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Phonon Multiplexing Through 1D Chains
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Recently, phonon propagation through atomic structures has become a relevant study issue. The most impor-
tant applications arise in the thermal field, since phonons can carry thermal and acoustic energy. It is expected
that technological advances will make possible the engineering of thermal paths according to convenience. A
simple phonon multiplexer was analyzed as a spring-mass model. It consists of mono-atomic chains of atoms
with a coupling structure between them. Forces between atoms follow Hooke’s law and are restricted to be first
nearest neighbor interaction. It was possible to establish simple rules on constitutive parameters such as atom
masses and bonding forces that enable one to select a wavelength of transmission. The method used enables the
study of structures of much greater complexity than the one presented here.
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1. INTRODUCTION

The ability to control the propagation of heat has attracted
much attention in part due to the challenge of heat removal
from electronic devices [2]. Interest in phonon transport
heightened since it is the dominant heat carrier in insulators.
The capacity to select the phonon propagation path over sev-
eral options makes possible the consideration of phonon se-
lectivity as a tool for the engineering of thermal and acous-
tic properties of materials and structures using a bottom-up
approach. Controlling phonon transmission is also interest-
ing because of the possibility of engineering forbidden and
allowed energy band gaps [1,3,4].

Preliminary studies on phonon propagation through two
mono-atomic chains of atoms showed that is possible to se-
lect a particular transmission path out of several possibilities
[1]. In this study, transmission coefficients were calculated
by Green’s function formalism. We have implemented a sim-
ple numerical method in MATLAB to analyze the scattering
and filtering of phonons in 1D atomic structures modeled as
spring-mass chains. Our model allows one to tune the wave-
lengths by careful selection of the atomic masses and inter-
acting forces/coupling between atoms. More complex struc-
tures could be analyzed using the same numerical method; 1D
analysis can be set up just specifying a matrix of masses and
a matrix of their bindings force constants.

The plan of this paper is as follows. We begin by describing
the implemented numerical method for calculating scattering
on 1D structures. Then we verify previous results [1] using
this numerical method. Finally we propose novel structures to
control phonon propagation as well as simple rules of design.

2. NUMERICAL METHOD

We consider here a lattice as a mass-spring network. All
masses lay on the same plane; their displacements are ruled by
the Hook’s law along a single degree of freedom perpendic-
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ular to the containing plane. In other words, only transverse
propagation modes are taken into account.

FIG. 1: Schematic of a simple mass in the network.

The numerical method used to solve the transmission and
reflection coefficients of phonons through the structure is
based on the discrete finite differences method. Each mass
mi is connected to another m j by a spring with a force con-
stant ki j. It is also coupled to a fixed substrate through another
spring ki. Using Hooke’s and Newton’s Laws, the motion of
i-th mass (Fig. 1) is given by

mi
d2ui

dt2 =
N

∑
j=1, j 6=i

ki, ju j−ui

N

∑
j=1, j 6=i

ki, j−βiui, (1)

where ui is the displacement of mi around its equilibrium po-
sition. Taking Fourier transform, Eq. (1) transforms into

0 =
N

∑
j=1, j 6=i

ki, ju j +

(
ω2mi−

N

∑
j=1, j 6=i

ki, j−βi

)
ui. (2)
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Equation (2) specifies the oscillation amplitude of every
atom in the system as a function of the masses, force con-
stants and oscillation frequency (ω). Although, it is desired to
model the system behavior as a function of the wave number,
and it should be noticed that there is no term involving the
temperature. At low temperature, the network is only excited
by the entering phonon.

FIG. 2: Network with one input and many outputs. R is reflection
coefficient and Ti is the transmission coefficient at output i.

The network has a unique input but several outputs. Each of
these is connected to a mono-atomic chain of atoms (Fig. 2).
The mono-atomic chains have semi-infinite length and each
one has the same characteristic mass (m1) and force constant
(k’); the separation between consecutive masses is a. This
condition implies that the propagating waves (time indepen-
dent) moving in and out the system are given by

un (xn) = Ane±ikxn ,xn = na,n = ...,−1,0,1,2, .... (3)

This assumption also sets a condition on the dispersion re-
lation of the reflected and transmitted waves [1]

ω2 =
2k′

m1
(1− cos(ka))+

β1

m1
, (4)

where k is the wave vector.
From Eq. (4) and Eq. (2), it is possible to obtain a single

equation which models the behavior of the network

0 =
N

∑
j=1, j 6=i

ki, ju j +
[(

2k′

m1
(1− cos(ka))+

β1

m1

)
mi−

N

∑
j=1, j 6=i

ki, j−βi

]
ui. (5)

As long as the waves entering and exiting are given by Eq.
(3) it is possible to establish that these waves are

uIn (xn) = Aeikxn +Be−ikxn

u j
Out (xn) = C jeikxn

;xn = na, (6)

where A and B represent the amplitude of the incident and
reflected waves respectively; and C j is the amplitude of the
wave exiting from the jth output. Now, using Eq. (6) we set
the following boundary conditions

uIn (0) = A+B(a)
uIn (−1) = Ae−ika +Beika(b)
u j

Out (0) = C j(c)
u j

Out (1) = C jeika(d)

, (7)

Boundary conditions in Eq. (7) only take into account the
value of the amplitude at the input and outputs and the previ-
ous and next position respectively.

Combining Eq. (2) and Eq. (7) the following system is
obtained

A

[
k′+

N
∑

i 6=p
kpi + kp−ω2mp− k′e−ika

]
= B

[
ω2mp−

N
∑

i 6=p
kpi− kp− k′− k′eika

]
+

N
∑

i 6=p
kpiui

Ak′ = Bk′+
N
∑

i 6=q,p
kqiui−

[
ω2mq−

N
∑

i 6=q
kqi− kq

]
uq

0 =
N
∑

i 6= j
k jiui +

[
m jω2−

N
∑

i6= j
k ji− k j

]
u j

0 =
N
∑

i 6=s j

ks j iui +C j

[
ω2ms j −

N
∑

i 6=s j

ks j i− ks j − k′+ k′eika

]

0 =
N
∑

i 6=s j ,r j

kr j iui +

[
ω2mr j −

N
∑

i 6=r j

kr j i− kr j

]
ur j + k′C j

, (8)
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where k′ is the force constant of the input and output chains,
p is atom bonded to the input chain, s j is the atom bonded to
jth output chain, q is the atom bonded to the p atom (p can be
only bonded to the input chain and q atom), r j is the previous
atom bonded to the s jatom.

The system given by Eqs. (8) was solved using MATLAB.
In order to make the model adaptable to any spring-mass net-
work, the input parameters were selected as follows:

• A matrix containing all the constant forces between
each pair of atoms. The position of the force constant
value in the matrix specifies the atoms which are linked
by the corresponding spring.

• A vector containing the mass values of each atom.

• A vector containing the force constants attaching each
mass to a ‘frozen’ substrate.

3. RESULTS

3.1. Dobrzynski Network

Dobrzynski [1] proposed a simple phonon network in
which traveling phonons can flow from one atomic chain to
another at certain wave vector. The structure is composed by
two identical linear mono-atomic chains with characteristic
mass m. These chains are bonded to a fixed substrate by linear
force constant K. The distance between neighboring atoms is
d. The atomic interaction is reduced to the first neighbors by
a linear force constant β for oscillations perpendicular to the
substrate plane, so only phonon transverse modes are being
taken into account.

Both chains are connected to two additional atoms of mass
M which are connected together and deposited on the same
substrate as shown in Fig. 3. The force constant binding the
chains and the new atoms is β1. The force constant between
atoms 5 and 6 in Fig. 3 is β2, both atoms are also fixed to the
substrate, the force constant involved in this case is K′.

FIG. 3: Phonon selector proposed by Dobrzynski [1]. It has one input
and three outputs.

Dobrzynski [1] analytically showed that a unitary transmis-
sion coefficientT13 (from input to output 3 in Fig. 3) could be
achieved by setting the parameters of the system as follows:
M/ m = 1, K/ β = 1, K′ / β = 2.8, β1 / β = 0.2 and β2 / β = 0.04.
These results were verified applying the numerical method
above explained as shown in Fig. 4. This figure shows the re-
flection and transmission coefficients for the mass-spring net-
work shown in Fig. 3 as function of the reduced wave vector
kd obtained from the simulations performed. It should be no-
ticed that T13 has a peak, reaching unity at a reduced wave
vector slightly above π/2.

This unitary peak occurs at a unique reduced wave vector.
Several simulations varying the relations M / m, β1 / β and K/
β were done showing that the reduced wave vector in which
the peak transmission (T13) occurs can be selected as desired
from a range between 0.1 π and 0.8 π.

Figure 5 presents how the reduced wave vector in which
transmission peak (T13) occurs and the magnitude of such
peak is affected by the mass ratio M/ m. This effect may be ex-
plained by the direct relation between the coupling resonance
and mass ratio. Since the central wave vector is always de-
creasing, there is a unique mass ratio that makes possible the
tuning of the system at a desired wave length in which T13 is
maximal.

It should be noticed that peak’s magnitude in Fig. 5 will be
unitary when M/ m = 1. For other values, the magnitude is
less than 1. However, within the range 0.66 to 2.6 the peak’s
magnitude is above 0.9. This makes it possible to tune the
system at any wave vector between 0.15π and 0.8π.

On the other hand, we define the quality factor (Q) as the
ratio between the central wave vector (k0) and the width (∆k)
of the region which corresponds to a transmission coefficient
(T13) greater than half peak value. According to this, it was
found that the quality factor is over 30 when the ratio M / m is
between 0.6 and 3 as shown in the Fig. 6.

The relation between β, β2 and β1 is another tuning param-
eter. By satisfying ββ2 = β2

1, the transmission peak reaches
its maximum value, as shown in Fig. 5. This relation makes
possible to choose two of three parameters (β, β2, β1) in order
to tune the network. Fig. 7 presents the peak transmission as a
function of β1(β = 1, β2 = 0.04). It should be noticed that the
optimum value of β1 is 0.2, which corresponds to the square
root of β2.

Figure 8 shows the central wave vector for T13 as a function
of the ratio K / β. This implies that the force constant binding
the atomic chains to a fixed substrate could be used as an input
parameter to tune the system. According to Fig. 8, K / β may
be used to choose wave vectors between 0.15π and 0.71π with
a peak magnitude greater than 0.9.

3.2. Simple Chain

Since the numerical method presented before reproduces
the analytical results obtained previously [1] for structure in
Fig. 3 it should be possible to use it to analyze further systems.
Consider an infinite mono-atomic chain (inter-atomic distance
aand mass m1) with a single inserted mass (m2) at some point
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FIG. 4: Performance of the system in Fig. 3 obtained by simulations. (a) Reflection coefficient. (b) Transmission coefficient from input to
output 2. (c) Transmission coefficient from input to output 3. (d) Transmission coefficient from input to output 4.

FIG. 5: Peak value and wave vector where transmission peak occurs
as function of masses ratio.

FIG. 6: Quality factor for Dobrzynski network as function of the
ratio M/m.

FIG. 7: Peak value and wave vector where transmission peak occurs
as function of spring constants ratio.

FIG. 8: Peak value and wave vector where transmission peak occurs
as function of ratio between force constant binding to a fixed sub-
strate and inter-atomic force constant.
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FIG. 9: Mono-atomic chain with an impurity.

as is shown in Fig. 9. In this case we want to establish the
system parameters to select a single wavelength at which the
vibrations may pass across the inserted mass; in other words
we want to construct a simple phonon filter. When an incom-
ing wave reaches the inserted mass, it will be dispersed, creat-
ing a reflected and a transmitted wave. The goal is to obtain a
unitary transmission coefficient at any arbitrary wave vector.

Let b = µ / κ with µ = m1 /m2 and κ = k1 / k2. Where k1 and
m1 are the force constant and mass of the mono-atomic chain
respectively; k2 is the force constant linking the impurity with
its closest neighbors and m2 is the mass of the inserted mass.

In order to obtain a single wave vector in which transmis-
sion is close to 1, m2 and k2 have to be smaller than m1 and
k1 respectively. In others words, µ and κ have to be greater
than 1. If m2 and k2 are too small, the bonding between the
two halves of the chain will be very loose and the transmission
would be possible only for a single resonant frequency.

FIG. 10: Quality factor as a function of κ.

According to simulations, it is possible to control the qual-
ity factor. This means that we can specify the device selectiv-
ity. Keeping b = 1 (i.e. κ = µ), a quality factor between 0 and
350 can be achieved by taking values of κ between 3 and 200.
The final relation is almost linear, as is shown in Fig. 10. A
simple linear regression gives the following expression:

κ = 0.575Q+1.53. (9)

Equation (9) enables the choice of filter quality factor by
setting the value of κ.

Figure 11 shows the central wave number of the filter as a
function of b. Three intervals can be identified. Interpolating
the curve in Fig. 11, the parameter b can be expressed in terms
of k as follows:

FIG. 11: Filter central wave vector as function of b.

b(k) =





4.527
( ka

π
)2

3.03
( ka

π
)−0.5157

2−4.527
[( ka

π
)−1

]2
,

0 < ka
π < 0.33

0.33 < ka
π < 0.66

0.66 < ka
π < 1

. (10)

Equation (10) gives a simple rule for tuning the filter at any
reduced wave vector.

As an example, suppose that it is desired to tune the filter at
a central wave vector k = 0.6π with a quality factor over 80.
First, using Eq. (9) we find that κ = 50 is enough to achieve
the minimum quality factor; then, using Eq. (10) we find that
b = 1.30, which means that µ = 65. The final filter behavior
is shown in Fig. 12, and it clearly demonstrates the validity of
the tuning relations derived.

Fig. 12. Filter tuned at k = 0.6 .
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FIG. 12: Filter tuned at k = 0.6π.

3.3. Bilinear Chain

Taking advantage of the relations obtained before, we pro-
pose a new system composed of two simple filters. The input
chain which splits in two chains as shown by Fig. 13. All
three chains have the same constitutive parameters (mass and
force constant) and each output chain has an inserted mass
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creating two filters. This new system is expected to behave
like a wavelength based selector.

FIG. 13: Bilinear chain, composed by one input and two outputs.

For the system in the Fig. 13, after several simulations it
was determined that the maximum values on the transmission
coefficients are achieved when following conditions are satis-
fied: k2 = k1, k3 = 0.7 k1 and m4 = 1.31 m1. Additionally we
have to declare the following set of parameters:

κ1 = k1
k4

κ2 = k1
k5

µ1 = m1
m2

µ2 = m1
m3

b1 = µ1
κ1

b2 = µ2
κ2

. (11)

As an example, it is desired to tune the first filter at 0.4π and
the second one at 0.6π, each one with a quality factor greater
than 80. Using Eq. (9) and Eq. (10) we propose the following
parameter values: κ1 = κ2 = 50, µ1 = 34.8 and µ2 = 65. The
result filter behavior is presented in Fig. 14.
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FIG. 14: Selector of the Fig. 13 tuned at 0.4π and 0.6π. (a) Reflec-
tion coefficient R. (b) Transmission coefficient from input to output
1 (T1) tuned at k = 0.4π. (c) Transmission coefficient from input to
output 1 (T2) tuned at k = 0.6π.

Figure 14 shows that one is allowed to obtain a selector
tuned to two arbitrary wave vectors. Nevertheless, the mag-
nitude of each peak does not reach 1. The maximum value

achieved was close to 0.8. This phenomenon can be explained
as follows: When one chain is at its maximum transmission
coefficient, the other one is reflecting almost all the incoming
energy. However, this reflected energy will not go to the first
filter but will go back through the input chain. This implies
that if we increment the number of output chains, the trans-
mission peak of each filter will decrease.

4. CONCLUSIONS

We have implemented a numerical method that is simpler
than the one earlier reported [1], to study phonon propaga-
tion through monatomic and diatomic chains. The model
presented allows the tuning of wavelengths to be transmitted
along atomic chains by selecting the coupling (k’s) between
atoms and their masses (m’s).

The results showed that in rigid coupling chains character-
ized by a larger k, phonon propagation is more coherent than
in soft coupling. The study shows that a simple monatomic
chain with an extra foreign atom along the chain behaves as a
band pass filter. Design parameters such as the ratio of masses
and coupling constants (k’s) outline the relevance of inserted
masses in the monatomic chains. In addition, transmission is
highly affected when the inserted mass and its coupling are
larger compared to the host. The mass acts as a scatterer that
can enhance or reduce the reflection of the incoming phonon
wave, generating peaks when the coupling to the host chain is
loose.

For linear chain with an impurity, the quality factor shows a
linear relationship with the ratio between impurity and chain
force constants. When the bonding force of the impurity is
too loose then the resonance can only be achieved at a very
narrow interval. So, in order to increment the selectivity of
the filter, it is necessary that the bonding linking the impurity
to the chain to be very weak. As a design parameter, the ratio b
sets the wave vector which corresponds to a unity transmission
coefficient; besides, the ratio κ sets the quality factor.

We found that it is possible to choose energy transfer paths
for nanostructures, a result that may have profound implica-
tions for thermal transport. This study also demonstrates the
efficiency of a simple spring-mass system in modeling simple
phonon transmission structures, and it appears that the model-
ing methodology could be used for more complex structures.
It may be that these insights can provide new avenues for ex-
ploration in material science engineering.
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