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Dynamical evolution of earthquake network is studied. Through the analysis of the real data taken from
California and Japan, it is found that the values of the clustering coefficient exhibit a specific behavior around
the moment of a main shock: the coefficient remains stationary before a main shock, suddenly jumps up at the
main shock, and then slowly decreases to become stationary again. Thus, the network approach to seismicity
dynamically characterizes main shocks in a peculiar manner.
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1. INTRODUCTION

It is known in seismology [1] that an earthquake can be
triggered by its foregoing one more than 1000 km away.
This implies that event-event correlation in seismicity is enor-
mously long-ranged, analogous to critical phenomena. This
strong event-event correlation is responsible for specific sta-
tistical properties of seismicity. For example, the distributions
of spatial distance [2] and time interval [3, 4] between two
successive earthquakes radically differ from the Poissonian.
These facts make it natural to put a working hypothesis that
at the statistical level two successive events can be regarded
to be indivisibly correlated, no matter how distant they are.

The complex network approach enables one to describe
such correlation in an efficient way. The purpose of this ar-
ticle is to show how a new possibility can be opened for re-
vealing yet unknown dynamics of seismicity with the help
of the concept of earthquake network introduced and stud-
ied in a series of recent works [5–10]. In particular, we fo-
cus our attention on evolution of the clustering coefficient
of earthquake network. We shall see that the value of the
clustering coefficient stays stationary before a main shock,
suddenly jumps up at the moment of the main shock, and
then slowly decreases to become stationary again. To as-
certain universality of this finding, we analyze several strong
shocks occurred in different geographical regions; they are
the Joshua Tree Earthquake (M6.1, on April 23, 1992), the
Landers Earthquake (M7.3, on June 28, 1992), and the Hec-
tor Mine Earthquake (M7.1, on October 16, 1999) in Cali-
fornia (database: http://www.data.scec.org), and the Kushiro-
Oki Earthquake (M7.1, on November 29, 2004) in Japan
(database: http://www.hinet.bosai.go.jp). It is our opinion
that the present result may offer a guiding principle for con-
structing/examining models of seismicity [11].

2. CONSTRUCTION OF EARTHQUAKE NETWORK

In this section, we succinctly explain the procedure of con-
structing an earthquake network originally proposed in Ref.
[5].

We divide a geographical region under consideration into
a lot of small cubic cells. We identify a cell with a vertex of

a network if earthquakes (with any values of magnitude) oc-
curred therein. Two successive events form an edge between
two vertices. If they occur in the same cell, a tadpole (i.e., a
self-loop) is attached to that vertex. These edges replace com-
plex event-event correlation. Taking into account the fact that
microscopic dynamics governing seismicity is still largely un-
known, this approach is expected to offer an efficient repre-
sentation of seismicity in view of science of complexity.

We make some comments on this construction. Firstly, it
contains a single parameter, the cell size, which determines
a scale of coarse graining. Once division by the cells is set,
a seismic time series is unambiguously mapped to a growing
stochastic network. Since any a priori rule is still not known
for determining the cell size, it is important to examine the
dependence of the property of an earthquake network on it,
in general. (We shall not, however, discuss this point in the
present work.) Secondly, an earthquake network is a directed
graph. Directedness does not bring any difficulties to statisti-
cal analysis of connectivity (i.e., degree, the number of edges
attached to the vertex under consideration) since in-degree
and out-degree are identical for each vertex except the first
and last ones in the analysis (i.e., in-degree and out-degree do
not have to be distinguished one from another in the analy-
sis of connectivity). However, directedness should be taken
into account when the path length (i.e., the number of edges
between a pair of connected vertices) and the period (imply-
ing after how many subsequent earthquakes the event returns
to the initial vertex) are considered, for example. Finally, di-
rectedness has to be ignored and the path length should be
defined as the smallest value among the possible numbers of
edges connecting a pair of vertices, when small-worldness of
an earthquake network is considered. There, tadpoles have to
be removed and each multiple edge be replaced by a single
edge. That is, a full directed earthquake network is reduced
to a corresponding simple undirected graph (see Fig. 1).

An earthquake network and its reduced simple graph con-
structed in this way are highly complex: they are scale-free
[5], of the small world [6], and locally treelike [7], exhibit
hierarchical organization and assortative mixing [8], and pos-
sess the power-law period distribution [9]. A central reason
why an earthquake network is heterogeneous is due to an em-
pirical fact that aftershocks associated with a main shock tend
to return to the locus of the main shock, geographically, and
therefore the vertices of main shocks play roles of hubs of the
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FIG. 1: Schematic description of earthquake network. (a) A full directed network, and (b) The simple undirected graph reduced from the full
network in (a).

why an earthquake network is heterogeneous is due to an em-
pirical fact that aftershocks associated with a main shock tend
to return to the locus of the main shock, geographically, and
therefore the vertices of main shocks play roles of hubs of the
network.

3. DYNAMICAL EVOLUTION OF THE CLUSTERING
COEFFICIENT

There are several important quantities that characterize the
topological and statistical structures of complex networks. It
is of obvious interest to see if they can play some roles in re-
vealing salient features of seismicity, especially main shocks.
Here, we focus our attention on the clustering coefficient [12]
and pursue dynamical evolution of its value. Our main con-
cern is about its behavior around the moment of a main shock
[10].

The clustering coefficient is defined for a simple undi-
rected graph with N vertices as follows. Let A = (ai j) (i, j =
1,2, . . . ,N) be an adjacency matrix. aii = 0 and ai j = 1(0)
if the ith and jth vertices are connected (unconnected) by an
edge. Then, the clustering coefficient, C, is given by

C =
1
N

N

∑
i=1

ci, (1)

where

ci =
ei

emax
i

, (2)

ei = (A3)ii, (3)

emax
i =

ki(ki−1)
2

, (4)

and ki = ∑N
j=1ai j the value of connectivity of the ith vertex.

As clear from Eq. (3), ci quantifies the tendency that a triangle
loop is attached to the ith vertex. Eq. (4) is nothing but the
maximum value of ei, which is realized when ki neighboring
vertices are fully connected.

For each of the Joshua Tree Earthquake, the Landers Earth-
quake, the Hector Mine Earthquake, and the Kushiro-Oki
Earthquake, we take an interval of the seismic time series con-
taining the event, divide it into many segments, and construct

FIG. 1: Schematic description of earthquake network. (a) A full directed network, and (b) the simple undirected graph reduced from the full
network in (a).

network.

3. DYNAMICAL EVOLUTION OF THE CLUSTERING
COEFFICIENT

There are several important quantities that characterize the
topological and statistical structures of complex networks. It
is of obvious interest to see if they can play some roles in re-
vealing salient features of seismicity, especially main shocks.
Here, we focus our attention on the clustering coefficient [12]
and pursue dynamical evolution of its value. Our main con-
cern is about its behavior around the moment of a main shock
[10].

The clustering coefficient is defined for a simple undi-
rected graph with N vertices as follows. Let A = (ai j) (i, j =
1,2, . . . ,N) be an adjacency matrix. aii = 0 and ai j = 1(0)
if the ith and jth vertices are connected (unconnected) by an
edge. Then, the clustering coefficient, C, is given by

C =
1
N

N

∑
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ci, (1)

where
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ei
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, (2)

ei = (A3)ii, (3)

emax
i =

ki(ki−1)
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, (4)

and ki = ∑N
j=1ai j the value of connectivity of the ith vertex.

As clear from Eq. (3), ci quantifies the tendency that a triangle
loop is attached to the ith vertex. Eq. (4) is nothing but the
maximum value of ei, which is realized when ki neighboring
vertices are fully connected.

For each of the Joshua Tree Earthquake, the Landers Earth-
quake, the Hector Mine Earthquake, and the Kushiro-Oki
Earthquake, we take an interval of the seismic time series con-
taining the event, divide it into many segments, and construct
a reduced simple earthquake network from each segment that
is fixed to be 240 hours long. The network evolves in time
over the collection of the segments. Regarding divisions of
the geographical regions, the cell size is taken to be a typical
one, 10km×10km×10km.

The result is presented in Fig. 2. There, one can appreci-
ate a remarkable universal behavior: the clustering coefficient
stays stationary before a main shock, suddenly jumps up at
the moment of the main shock, and then decays slowly. It
was suggested in Ref. [10] (in which only the data from Cal-
ifornia was analyzed) that the slow decay actually follows a
power law. Thus, the present complex-network approach to
seismicity can characterize main shocks and aftershocks in a
peculiar manner.
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FIG. 2: Evolution of the (dimensionless) clustering coefficient during each 240 hours. (a) The Joshua Tree Earthquake, (b) the Landers
Earthquake, (c) the Hector Mine Earthquake, and (d) the Kushiro-Oki Earthquake. The moments of the main shocks are located at time zero.

FIG. 2: Evolution of the (dimensionless) clustering coefficient during each 240 hours. (a) The Joshua Tree Earthquake, (b) the Landers
Earthquake, (c) the Hector Mine Earthquake, and (d) the Kushiro-Oki Earthquake. The moments of the main shocks are located at time zero.

4. CONCLUDING REMARKS

We have shown how the present network approach to seis-
micity characterizes main shocks in a peculiar manner. In
particular, we have seen that the clustering coefficient of
an evolving earthquake network remains stationary before a
main shock, suddenly jumps up at the moment of the main
shock, and then slowly decays to become stationary again.
We notice that, although the present discovery might remind
one of the Omori law [13], they are not related to each other
directly. This is because, in the definition of the clustering
coefficient, tadpoles are removed and each multiple edge is
replaced by a single edge: that is, a number of events are

eliminated in the present analysis.
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