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Generating more realistic complex networks from power-law distribution of fitness
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In this work we analyze the implications of using a power law distribution of vertice’s quality in the growth
dynamics of a network studied by Bianconi and Barabási. Using this suggested distribution we show the degree
distribution interpolates the Barabási et al. model and Bianconi et al. model. This modified model (with power
law distribution) can help us understand the evolution of complex systems. Additionally, we determine the
exponent gamma related to the degree distribution, the time evolution of the average number of links, < ki >∝
(t/i)β (i coincindes with the input-time of the ith node), the average path length and the clustering coefficient.

Keywords: Power-law, Scale-free networks, Complex networks, Fitness model

1. INTRODUCTION

The complex system’s range is broad, covering not only
the daily phenomenon in our lives, but sophisticated problems
with amazing results (phase transition, S.O.C, small-world).
One subject of this range is the complex networks that have
received a lot of attention from researchers. It is composed by
a set of N nodes (or vertices) and a set of links (or edges) that
connect two vertices in the system. The large-scale topology
systems are determined by in the dynamic forces that act at
the level of an individual node. The preferential attachment
might have important consequences in dynamic process tak-
ing place in the topology defined by the network because it
is responsible for the system’s correlations. Nowadays the
study of complex networks is focused on random graphs and
scale-free nets. For a long time graphs have been modeled as
completely random. A well known example is the paper pub-
lished by the Hungarian mathematicians Erdös and Rényi [1]
where a network generated by placing links among the nodes
at random is studied. However such a model cannot describe
the topological properties of real complex networks due to
some physic quantities them associated by usual exponential
laws instead of power-law asymptotic behavior. Furthermore,
in general real networks are more complex than Erdös and
Rényi model and exhibit birth and death of nodes, aging [2],
the links depending on some parameter (connectivity [3], fit-
ness [4, 5], geographic distance [6, 7], etc).

In 1999 Barabási and Albert (BA) [3] introduced the model
of random growth graphs displaying power law distributed
connectivity. To obtain this fantastic result, they used at least
two coexisting mechanisms, they are (i) growth (the system
expands by adding new nodes which attach to the nodes al-
ready present in the network) and (ii) preferential attachment
(a new node links to nodes which already exist. This process
takes place with a higher probability when the sites present a
higher number of neighbours ”Barabási and Albert model”).
Despite its success in exhibiting the degree distribution fol-
lowing a power law (Fig. 1), this simple and basic model
predicts that all nodes increase their connectivity in time as
ki(t) = (t/ti)β, where β = 1/2 and ti is the time at which
node i has been added into the network. As the exponent
has the same value for all nodes, the oldest vertices will have
the highest number of links. Note that new nodes attach pref-
erentially to the oldest ones, i.e. the most connected ones.
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est number of links. Note that new nodes attach preferentially
to the oldest ones, i.e. the most connected ones.
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FIG. 1: It shows the cumulative degree distributions P(k) in log-log
plot for typical values α and BA model (γtheoretic = 3). The continu-
ous lines are the numerical results (network with 100000 nodes and
3000 runs).

Nowadays scientists have observed power law in a lot of
systems as scale-free nets, systems with fractal geometry, per-
colation, diffusion-reorganized aggregates and others. All ex-
amples cited above indicate that power-law is very common
and popular in the academic problems due to their uncount-
able applications in different fields of knowledge. Further-
more, recently there has been increasing evidence that real
nets have some non-random characteristics, i.e., they obey
various scaling laws, are fat-tailed and display short small
length-scale clustering that is typical from scale-free struc-
tures [8–15]. For example we can cite the papers published
in the last decade that have pointed out that many natural and
social networks are scale-free. The degree distribution P(k)
gives the probability that randomly chosen node which has
exactly k nearest neighbors behaves as k−γ for sufficient large
degrees k. In general, the exponent γ lays between 2 and 4
[16, 17]. Others examples are: the World Wide Web where
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Nowadays scientists have observed power law in a lot of
systems as scale-free nets, systems with fractal geometry, per-
colation, diffusion-reorganized aggregates and others. All ex-
amples cited above indicate that power-law is very common
and popular in the academic problems due to their uncount-
able applications in different fields of knowledge. Further-
more, recently there has been increasing evidence that real
nets have some non-random characteristics, i.e., they obey
various scaling laws, are fat-tailed and display short small
length-scale clustering that is typical of scale-free structures
[8–15]. For example we can cite the papers published in the
last decade that have pointed out that many natural and social
networks are scale-free. The degree distribution P(k) gives
the probability that randomly chosen node which has exactly
k nearest neighbors behaves as k−γ for sufficient large de-
grees k. In general, the exponent γ lays between 2 and 4
[16, 17]. Other examples are: the World Wide Web where
HTML documents are the nodes and the connections to other
documents in the WWW are the edges [17]; the web of hu-
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man sexual contacts where individuals are the nodes and sex-
ual relations among them are the links [9]; and the citation
networks where published articles are the nodes and a link
represents a reference to a previously published article [10].
All these examples establish a methodology that defines links
and vertices in their specific subject. However they appear
to display considerable topological similarity, having degree
distributions which behave as power-law.

Another feature easily seen from the examples above is the
number of nodes increases during the evolution of the net.
Better observing the WWW, we note that some new HTML
documents acquire links at a higher rate than the oldest nodes
(e.g. the site http://www.youtube.com has a high degree dis-
tribution despite being new). This phenomenon allows new
documents to become hubs. Our intuition indicates that pref-
erential attachment for systems similar to WWW must de-
pend on connectivity and other parameters. A good candidate
to be the other parameter is something associated to content
and marketing of this document. Bianconi and Barabsi [4]
associate the ”good candidate” with some intrinsic quality of
nodes, such as the content of a web page in the WWW, the
skill in the sexual network or the knowledge in the citation
network. They call this parameter the node’s fitness. In this
direction, the system becomes heterogeneous and its individ-
ual elements influence the net depending on the quality factor.

The plan of this paper is as follows: in Section II, we
present the mechanism which generates more realistic net-
works, i.e. nodes having different fitness which follow a
power-law distribution, ρ(η) ∝ ηα, growth and preferential
attachment. Further we present numerical simulations and the
method of calculation which are based on monte carlo method
and continuum theory respectively employed here. Finally,
we determine the exponent γ related to degree distribution,
the time evolution of the average number of links, < ki >,
the average path length and the clustering coefficient. Section
III is devoted to the discussion and results of the topological
properties.

2. MODEL AND THEORY

The examples discussed above and others presented in the
literature indicate that the incorporation of additional features
change the scaling behavior of random growth networks. In
particular the BA and fitness model differ markedly in pref-
erential attachment. The first one, P(i ←→ j = N + 1) =
ki/∑N

i=N ki, obtains P(k) ∝ k−3. The second one, P(i ←→
j = N +1) = niki/∑N

i=N niki, generates P(k) ∝ k−2.25/log(k) if
the fitness’s variable is uniformly distributed. But in nature
we believe that the distribution does not follow this simple
distribution. So, we are interested in focusing on the effects
of power-law distribution of vertice’s quality in the growth
dynamics of a network . There are two choices to study these
fields, they are (i) (α > 0) it means that a small part of the
nodes has short fitness and a major portion of sites has high
fitness and (ii) (−1 < α < 0) a little part of nodes has high
fitness and a major portion of sites has short fitness. So their
distribution is exactly the opposite. In the present paper, we
choose the first case (α > 0). It doesn’t implicate this case is
more realistic than other case. Moreover, both situations con-
verge to the same value of D being also limited by BA model

and Fitness model. We hope with this distribution to better
characterize the real aspect of existing correlations in nature
and technology.

The complex net was constructed with links which are not
direct and weightless. The network grows sequentially by
adding a node at each time. It starts with m0 nodes, each one
with fitness ηi that is distributed according to a function given
by:

ρ = Aηα, (1)

where A is a constant and the ηi is assigned a value in the
range from 0 to 1.

At every time step we add a new node i with fitness ηi.
Again this parameter follows the same power-law distribu-
tion. We link this node to m (≤ m0) of the pre-existing nodes
in the system. After it, we establish its connections by consid-
ering the linking probability which depends on connectivity ki
and the fitness ηi of the node i, and is given by:

P(i←→ j = m0 +1) =
niki

∑N
i=N niki

. (2)

This procedure is used to include the third site, the fourth
site, and so on. The network growth process is sequentially
repeated up to the size desired for the system (N = t + m0)
where t is the time variable. Note how the rule above priv-
ileges the connection between new nodes and those having
high nearest neighbors and fitness jointly. The dynamical
properties of this model can be addressed using the partial
differential equation given by:

∂ki(t)
∂t

= m
ηiki

∑
j

k jη j
, (3)

where ki(t) is a continuous real variable and the boundary
condition ki=t(t) = m. It gives us the temporal dependence
of number of links and, more precisely, it tell us how asymp-
totically it increases with time t/i. The equation 3 describes
the rate at which ki proportionally changes to preferential at-
tachment. The factor m is related to the fact that one new
node contributes with m links to the network and the sum in
the denominator is over all pre-existed nodes. The solution to
equation 3 is given by [4]:

kηi(t, t0) = m
(

t
t0

)β(ηi)

, (4)

where t0 is the time at which the node i was born and the
dynamic exponent, β(ηi), depends on the fitness of the node,
i. The dynamic exponent can be written as

β(ηi) =
ηi

D
, (5)

where

D =
∫

dηρ(η)
η

1−β(η)
. (6)
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η

1−β(η)
. (6)

0 50 100 150 200 250 300
α

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

D

0 50 100 150 200 250 300

FIG. 2: Asymptotic behavior of D obtained from equation (8) by
varying α.

For a long time, the sum over all existing nodes is

< ∑
j

η jk j >→ Dmt. (7)

Note that β(ηi) depends on D and this depends on ρ(η). Then,
to calculate the dynamic exponent, it is necessary to solve the
integral (6) substituting β(η) by η/D. After this step, the in-
tegral becomes

1 =
ηmax∫

0

dηρ(η)
1

D
η −1

, (8)

where ηmax is the highest quality presented in the network.
Note that the exponent β(η) > 0 because a node always in-
creases the number of connections with the time evolution.
Another condition is that connectivity site, ki(t), cannot gain
more than one link by each time step, t, so β(η) < 1, i.e. the
term D/η inside of the integral (7) has a value higher than
one. And, the upper limit of constant is D ≤ 2ηmax, which
is obtained from equation (7), and the expression ∑ j η jk j ≤
ηmax ∑ j k j = 2mtηmax. Finally, we can calculate the value of
constant D (associated to the know-how of all the network
sites) that only depends on the fitness distribution ρ(η) (Eq.
((8)).

Now, we will obtain the exponent γ of degree distribution,
P(k) ∼ k−γ [4, 17]. The probability that a node has a degree
ki(t) smaller than k is:

P(kη(t) > k) = P

[
m

(
t
t0

)β(η)

> k

]

= P
[

t0 < t
(m

k

)D
η
]
. (9)

Remember that in this model we have a spectrum of dynamics
exponents β(η) and the sites were added at equal time inter-
vals, so the constant probability density is given by

P(ti) =
1

m0 + t
. (10)

Using the equations 9 and 10, the probability that a site has k
links can be written in this form:

P(k) =
ηmax∫

0

dη
∂P(kη(t) > k)

∂k

∝
ηmax∫

0

dηρ(η)
D
η

(m
k

)D
η +1

. (11)

Bianconi and Barabási showed the agreement between the
prediction (Eqs. 11, 5 e 8) and the simulation for the expo-
nent β and degree distribution P(k) [4].
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FIG. 3: The symbols are the numerical results of the temporal de-
pendency of the average connectivity for different values of α and η.
The plot is on a log-log plot and the results are obtained for networks
with 100000 node and 1000 runs.

3. RESULTS AND CONCLUSIONS

In this section we will present our numerical results in or-
der to characterize a scale-free network with power-law dis-
tribution of fitness. First of all, to analyze the implications in
the quality model using the power-law distribution of fitness,
ρ(η) = Aηα, where we should substitute ρ in the equation (8).
It gives

1
A

=
∫ D

D−ηmax

dy
(D− y)α+1

y
. (12)

and its normalization is
∫ 1

0
ρ(η) dη = 1. (13)
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Note that the exponent β(η) > 0 because a node always in-
creases the number of connections with the time evolution.
Another condition is that connectivity site, ki(t), cannot gain
more than one link by each time step, t, so β(η) < 1, i.e. the
term D/η inside of the integral (7) has a value higher than
one. And, the upper limit of constant is D ≤ 2ηmax, which
is obtained from equation (7), and the expression ∑ j η jk j ≤
ηmax ∑ j k j = 2mtηmax. Finally, we can calculate the value of
constant D (associated to the know-how of all the network
sites) that only depends on the fitness distribution ρ(η) (Eq.
((8)).

Now, we will obtain the exponent γ of degree distribution,
P(k) ∼ k−γ [4, 17]. The probability that a node has a degree
ki(t) smaller than k is:
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k
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Remember that in this model we have a spectrum of dynam-
ics exponents β(η) and the sites were added at equal time
intervals, so the constant probability density is given by

P(ti) =
1
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. (10)

Using the equations 9 and 10, the probability that a site has k
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Bianconi and Barabási showed the agreement between the
prediction (Eqs. 11, 5 e 8) and the simulation for the exponent
β and degree distribution P(k) [4].
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Thus, A = α + 1 and the fitness distribution diverges for
α < 0, so we studied only the effects of α ≥ 0. Solving
the integral (12) by numerical methods and varying the para-
menter α (α ≥ 0), one may find a crossover between the
Barabási et al. [3] and Bianconi et al. model [4] (Fig. 2).
The alternative manner to find the constant D is calculating
< ∑i ηiki > /mt → D in the t → ∞ limit. In particular, the
cases α = 0 and α→ ∞ represent the network with uniform
distribution of fitness and system without quality factor (or all
sites with the same fitness factor ρ(η) = δ(η− 1)), respec-
tively. It is easy to see the upper limit being the Barabási
et al. model observing the plot (2). When α goes to infin-
ity, the average fitness goes to unity and D→ 2, recovering
the BA model (β = 0.5). Another topologic property (con-
nectivity distribution, average path length and clustering co-
efficient) must interpolate the BA model and Bianconi et al.
model (Figs. (1, 5 and 6)).

When we observe the time dependence of the connectivity,
kη(t) (Figs 3 and 4), an interesting feature of power-law dis-
tribution of fitness is found. To small α factor, the value of
fitness is very strong do compete for links while for high α
factor this difference becomes negligible. The explanation is
simple, as the α value increases, the vertices’ quality becomes
similar, so the term ηi in the preferential attachment becomes
only a constant.

In Fig. 1, we show the accumulative connectivity distribu-
tion for different values of α and BA model. From this plot,
we check that exponent γ varies from 2.255 (Bianconi and
Barabási model) to 3 (BA model). The number of hubs and
their connectivity decrease as α becomes large. Note that the
majority of the networks in nature and technology has expo-
nent γ in similar interval of values studied by us for example:
World Wide Web [17], citations [10], telephone [18], and en-
ergy landscape [19].
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size of network).

Figure 5 shows the average path length, < l >, which de-
pends on α for m = 2 and can be compared with the BA model.
The average path length, < l >, of a network is defined as the
number of edges in the shortest path between two nodes aver-
aged over all the pairs of nodes present in the net. We see that,
when α increases, < l > behaviors like a < l > well-known of
BA model. It is explained by the number of hubs in the sys-
tem. The system with more hubs has a small value of average
path length, i.e., the case α = 0 has the highest < l > in our
study.

Plot 6 shows the clustering coefficient which depends on α
for m = 2 and can be compared with the BA model. The clus-
tering coefficient of network characterizes the density of con-

FIG. 4: The symbols are the numerical results of the average con-
nectivity exponent for different values of α related to the measure
on node i = 10. The results are obtained for networks with 100000
node and 1000 runs.
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3. RESULTS AND CONCLUSIONS

In this section we will present our numerical results in or-
der to characterize a scale-free network with power-law dis-
tribution of fitness. First of all, to analyze the implications in
the quality model using the power-law distribution of fitness,
ρ(η) = Aηα, where we should substitute ρ in the equation (8).
It gives

1
A

=
∫ D

D−ηmax

dy
(D− y)α+1

y
. (12)

and its normalization is
∫ 1

0
ρ(η) dη = 1. (13)

Thus, A = α + 1 and the fitness distribution diverges for
α < 0, so we studied only the effects of α ≥ 0. Solving
the integral (12) by numerical methods and varying the para-
menter α (α ≥ 0), one may find a crossover between the
Barabási et al. [3] and Bianconi et al. model [4] (Fig. 2).
The alternative manner to find the constant D is calculating
< ∑i ηiki > /mt → D in the t → ∞ limit. In particular, the
cases α = 0 and α→ ∞ represent the network with uniform
distribution of fitness and system without quality factor (or
all sites with the same fitness factor ρ(η) = δ(η−1)), respec-
tively. It is easy to see the upper limit being the Barabási et
al. model observing the plot (2). When α goes to infinity, the
average fitness goes to unity and D→ 2, recovering the BA
model (β = 0.5). Another topologic property (connectivity
distribution, average path length and clustering coefficient)
must interpolate the BA model and Bianconi et al. model
(Figs. (1, 5 and 6)).

When we observe the time dependence of the connectivity,
kη(t) (Figs 3 and 4), an interesting feature of power-law dis-
tribution of fitness is found. For a small α factor, the value of
fitness is very strong to compete for links, while for a high α
factor this difference becomes negligible. The explanation is
simple, as the α value increases, the vertices’ quality becomes
similar, so the term ηi in the preferential attachment becomes
only a constant.

In Fig. 1, we show the accumulative connectivity distri-
bution for different values of α and BA model. From this
plot, we check that exponent γ varies from 2.255 (Bianconi
and Barabási model) to 3 (BA model). The number of hubs
and their connectivity decrease as α becomes large. Note that
most the networks in nature and technology have exponent γ
in similar interval of values studied by us for example: World
Wide Web [17], citations [10], telephone [18], and energy
landscape [19].

Figure 5 shows the average path length, < l >, which de-
pends on α for m = 2 and can be compared with the BA
model. The average path length, < l >, of a network is de-
fined as the number of edges in the shortest path between two
nodes averaged over all the pairs of nodes present in the net.
We see that, when α increases, < l > behaves like a < l >
well-known of BA model. It is explained by the number of
hubs in the system. The system with more hubs has a small
value of average path length, i.e., the case α = 0 has the high-
est < l > in our study.
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In Fig. 1, we show the accumulative connectivity distribu-
tion for different values of α and BA model. From this plot,
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BA model. It is explained by the number of hubs in the sys-
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Figure 5 shows the average path length, < l >, which de-
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The average path length, < l >, of a network is defined as the
number of edges in the shortest path between two nodes aver-
aged over all the pairs of nodes present in the net. We see that,
when α increases, < l > behaviors like a < l > well-known of
BA model. It is explained by the number of hubs in the sys-
tem. The system with more hubs has a small value of average
path length, i.e., the case α = 0 has the highest < l > in our
study.

Plot 6 shows the clustering coefficient which depends on α
for m = 2 and can be compared with the BA model. The clus-
tering coefficient of network characterizes the density of con-

FIG. 6: It shows the clustering coefficient log-log plot for typical
values α. The symbols are the numerical results (80 runs for each
size of network).

Plot 6 shows the clustering coefficient which depends on α
for m = 2 and can be compared with the BA model. The clus-
tering coefficient of network characterizes the density of con-
nections close to a node. Note that when α increases, the clus-
tering coefficient becomes similar to Bianconi and Barabási
model.

In this paper, we study the effect of the competition be-
tween the relevant variable for connectedness when we use
a power-law distribution of fitness. In the fitness model, the
popular nodes compete with younger nodes when the fitness
is an important factor that permits them to obtain more links.
By including the exponent α we control the influence of fit-
ness factor of each node in the net. When α is null we recover
the Bianconi and Barabási model; when α→ ∞, we recover
the BA model. The average connectivity < ki >, the average
path length < l > and the clustering coefficient are appre-
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ciably influenced by the exponent α. When we compare our
results with the BA model, we find that the number of links
per nodes has risen for all values of α.
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