandelstam formula, with the corresponding projection on
the light-front hypersurface through the k− = k0− k3 integra-
tion, has its subtleties. Covariance of the starting expression in
Eq. (3), which corresponds to a frame independent form fac-
tor, is an important property to be checked in the final results.
In some cases, as for vector mesons in the present model, it is

necessary to perform a careful analysis of the light-front cal-
culation of the photo-absorption amplitude which accounts for
pair terms or Z-diagrams that survive in the Drell-Yan frame
(see, e.g., Ref. [22]). The Z-diagram vanishes in the calcula-
tion of the plus component of the electromagnetic current ( j+)
with q+ = 0 for pseudoscalar mesons with γ5 coupling and the
momentum component of the BS vertices from Eqs. (4) and
(5).

Therefore, we adopt the plus-component convention of the
electromagnetic current in the Breit-frame with the Drell-
Yan condition (q+ = 0) to compute the form factor of pseu-
doscalar mesons. The k− integration is performed analytically
by evaluating the residues in Eq. (3). In the case of the non-
symmetric vertex (4), the resulting expression for the electro-
magnetic form factor is:

Fem(q2) = e1
N2Nc

(p+ + p′+)

∫ d2k⊥dk+

4π3

Tr+1 [ ]|k−=k−2on

k+(p+− k+)2

×
Λ(k, p)|k−=k−2on

Λ(k, p′)|k−=k−2on(
p−− k−2on− (p− k)−1on

)(
p′−− k−2on− (p′− k)−1on

)

+ [1↔ 2] , (6)

where the on-minus-shell momentum is k−1on = (k2
⊥+m2

1)/k+

(k−2on = (k2
⊥ + m2

2)/k+) and the Dirac trace from Eq. (3) for
µ = + (good component of the current) is

Tr+1 [ ] = −4
[
(p+− k+)

(
2m1m2 +(p+ p′) · k−2k2)

−k+ (
(p′− k) · (p− k)−m2

1
)]

. (7)

The electromagnetic form factor written for the non-
symmetric vertex (4) in terms of the Bjorken momentum frac-
tion x = k+/p+ is given by

Fem(q2) = e1
N2Nc

8π3

∫ d2k⊥dx
x(1− x)4

× ξ(x,~k⊥,~q⊥,m1,m2)
(M2−M′2

0 )(M2−M′2(m2,mR))

× 1
(M2−M2

0)(M2−M2(m2,mR))
+ [1↔ 2] , (8)

where ξ(x,~k⊥,~q⊥,m1,m2) = (p+)−1Tr+1 [ ]|k−=k−2on
, 0 < x < 1

and the free two-quark mass is M2
0 = M2(m2,m1), with

M2(mi,mR) =
k2
⊥+m2

i

x
+

(p− k)2
⊥+m2

R

1− x
− p2

⊥ . (9)

Analogous expressions follow for M′2
0 and M′2(m2,mR) with

p2
⊥ replaced by p′2⊥. The calculation of the electromagnetic

form factor with the symmetrical vertex (5) can be done fol-
lowing the steps presented above. For the interested reader,
the derivation of the form factor for the pion in this model is
performed in detail in Ref. [5].

The mass parameters in these models are limited by m1 +
m2 > M, m1 +mR > M and m2 +mR > M due to the unphysi-
cal continuum threshold as seen in the denominator of Eq. (8).
Quark confinement does not allow for a scattering cut, but
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FIG. 1: The electromagnetic form factor in the impulse approxima-
tion is obtained from the triangle diagram. The vertices and momenta
depicted in the diagram represent the momentum assignment in the
DR approach.

since in the present model the meson is as a real bound state,
i.e. the conditions m1 + m2 > M and mi + mR > M are satis-
fied, the cut is harmless. However, if the meson is a weakly
bound composite particle, the form factor will be very sensi-
tive to changes in the constituent quark mass. This is certainly
not the case for pions and kaons, as they are Goldstone bosons
and strongly bound, yet this sensitivity appears in the case of
heavy pseudoscalars with small binding energies in noncon-
fining models (see, e.g., Ref. [23, 24]). In particular, our nu-
merical results for D+ will exemplify the strong dependence
of the heavy pseudoscalar electromagnetic form factor on the
constituent masses, whereas this effect is minor for confining

models like the DR approach.

IV. DISPERSION RELATION APPROACH

The amplitude is obtained from the triangle diagram shown
in Fig. 1 where the kinematical variables are displayed. The
on-shell meson momenta are p2 = M2 and p′2 = M2. The
triangle diagram may be calculated in various ways — we
choose to put the constituent quarks on-mass shell while keep-
ing the external momenta off-shell with

p̃2 = s , p̃′2 = s′ , (p̃′− p̃)2 = q2 . (10)

Note, however, that p̃′− p̃ = q̃ 6= q.
In the DR approach, the electromagnetic form factors

Fem(q2) are expressed by a double spectral representation (see
references [10–14]),

Fem(q2) = e1

∫ ds Gv(s)
π(s−M2)

ds′ Gv(s′)
π(s′−M2)

× ∆(s,s′,q2|m1,m2) + [1↔ 2] . (11)

We apply the Landau-Cutkosky rules to calculate the double
spectral density ∆V : we place all internal particles on their
mass shell, k2

1 = m2
1, k′21 = m2

1, k2
2 = m2

2 but take the variables
p2 and p′2 off-shell. The double spectral density is then de-
rived from calculation of the triangle diagram

2 p̃µ(q)∆(s,s′,q2|m1,m2) =
1

8π

∫
d4k1d4k′1d4k2 δ(k2

1−m2
1)δ(k′21 −m2

1)δ(k2
2−m2

2)

× δ(p̃− k1− k2)δ(p̃′− k′1− k2) Tr
[
−(/k′1 +m1)γµ(/k1 +m1)iγ5(m2−/k2)iγ5

]
, (12)

with p̃µ(q) = p̃µ− p̃·q
q2 qµ which ensures the Ward identity and

thus charge conservation Fem(0) = e1 + e2 with the proper
vertex normalization.

The vertex of the pseudoscalar meson in the constituent
quark picture has the structure

Q̄a(k1,m1)iγ5Qa(−k2,m2)√
Nc

Gv(s) , (13)

where Qa(k1,m1) represents the spinor state of the constituent
quark of color a and Nc the number of colors. The bound state
vertex function may be related to the mesonic BS amplitude
by

φ(s) =
Gv(s)
s−M2 . (14)

For a confining potential, the pole at s = M2 should appear in
the physical region for φ(s) at s = M2 > (m1 + m2)2. This is,
however, not the case; as well known from the behavior of the

bound-state wave function in an harmonic oscillator potential,
φ(s) is a smooth exponential function of s≥ (m1 +m2)2. This
means that the would-be pole in φ(s) at s = M2 is completely
blurred out by the interaction and it is therefore more appro-
priate to analyze the meson form factors in terms of φ(s) rather
than Gv(s).

For a pseudoscalar meson in the dispersion approach of the
constituent quark model, the BS amplitude φ(s) which ac-
counts for soft constituent quark rescattering is given by [13]

φ(s) =
π√
2

√
s2− (m2

1−m2
2)2

s− (m1−m2)2
w(k)
s3/4 . (15)

The dynamical factor multiplying w(k) stems from the loop
diagram associated with the meson-vertex normalization. The
modulus of the center of mass momentum is

k =

√
(s+m2

1−m2
2)2−4sm2

1
4s

. (16)
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It can be shown [13] that the vertex normalization of
Gv(s) = φ(s)(s−M2), which describes soft constituent rescat-
tering, reduces to a simple normalization of the wave function

∫ ∞

0
w2(k)k2 dk = 1 . (17)

A heuristic choice must be made for w(k). For phenomena
that are predominantly governed by infrared mass scales, it is
sensible in the case of heavy mesons to choose a BS amplitude
parameterized by a function whose support is in the infrared;
for instance functions of Gaussian form,

w(k) = N exp
(−4νk2/µ2) , (18)

where the reduced mass of the quark-antiquark pair is µ =
m1m2/(m1 + m2) and N a normalization constant. For light
pseudoscalar mesons, dynamical chiral symmetry and the
Ward-Takahashi identity are of great importance for their
structure and properties. In non-perturbative approaches, us-
ing for example Schwinger-Dyson equations which incorpo-
rate these QCD features, appropriate parameterizations for the
pion or kaon BS amplitudes are derived [25]. In this work, we
employ power-law wave functions of the form

wn(k) =
N

(1+ν(k/µ)2)n , n≥ 2 , (19)

inspired by the form suggested in Ref. [26] from the analysis
of the ultraviolet physics of QCD.

The size parameter ν is to be determined from experimental
and theoretical considerations. On the experimental side, on
can either choose to constrain the vertex functions, or equiv-
alently the BS amplitude, by the weak decay constant or by
the electric charge radius. It is worthwhile to observe that
both wave function models, Gaussian and power-law, do not
present the singularity problem brought by the scattering cut
due to changes the constituent quark masses, differently from
the present LFCQM.

V. NUMERICAL RESULTS

The electromagnetic form factor of light and heavy pseu-
doscalar mesons are calculated with the two covariant con-
stituent quark models. In the LFCQM, the quarks are in a
bound state while in the DR model the wave functions cor-
responds to confined quarks with Gaussian and power-law
forms. The shape of these functions is obtained from a fit to
the experimental values of fπ, fK and fD or the charge radius
(when available) of the regulator mass mR in the LFCQM and
size parameter ν in the DR approach. The light constituent
quark masses mu = md are allowed to take the values 0.22 and
0.25 GeV (and 0.28 GeV in case of the D+). The strange and
charm constituent masses are fixed to ms = 0.508 GeV and
mc = 1.623 GeV, respectively (see Ref. [27]).

The results for the pion electromagnetic form factor com-
pared to experimental data [6–8] are shown in Fig. 2. The
quark masses used in these calculations are mu = md =
0.22 GeV in both the LFCQM and DR approaches. The
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FIG. 2: The pion electormagnetic form factor in the LFCQM and DR
approaches compared with experimental data from Ref. [6–9]. The
model and respective parameters are explained in the legend.

pion charge radius is used to fit the parameters mR and ν
(power-law wave function with n = 3). The regulator mass
is mR = 0.946 GeV [4] for the non-symmetric vertex and
0.546 GeV [5] the symmetric vertex. In this case, we show
results only for the power-law wave function with n = 3
(ν = 0.088) in the DR approach because the Gaussian vertex
produces a form factor strongly damped with increasing q2,
which violates the asymptotic QCD result predicting a q−2

falloff. The pion electromagnetic form factor for the power-
law wave function and non-symmetric vertex are very similar,
while the symmetrical model has a longer tail. These results
indicate that the electromagnetic form factor of the pion as
a strongly bound system does not particularly distinguish be-
tween models with a scattering cut. The high momentum ex-
perimental data appear to favor the more complex structure of
the symmetrical vertex. It is expected that in this region the
details of the regulator structure are crucial, and moreover a
symmetric form of the vertex is natural.

We remind that the tail of the momentum component of
the pion light-front wave function corresponding to the non-
symmetric [4] and to the symmetric vertex [5] both decrease
as∼ k−4

⊥ , which can also be verified by inspecting Eq. (8). The
power-law wave function model with n = 3 also displays a tail
that falls off with ∼ k−4

⊥ . Thus, in the space-like region up to
10 GeV2, we find that the pion electromagnetic form factor
favors the power-law damping of the wave function with a
∼ k−4

⊥ tail.
The electromagnetic form factor of the K+ obtained in

both models are compared with experimental data [28, 29]
in Fig. 3. The quark masses used in these calculations are
mu = md = 0.22 GeV and ms = 0.508 GeV in both the non-
symmetric vertex and DR approaches. In order to study the
mass dependence of the form factor, we also give results for a
calculation with mu = md = 0.25 GeV in LFCQM case. The
regulator mass is fixed to the pion’s value mR = 0.946 GeV
for the non-symmetric vertex which corresponds to a reason-
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FIG. 3: The kaon electromagnetic form factor in the LFCQM and DR
approaches compared with experimental data from Refs. [28, 29].
The models and respective parameters are explained in the legend

able kaon charge radius [20]. We observe in Fig. 3 that the
change of 0.03 GeV in the constituent quark mass in is not
important as it is much smaller than the kaon binding energy
of about 0.2 GeV. A similar finding can be reported for the
DR approach, where the size parameter µ of the power-law
wave function with n = 2 is fitted (ν = 0.061) to reproduce
the kaon charge radius and is readjusted for n = 3 (ν = 0.158).
Again, we observe that the non-symmetric vertex as well as
the power-law model essentially yield the same form factor
once the radius is reproduced.

Our numerical results for D+ are shown in Fig. 4 for the
DR approach and LFCQM. The size parameter of the Gaus-
sian and power-law (n = 3) models are fitted to fD for md =
0.25 GeV. Up to 10 GeV2 there is no sizable difference be-
tween the two calculations. This is reasonable as mc sets
one large scale whereas the momentum transfer goes only
up to 3 GeV, which is not large enough to discriminate be-
tween the models. The regulator mass of 1.77 GeV in the
non-symmetric vertex model is chosen so as to give a sample
of the LFCQM results. Here, we want to illustrate the con-
stituent quark mass sensitivity when the symmetric and non-
symmetric vertices are used. We remind that the mass parame-
ters in these models are limited by m1 +m2 > M, m1 +mR > M
and m2 + mR > M due to the unphysical continuum thresh-
old as evident from the denominator in Eq. (8). The model
binding energy of D+ is only a few tenths of MeV, as can be
inferred from the D+ and quark masses. Since the D+ me-
son mass is fixed to the experimental value of 1.8694 GeV
and mc = 1.623 GeV, the light quark mass md must be larger
than the value 0.22 GeV we used for the pion and kaon.
The increase of the light quark constituent mass from 0.25
to 0.28 GeV corresponds to a large increase in binding and
consequently to a decrease of the radius, as seen in Fig. 4.
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FIG. 4: Predictions for the D+ electromagnetic form factor in the
LFCQM and DR approach.

VI. CONCLUSION

We have concentrated on the model dependence of elastic
electromagnetic form factors of light and heavy pseudoscalar
mesons. Two different cases were studied by changing the
form of the vertex or wave function and by varying the con-
stituent quark masses. In the light sector, we computed the
pion and kaon electric form factors for which experimental
data is available; we then adjusted our models to make predic-
tions for the charmed sector. Two ansatzes have been stud-
ied in the LFCQM which involve a symmetric and a non-
symmetric vertex form. In the DR approach, Gaussian and
power-law wave functions were used in the calculations.

The form factors of the pion and kaon, both being strongly
bound systems, are sensitive to the short-range part of the ver-
tex functions. Therefore, the tail of the momentum component
of the light-front wave functions for the non-symmetric [4]
and symmetric vertex [5] as well as the power-law model
(n = 3), all decreasing as ∼ k−4

⊥ , is essential to reproduce the
pion space-like data up to 10 GeV2. Moreover, as a conse-
quence of the strong binding of the quarks, changes in the
constituent mass of about ten percent are not important for
the elastic form factor of light mesons, provided the charge
radius (or decay constant) is accordingly refitted. We have
exemplified this in the kaon calculation. The light quark con-
stituent masses are relevant for low momentum transfers of
the order m2

u,d,s around 0.05− 0.3GeV2, which is dominated
by the charge radius and consequently compensated by fitting
the size or regulator mass parameters. Therefore, in qualita-
tive agreement with QCD scaling laws in the ultraviolet limit,
a power-law form of the wave function and our choice of ver-
tices are reasonable in reproducing the form factor data once
the charge radius is fitted.

A recent calculation of the pion form factor within the dis-
persion relation approach including O(αS) QCD perturbative



470 B. El-Bennich et al.

contribution [15], showed in a model independent way that the
nonperturbative part stays above 50% for Q2 ≤ 20 GeV2. The
nonperturbative part is compatible with a pion wave function
close to the asymptotic one, with a momentum scale given by
the effective continuum threshold that determines to a great
extent their results for the form factor. The value of the thresh-
old is extracted from the experimental pion decay constant.
Similarly in our analysis the size or regulator mass parame-
ters are fixed by the experimental values of the weak decay
constants within models that have momentum tails decreas-
ing with ∼ k−4

⊥ , which does not leave not too much freedom
for the pion form factor results below 20 GeV2, as we have
shown. In that respect our calculation and [15] show the dom-
inance of the scale given by the pion decay constant that dials
the vertex or wave function (decaying as a power law) in the
pion form factor up to a fairly large value of momentum trans-
fers.

The electromagnetic form factor of pseudoscalar mesons in
the heavy-light sector is strongly sensitive to the infrared be-
havior of QCD, compared to the case of light mesons. The
relevance of soft physics in this sector is supported by our
calculations of the elastic D meson form factor both within
the dispersion relation and light-front approaches. Once the
size parameter of the Gaussian and power-law wave functions
are adjusted to reproduce the decay constant, the elastic form
factor is insensitive to the vertex model in the space-like re-
gion up to 10 GeV2. Therefore, the large-momentum tail
of the wave function is not important for these results. We
presume that the asymptotic behavior will be important only
for q2 À m2

c beyond the results we presented. The impor-
tance of soft physics may also be appreciated in the covariant
calculations of the form factor with the symmetric and non-
symmetric vertices in LFCQM. The corresponding BS ampli-
tude models a lightly bound heavy-light system with respect
to the light quark mass. The infrared dynamics appears to
be important for the D meson, as the sensitivity to changes

of the constituent quark mass by about 10% suggests. This
small modification produces a sensible change in the nearby
unphysical continuum threshold, as the mass of the D is about
the sum of the constituent quark masses. Therefore, the condi-
tion m1 +m2 > M is barely satisfied (see, e.g., the denominator
of Eq. (8)).

In summary, our study of the model dependence of elas-
tic form factors for pseudoscalar mesons in the light and
heavy-light sectors suggests a separation of the ultraviolet and
infrared physics. The ultraviolet properties of QCD domi-
nate the form factor of light pseudoscalars, whereas infrared
physics and details of quark confinement appear to be impor-
tant for the space-like form factor of heavy mesons below
q2 = 10 GeV2. Hence, the electromagnetic form factors of
heavy-light systems, such as the D and B mesons, provide a
valuable tool in the effort to investigate the nonperturbative
physics of confinement, in contrast with light pseudoscalar
form factors insensitive to the details of infrared physics even
at low momentum transfers once the weak decay constants are
fixed to the experimental values.
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