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First Principle Calculation of Potential and Multi-Channel Transport
in Fe/MgO/Fe Hetero-Junction
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In this work we studied the behavior of multi-channel tunneling through a realistic Fe/MgO/Fe hetero-junction
ab initio potential. For this purpose we obtained Fe/MgO/Fe(001) hetero-junction effective potentials using the
full potential-linear augmented plane wave WIEN2k code together with the generalized gradient approximation
for the exchange-correlation potential. Multi-channel tunneling through the Fe/MgO/Fe hetero-junction barrier
was studied within a few modes model. The transfer matrix technique was used to calculate the transmission
and reflection amplitudes between Bloch states in the semi-infinite leads. The transmission coefficients were
used in Fisher and Lee formula for conductance, an expression derived from Kubo formula and valid for any
number of scattering channels.
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I. INTRODUCTION

In recent years much effort was devoted in the understand-
ing of the mechanisms of spin-dependent tunneling conduc-
tance between ferromagnetic electrodes separated by insulat-
ing oxide barrier. Most of the studies were addressed to the
Fe/MgO/Fe(001) magnetic tunnel junctions (MTJ). Experi-
mentally, the ability to deposit epitaxially [1–6] MgO over
Fe-bcc and then another Fe electrode on top of MgO was
able to demonstrate large values of tunnel magnetoresistance
(TMR) of up to 220 per cent [7, 8]. Even larger values of
TMR were obtained for MTJ with Co electrodes of more that
400 per cent at room temperature [9]. The high values of
TMR make these MTJs potential candidates for future high-
density [10, 11] and logic [12] device applications.

One of the goals of the present paper is to study the behav-
ior of scattering wave functions in realistic ab initio potential.
In this work we studied the behavior of multi-channel tunnel-
ing through Fe/MgO/Fe(001) hetero-junctions, however our
methods are applicable to any tunneling multi-channel prob-
lem. To do that, we first obtained effective potentials by per-
forming first-principle calculations on super-cells that simu-
late Fe/MgO/Fe(001) MTJ with the full-potential augmented
plane waves (FP-LAPW) WIEN2k code [13]. Next, in order
to calculate the conductance of the system, we used the wave
function matching technique to calculate the transmission and
reflection amplitudes between Bloch waves in the leads [14].
Then by separating incoming and outgoing waves we build
up the scattering matrix S. The matrix elements of S provides
all the necessary information to calculate conductance [15].
Contrary to [16] we have not calculated eigen-vectors of S as
we can use for conductance the relation Tr(tt+) = ∑ |t|2a,b.

The paper is organized as follows: in the next section the
details and results of the Fe/MgO/Fe hetero-junction potential
calculations are given. In Sec. III the mathematical general
solution of the Schrodinger equation for the system is found
and in Sec. IV the available physical solutions for the system,
that corresponds to traveling or evanescent waves, are build.
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In Sec. V we shown the procedure employed to calculate the
conductance through the hetero-junction. The conductance
results for a two modes model within the Fe/MgO/Fe system
are shown in Sec. VI. Finally in Sec. VII the conclusions are
presented.

II. THE HETERO-JUNCTION POTENTIAL

We calculated the electronic structure of pure bulk α-
Fe and MgO and also the magnetic hetero-junction α-
Fe/MgO/α-Fe(001) with the FP-LAPW WIEN2k code within
the framework of density functional theory [17, 18]. We
considered for the calculation of the hetero-junction a super-
cell with 3 and 17 mono-layers of MgO and Fe respec-
tively; we will labeled this super-cell as 9Fe/3MgO/8Fe(001).
For the bulk elements calculations (Fe and MgO), the ex-
perimental lattice parameters were employed. For the
9Fe/3MgO/8Fe(001) hetero-junction calculations, we im-
posed the MgO mono-layers to have their in-plane lattice pa-
rameter slightly reduced in order to match with the Fe (bcc)
interface. Furthermore the distance between MgO mono-
layers have been increased to keep the volume of the con-
ventional unit cell equal to the bulk MgO. In addition, we
considered that Fe atoms sits atop the oxygen atoms on the
interface. The distance between iron and oxygen atoms con-
sidered in our calculation was 2.16 Å.

After the electronic structure calculation for the hetero-
junction was done, we analyzed how the MgO potential per-
turbed the Fe-bcc region inside the super-cell. It was seen
that this perturbation decays quickly with a length of about 2
to 3 Fe layers near the Fe-MgO interface and from this point
the potential behave like a periodic bulk iron. This quick de-
cay of the perturbation is due to the small screening length
of the Fe electrons (few Bohr distance). In this sense, the
nFe/MgO/mFe super-cells with n and m > 5 number of Fe
layers will represent good MTJ for transport calculations.

The next step for the electronic structure calculations of
the MTJs is to compare the averaged electron charge densi-
ties of Fe atoms at the edge sites of the super-cell that simu-
late the 9Fe/3MgO/8Fe(001) MTJ, with the charge density of
the pure Fe bulk calculation and check that there are equal.
Atomic positions of Fe at the edge of the MTJ must simulate
properties of the bulk Fe like charge, potential density profiles
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and symmetry (cubic in this case), but in super-cells with a fi-
nite number of Fe layers there are not quantitatively the same.
This will depend on the number of Fe layers used to describe
the MTJs in the super-cell. In our 17 Fe layers MTJ calcula-
tion, we observed that the charge density profile of the most
distant Fe layers are quite similar to the charge density of bulk
Fe. We performed this comparison by checking the total elec-
tronic charges inside the muffin-tin (MT) radius for spin up
and spin down populations. This is a good check because we
chose as large as possible MT radius that approximately 96
percent of the electronic charge is inside the spheres, and at
the interstitial region the charge density is near homogeneous
and very similar to bulk Fe. From the calculation of neutral
9Fe/3MgO/8Fe(001) super-cell we found a slightly leakage
of electronic charge of Fe (compared to bulk Fe) at the edge
and next to the edge layers of less that 1 per cent. To adjust
this electronic charge we performed a series of calculations
in charged super-cells adding fractional electron charges until
we reached quite similar electronic charges compared to bulk
Fe with a difference of less than 0.1 per cent. The electronic
valence charge of neutral 9Fe/3MgO/8Fe(001) super-cell is
286 electrons. A charged super-cell with +0.4 electron was
needed to fill the MT spheres at the edge of the Fe layer with
appropriate electronic charge.

The converged potential for bulk iron and
9Fe/3MgO/8Fe(001) hetero-junction were used in spin-
dependent conductance calculations as described in the
next sections. In this calculation, the bulk Fe potential
obtained above was considered as the lead potential and two
semi-infinite Fe crystals, representing the left and right sides
of the 9Fe/3MgO/8F(001) hetero-structure, were built. Due
to applications in the next sections, we need to calculate the
Fourier components of the full-potential along the z axis. For
this purpose we defined a 2D unit cell in the XY plane with
periodic conditions, and within this plane the Fourier expan-
sion of the potential for the (x,y) coordinates are constructed.
To performed this calculation we considered a conventional
unit cell, i.e. a cubic with bulk Fe lattice parameter. We
built XY planes of grid points r|| along the z coordinate
with no regular spacing (more dense around atomic layer
positions) for discretization. We proceed similarly for the
9Fe/3MgO/8Fe(001) super-cell.

To obtain the Fourier components of the potential within
this XY unit plane, we used a two-dimensional plane wave
φn||,k||(r||) defined in the (x,y) coordinates as

φn||,k||(r||) =
1√
A

expi(k||+G||)·r|| , (1)

where n|| is a pair of indexes (n1,n2) that define the reciprocal
lattice vector G|| = n1b1 + n2b2, (b1,b2) are primitive vec-
tors from a fixed origin of the crystal in the reciprocal space,
k|| represent a point (kx,ky) inside the first Brillouin zone in
the two dimensional reciprocal space and A is the area of the
squared XY unit cell in the real space. The unit cell has a
lattice parameter a equal to the experimental Fe-bcc bulk lat-
tice parameter. Two primitive orthogonal vectors t1 = ai and
t2 = aj, that reproduce a two dimensional crystal, are defined.
With these vectors, primitive vectors in the reciprocal space
can be constructed, named b1 = (2π/a)i and b2 = (2π/a)j.
This information together with r|| = xi+yj and k|| = kxi+kyj
define the (x,y) plane wave for our system, Eq. 1.

FIG. 1: Fourier components of the hetero-junction potential for
some indexes of the (x,y) function φn||,k|| .

With the above definitions, the Fourier components of the
potential can be obtained by

Vm||,n||(z) =
∫
A

φ
∗
m||,k||(r||)V (r||,z)φn||,k||(r||)dr||. (2)

Note that Vm||,n||(z) in Eq. 2 is k|| independent since it involves
multiplication of complex conjugates with the same k||. In
Fig. 1 are displayed the Fourier components of the potential
as a function of the z coordinates, considering a few pairs
of indexes {m||,n||}, for bulk iron and 9Fe/3MgO/8Fe(001)
hetero-structure respectively.

III. THEORY OF 3D TUNNELING

In order to calculate tunneling conductance through the
hetero-junction, we must solve the 3D Schrodinger equation
that in Hartree atomic units looks

HΨ
σ(r) =

(
−1

2
∇

2 +V σ(r)
)

Ψ
σ(r) = Eσ

Ψ
σ(r), (3)

where r is the coordinate of the particle, σ indicates spin and
V σ(r) is the potential for the system. If the system has peri-
odicity in the (x,y) coordinates, as in our case, it is possible to
reduce the three dimensional Schrodinger equation of Eq. 3 to
a 1D one. To obtain the one dimensional Schrodinger equa-
tion along the z direction (through the barrier layer) we used
an substitution for the wave function Ψσ of the whole system
of the form

Ψ
σ(r||,z) = ∑

n||

φn||,k||(r||)ξ
σ
n||(z), (4)

where φn||,k||(r||) is the two dimensional plane wave defined
in Eq. 1 and ξσ

n||(z) is a z coordinate dependent function. We
substitute Eq. 4 into Eq. 3 and integrate over the (x,y) coor-
dinates. This integration was accomplished after multiplying



i
i

“20” — 2009/5/13 — 10:13 — page 244 — #3 i
i

i
i

i
i

244 S. Ujevic et al.

Eq. 3 by φ∗m||,k|| and recalling the orthogonal properties be-
tween functions φn||,k|| and φ∗m||,k|| . This procedure lead us to

1
2

d2

dz2 ξ
σ
n||(z)+

1
2

k2
n||(z)ξ

σ
n||(z) = ∑

m|| 6=n||

V σ
m||,n||(z)ξ

σ
m||(z), (5)

where 1
2 k2

n||(z) = E −V σ
n||,n||(z)−

1
2 [k|| + G||]2 and V σ

m||,n||(z)
being the Fourier components of the potential defined in
Eq. 2. The Eq. 5 form a set of one dimensional coupled
second order differential equations that relates the functions
{ξσ

n||}. In order to solve the set of linear differential equations
of Eq. 5 it is necessary to obtain the set of Fourier components
of the potential V σ

m||,n||(z). Since the number of Fourier com-
ponents determine the number of coupled differential equa-
tions in Eq. 5, we will have for N Fourier components N cou-
pled differential equations involving ξσ

n|| (n|| = n1 to nN) func-
tions in each differential equation. Note that we have used
here n1, ...,nN to specify different pair of indexes; do not be
confused with the previous notation of n1 being one compo-
nent of the pair n||.

To proceed further we introduce 2N initial conditions ei
at z = 0 in Eq. 5. With this set linear independent solu-
tions {ξσ

n||ei
} are found, and the wave functions ξσ

n|| can be

expanded as ξσ
n||(z) = ∑

2N
j=1 α jξ

σ
n||e j

(z) using a set of coeffi-
cients {α j}. Finally the wave function of Eq. 4 can be written
as

Ψ
σ(r||,z) = ∑

n||

2N

∑
j=1

φn||,k||(r||)α jξ
σ
n||e j

(z). (6)

The wave function of Eq. 6 represents the general mathemat-
ical solution to the Schrodinger equation of Eq. 3. This solu-
tion depends on a set of unknown parameters {α j} and typi-
cally growth exponentially at z→±∞. To obtain physically
acceptable solutions one has to consider additional boundary
conditions.

IV. BAND STRUCTURE AND BLOCH FUNCTIONS FOR
BULK MATERIALS

In this section we exercise the set system of Eq. 5 to calcu-
late the band structure of bulk Fe and obtain the Bloch func-
tions that propagates through the z direction in the crystal.

We can used the wave function found in the previous sec-
tion to write the general solution for bulk Fe. It has the
form of Eq. 6 with ξσ

n||e j
(z)→ ξ̂σ

n||e j
(z), in which the func-

tions {ξ̂σ
n||e j
} are the solutions of the set of coupled differ-

ential equations of Eq. 5 using specific Fourier components
V σ

m||,n||(z) of the potential for bulk Fe. To find the available
Bloch states along z direction we applied Bloch condition,
Ψ(r + R) = expik·R Ψ(r) with R = (Rx,Ry,Rz) a Bravais lat-
tice vector, and its first derivative over z to our Fe wave func-
tion. We obtained

Mr+R

 α1
...
α2N

= expik·R Mr

 α1
...
α2N

 , (7)

where Mr is a 2Nx2N matrix given by

Mr =


f1,1(r) f1,2(r) ... f1,2N−1(r) f1,2N(r)
f
′
1,1(r) f

′
1,2(r) ... f

′
1,2N−1(r) f

′
1,2N(r)

...
...

fN,1(r) fN,2(r) ... fN,2N−1(r) fN,2N(r)
f
′
N,1(r) f

′
N,2(r) ... f

′
N,2N−1(r) f

′
N,2N(r)

 (8)

with fi, j(r) = φni,k||(r||)ξ̂
σ
nie j

(z). Recalling that the functions
φn||,k||(r||) satisfies

φn||,k||(r||+R||) = expik||·R|| expiG||·R|| φn||,k||(r||), (9)

we can introduce Eq. 9 into the Mr+R matrix of Eq. 7 and
cancel the functions φn||,k||(r||) at both sides. This procedure
reduced the expression to

M̄z+Rz

 α1
...
α2N

= expikzRz Mz

 α1
...
α2N

 , (10)

where M̄z is a 2Nx2N matrix similar to the Mr matrix with
elements fi, j(z) = eiGni ·R|| ξ̂σ

nie j
(z).

Since we are interested in bulk Fe, we considered a Bra-
vais bcc vector of the form R = a/2(−x̂ + ŷ + ẑ). With this
choice and evaluating the Bloch condition, Eq. 7, at the point
r = (0,0,0) we can write the Mz=0 matrix as the identity ma-
trix and the interval z ∈ (0,a/2) will not contain singulari-
ties. The non-trivial solutions of Eq. 10 can be divided into
two classes. The first class consider solutions with positive
real or positive imaginary wave vectors; the corresponding
eigen-values are denoted λ+. The second class consider solu-
tions with negative real or negative imaginary wave vectors;
the eigen-values are denoted by λ−. The Bloch states found
with λ+ and λ− are associated to each branch of the band
diagram. The eigen-values of the propagating waves have
|λ±|= 1 and for evanescent waves |λ±|≷ 1. The evanescent
states come in pairs, since it is easy to show that for every
solution λ+ there is a corresponding solution λ− = 1/λ+. It
can be shown that the propagating states also come in pairs,
i.e., for every propagating wave λ+ there is a λ− propagating
wave [19]. In total we will find kzi (i = 1,2N) wave vectors
(real or imaginary) each one associated to an eigen-vector
(α1,α2, ...,α2N)→ (α̃i1, α̃i2, ..., α̃i2N). This implies that we
can built 2N solutions for the bulk Fe. Each one of these so-
lutions (that can represent traveling or evanescent waves) can
be written as

ϒ
σ
i (r||,z) = ∑

n||

2N

∑
j=1

φn||,k||(r||)α̃i jξ̂
σ
n||e j

(z). (11)

Typically for any given energy there are few propagating
states. For bulk Iron this number is never more than three.
It may be also an energy interval where no propagating states
exists, that corresponds to the gap in the electron spectrum.
The wave functions as given in Eq. 11 are suitable for cal-
culating the transmission through the barrier in the hetero-
structure. This is the goal of the next section.
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V. CONDUCTANCE

In order to solve the tunneling problem we divided and
distinguished three different regions in our system. Two
semi-infinite bulk Fe systems, to the right (Region I) and
to the left (Region III) of the barrier, where potential is as-
sumed to be perfectly periodic and one central barrier (Re-
gion II). The central barrier (of length b) is formed by the
9Fe/3MgO/8Fe(001) MTJ. This is done in order to simulate a
continuous transition of Bloch states from the semi-infinite Fe
bulk system to the central barrier at both sides of the barrier.
We proceed as follows.

First we must built the general solutions for Regions I, II
and III. These are

ΦI = ∑
i

Ai,Iϒ
σ
i (r||,z) RegionI (z <−b/2),

ΦIII = ∑
i

Ai,IIIϒ
σ
i (r||,z) RegionIII (z > b/2),

(12)

where ϒσ
i can be evanescence or traveling wave functions and

({Ai,I},{Ai,III}) his respective amplitudes. The solution in the
central barrier can be written as

ΦII = Ψσ

Barrier(r||,z) RegionII (−b/2 < z < b/2), (13)

where the wave functions Ψσ

Barrier have the general form of
Eq. 6. In order to write the wave function Ψσ

Barrier, we need to
find the solutions ξσ

n||ei
of the set of coupled equations of Eq. 5

in Region II; we called these solutions ξ̄σ
n||ei

. The function
Ψσ

Barrier have no Bloch properties, it is only a bridge between
Regions I and III.

To relate the amplitudes of the wave functions between Re-
gions I and III ({Ai,I},{Ai,III}), we imposed to the solutions
ΦI, ΦII and ΦIII the continuity of the wave function, and its
first derivative, at the matching point between Regions I and
II (r = r1), and between Regions II and III (r = r2). For con-
vinience we choose r1 = (x,y,−b/2) and r2 = (x,y,b/2).

After some matrix operations we can related the wave func-
tion amplitudes of Regions I and III as A1,I

...
A2N,I

= T

 A1,III
...
A2N,III

 (14)

where T = Q−1
−b/2P−b/2P−1

b/2Qb/2 is called the transfer matrix.
Here Qb/2 and Q−b/2 are identical matrices with elements
given by Qi j = α̃ ji, with {i, j} = 1...2N, and Pz is a matrix
defined as in Eq. 8 with elements fi, j(r) = ξ̄σ

nie j
(z).

To obtain S from T we procedure as follows. We first
switch from T to a matrix S̃ by means of a linear transfor-
mation. The scattering matrix S̃ relates the outgoing ampli-
tudes of the wave functions of Regions I and III with their in-
coming ones. To proceed further we must define a priori the
positive and negative directions of propagation of the trav-
eling and evanescent modes. This requirement is necessary
since in order to build up the scattering matrix S̃ we must dis-
tinguished between our solutions the incoming and outgoing
waves. We define as the positive direction of propagation of
a Bloch function (from left to right) to the mode that have

a positive real wave vector and positive group velocity vg.
We considered as the negative direction of propagation (from
right to left) the case when we have positive real wave func-
tion and negative group velocity. Since the solutions of Eq. 11
come in pairs, we determined the direction of propagation of
the pair by defining the direction of propagation of one mem-
ber of the pair. For the evanescent states the positive direction
(from left to right) is define as the direction in which the wave
function decays and the negative direction (from right to left)
as the direction in which it grows. In this sense the positive
direction of propagation in Regions I and III are related to the
incoming and outgoing waves respectively. On the other hand
the negative direction of propagation in Regions I and III are
related to the outgoing and incoming waves respectively.

In order to calculate the total conductance of the system
we need to select from the S̃ matrix the transmission ele-
ments that refers to propagating modes (this modes fulfill
|λ±|= 1) and discard the ones that refers to evanescent modes
(|λ±| ≷ 1). This is necessary since after the tunneling and
away from the central barrier the evanescent solutions can
not define a current flow. So all transmission elements that
relates amplitudes that are associated to |λ±|≷ 1 modes must
be removed from the scattering matrix. This is performed by
eliminating such rows and columns from the scattering ma-
trix. After this procedure, the transmission elements t̃i j that
survived need to be normalized by the factor

√
vgi/vg j. Here

vgi and vg j are the group velocities, i.e. vg = ∇kε(k)/~, in
the z-direction of the Bloch functions i and j involved in the
calculation of t̃i j. Introducing the velocities results from flux
normalizing the modes, which is required by current conser-
vation. The coefficients ti j = t̃i j

√
vgi/vg j found in this way

defines the transmission elements of the scattering matrix S.
After eliminating all evanescent contributions and normal-

izing the remaining t̃ and r̃ coefficients by their group veloci-
ties we arrived at the scattering S matrix

S =
(

r t
t∗ r∗

)
, (15)

were only transmission through Bloch states were considered.
The tunneling conductance through the barrier in the

hetero-structure can be easily calculated by use of a very gen-
eral result due to Fisher and Lee [15]. The Fisher and Lee for-
mula relates the conductance of the system to the probability
of a Bloch electron in one of the Fe electrodes (with chemi-
cal potential µ1) being transmitted through the MgO barrier to
the opposite electrode (with chemical potential µ2). The net
current in the Fisher and Lee approach yields the following
conductance formula

G =
e2

2π~
Tr(t∗t) =

e2

2π~ ∑
i, j
|ti j|2, (16)

where the ti j are the elements of the transmission t matrix that
represents the transmission through the barrier of an electron
in a channel i using channel j. We show conductance results
for the system within a few modes model in the next section.

VI. RESULTS

In this section we applied the developed formalism to a few
modes model. For this purpose we focus in the conductance
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FIG. 2: Direct transmission results in logarithmic scale for the two
modes Fe/MgO/Fe hetero-junction model. Enclosed are details of
the resonant tunneling behavior in linear scale.

calculation of the Fe/MgO/Fe hetero-junction when five func-
tions φn||,k||(r||) were considered for the expansion of the set
of linear ordinary differential equations of Eq. 5. The five
functions we choose have n|| equal to (0,0) and (±1,±1) to
obtain a symmetric solution. Since we will focus only in the
conductance through the Γ−H direction, we set kx and ky
equal to zero.

The transmission between zero and one Hartree obtained
with the above procedure for the two modes model are dis-
play in Fig. 2. We have considered in our calculations ener-
gies that lies above the higher hetero-structure potential Hσ

0011
since for lower energies a total reflection is observed. From
Fig. 2 we observed a very low transmission between 0.22 and
0.55 Hartree, increasing up to its maximum value of one when
it approaches the band gap. The transmission maintained this
maximum for a small energy interval and near the band gap
it drops approximately one order of magnitude. After the
gap we can clearly identify from our results some resonance
behavior. The origin of these resonances are the available
narrow energy bands inside the barrier that allows the Bloch
states to propagate through the hetero-junction. We identify
three resonance peaks in this region as shown enclosed in
Fig. 2 in linear scale. After the resonance, the transmission
drops three order of magnitude and slowly start to increase.

The results presented in Fig. 2 refers to the direct transi-
tions. We found very low (close to zero) inter-channel trans-
mission in the whole range of energy treated. However we
obtained interesting inter-channel reflecting results in the two
modes regime between 0.218 and 0.386 Hartree. In this in-
terval the direct reflections are much more smaller than the
non-direct ones. This suggest a process in which different
modes preferred not their own channel to performed the re-
flection. We did not observe this behavior in the two modes
regime between 0.926 and one Hartree in which almost all the
reflection is carried out in a direct way.

It is also important to comment that the transmission ex-
perience a three order of magnitude jump when we changed
from two to one mode regime at the energy value of 0.387

Hartree. Probably the system experiences some pressure
change caused by the appearance of the non-propagating
evanescent modes. This change in pressure slightly shrink
the system helping in this way the propagation of the Bloch
state.

VII. CONCLUSION

In this work we studied multi-channel tunneling through
an Fe/MgO/Fe(001) hetero-junction barrier. However,
the developed multi-channel formalism is valid for any
metal/dielectric/metal hetero-junction. The basic idea of our
(k||,z) formalism is the way to transform and solve the 3D
Schrodinger equation, which describes Bloch states being re-
flected from and transmitted through the barrier, into a set of
ordinary second order differential equations. This set of equa-
tions describes both traveling and evanescent solutions of the
Schrodinger equation for the metal. Within the sub-space of
the traveling Bloch states we obtained a scattering matrix that
transfer incoming states to outgoing ones. We extract from
this scattering matrix the transmission and reflection coef-
ficients necessary for the implementation of Fisher and Lee
formula for conductance.

This formalism was applied to a five modes model that
generates two non-trivial Bloch states. Although simple, this
two modes model pointed out important features like resonant
tunneling and surface reflection due to bands mismatch that
must be taken into account in order to properly calculate the
conductance of more sophisticated problems. If we consider
to go further than mean field approximation and/or to take
into account electron-electron and electron-phonon interac-
tion then Tunneling Hamiltonian is a very efficient approach.

The accuracy of the mean-field potential that feel individ-
ual electron is one of the most important points in any ab
initio calculation. We have experience in some cases a con-
siderable 25 per cent difference in the conductance calcula-
tion with variations in the hetero-junction potential ampli-
tude not greater than 5 per cent. In this work the electronic
and magnetic properties of Fe/MgO/Fe(001) hetero-junction
were obtained by performing density-functional calculations
with generalized gradient approximation for the exchange-
correlation potential.

As a part of our results we have found simple analytical
parametrization for the Fourier components of the hetero-
structure potential. As a function of the coordinate z they
have only weak, cusp like singularity at the ion position. The
regular behavior of these parameters easily permits the gen-
eration of any amount of Fourier components. Another tight
spot that we resolved in the present work is the problem as-
sociated to infinite leads. As shown in Sec. II, we carefully
match the electronic charge density distribution and potential
profile between the hetero-junction and bulk Fe.

The conductance through the Fe/MgO/Fe hetero-junction
for the two modes model show that even in this simple case
the multi-scattering behavior is present. The calculation of
the available coefficients in the scattering matrix S show
us exactly what fraction of the incoming Bloch state was
reflected/transmitted using the individual available channel.
This is very important if we want to identify new mechanism
of tunneling in scattering problems or the importance of a
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particular available channel of transmission in bulk materials.
Two important points were considered in our conductance

calculation in order to obtain reliable results, the group ve-
locity of the traveling states and the proper direction of prop-
agation of these states inside the crystal. The normalization
of the transmission coefficient by the group velocity is ex-
tremely important if we expect flux conservation in our sys-
tem since different modes can tunnel along channels associ-
ated with different group velocities. Furthermore the group
velocities need to be precisely calculated.

Finally a few words about the enhancement of the method
to finite bias or the calculation of the I−V curve. For small
transmission coefficients our approach can be generalized
naturally. First self-consistent potential should be general-
ized for finite chemical potential difference. Second, evanes-

cent states also bring contribution to the current that might
be taken into account throughout generalization of the scat-
tering matrix. This research is under way and will appear
shortly. We believe that the theory and results of this work
could be used as guidance in more detailed investigations of
multi-channel tunneling and calculations of transport in nano-
structures.
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