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Collective coordinate analysis for adding a space dependent potential to the double sine-Gordon model is
presented. Interaction of solitons with a delta function potential barrier and also delta function potential well is
investigated. Most of the features of interaction are derived analytically. We will find that the behaviour of a
solitonic solution is like a point particle which moves under the influence of a complicated effective potential.
The effective potential is a function of the field initial conditions and also parameters of added external potential.
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1. INTRODUCTION

Topological solitons are important objects in various areas
of physics and mathematics. Solitons widely appear in non-
linear classical field theories as stable, particle-like objects,
with finite mass and smooth structures. They are localized
in space as the energy density of these objects is nonzero
only in a finite region; i.e. it is significantly nonzero in a
small region and goes to zero, exponentially or as an inverse
power, as one moves away from this region. They are stable
due to nontrivial topological properties of the vacuum mani-
fold. These coherent nonperturbative excitations are distinct
from the perturbative excitation objects which correspond to
localized small field oscillations around the vacuum [1, 2].
Solitonic picture of baryons in high energy physics and also
Skyrme solitons in nuclear physics are examples of particle-
like bahaviour of topological solitons [3, 4] Finding suitable
methods for the point representation of soliton solutions of
the hierarchies of non-linear evolution equations is an inter-
esting subject in nonlinear field theory (for example see [5]).
In this paper we will deal with on of these models.

The sine-Gordon model is probably the most studied inte-
grable model. This model describes a large variety of physical
systems ranging from the Josephson effects, particle physics,
information transport in microtubules [6], nonlinear optics
[7], crystal dislocations [8], and ferromagnets [9]. Double
sine-Gordon (DSG) model arises as a sine-Gordon type field
theory bearing solitonic solutions with important applications
and also attractive mathematical properties. DSG model has
been used in describing a multibaryon system. So their solu-
tions appear in the multiflaver spectrum and some resonances
in QCD2[10]. There is a very near Relation between DSG
model and deformed quantum AshkinTeller model which de-
scribes quantum Ising spin chain system [11]. Interacting pair
of resistively shunted Josephson junctions and fluxon dynam-
ics in long Josephson junctions are modeled using a DSG for-
mulation [12–14]. Quantum noise of ferromagnetic π-Bloch
Domain Walls also describes using a model with DSG theory
[15].

In the inhomogeneous version of the sine-Gordon model,
the coefficient in front of the potential becomes a function
of space. Recently, there has been an increasing interest in
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the scattering of solitons from defects or impurities, which
generally come from medium properties. It is very interesting
to examine the methods of adding the potential to the model
on the DSG as a non-integrable model.

Interaction of solitons with defects mainly investigates us-
ing numerical analysis and numerical simulations. Some an-
alytical models have been presented which are constructed
with using suitable collective coordinate variables. Collec-
tive coordinate analysis for point representation of solitons of
single sine-Gordon model has been studied before [16, 17].
In this paper collective coordinate system for DSG model is
presented for the first time. The results are more interesting
than the single sine-Gordon model, because of very attrac-
tive shape of the field potential of DSG model. This system is
constructed base on the method of adding the defects by mak-
ing some parameters of the equation of motion to be function
of space.

2. SOLITONS OF DOUBLE SINE-GORDON EQUATION

Lagrangian of the double sine-Gordon model in (1+1) di-
mensions is defined by

L =
1
2

∂µφ∂µφ−λ(2− cosφ− cos2φ) (1)

where µ=0,1. The field equation of motion from the La-
grangian (1) is:

∂µ∂µφ+λ(sinφ+2sin2φ) = 0 (2)

One soliton solution for the DSG equation can be written as
[18, 19].

φ(x,X(t)) = kπ−2tan−1

(
1√
5

sinh

(√
5

√
λ(x−X(t))√

1− Ẋ2

))
(3)

where X(t) = x0− Ẋt. x0 and Ẋ are soliton initial position and
its velocity respectively. It is a kink-like solution as figure 1
shows.

We want to investigate the bahaviour of kink solution 3
during the interaction with an external potential. Local exter-
nal potential V(X) can be added to the Lagrangian by taking
a suitable space dependent function for the parameter λ as
λ(x) = 1 +V (x) [2, 20, 21]. Therefore the potential can be
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FIG. 1: Kink-like solution of DSG equation (2) as a function of
position

found by subtracting usual value of λ = 1 from λ(x). Param-
eter λ(x) has been used in [2] as follows

λ(x) =
{

1+λ0 |x| ≤ p
1 |x| > p

}
(4)

This means that potential V(x) is a rectangular function with
the width of ’p’ and the height λ0. Solution (3) with λ = 1 can
be used as initial condition for solving (2) when the potential
V(x) is small.

By inserting the solution (3) (with λ = 1) in the Lagrangian
(1), using adiabatic approximation [22] we have

L =
(
Ẋ2 −1−λ(x)

) 50cosh2
(√

5(x−X(t))
)

(
5+ sinh2

(√
5(x−X(t))

))2 (5)

3. COLLECTIVE COORDINATE VARIABLE

The center of a soliton can be considered as a particle, if
we look at this variable as a collective coordinate. The col-
lective coordinate could be related to the potential by using
the Lagrangian (5). This model is able to give us an analytic
solution for most of the features of the soliton-potential sys-
tem. X(t) remains as a collective coordinate if we integrate
Lagrangian (5) over the variable x. If we take the potential
V (x) = εδ(x) (λ(x) = 1+ εδx) then (5) becomes

L =
∫

Ldx =
M0

2
(
Ẋ2 −2

)− 50εcosh2
(√

5X
)

(
5+ sinh2

(√
5X
))2 (6)

where

M0 =
∫ ∞

−∞

100cosh2
(√

5(x−X(t))
)

(
5+ sinh2

(√
5(x−X(t))

))2 dx

= ln

(
5+2

√
5

5−2
√

5

)
+4

√
5 (7)

The equation of motion for the variable X(t) is derived from
(6) as

M0Ẍ −100ε
√

5

×

⎛
⎜⎝cosh

(√
5X
)

sinh
(√

5X
)(

3− sinh2
(√

5X
))

(
5+ sinh2

(√
5X
))3

⎞
⎟⎠= 0

(8)

The above equation shows that the peak of the soliton moves
under the influence of a complicated force which is a function
of external potential V (x) and soliton position. If ε > 0 we
have a barrier and ε < 0 creates a potential well. Figure 2
shows effective force as a function of position for ε = 0.1.
Fortunately equation (8) has an exact solution as follows

FIG. 2: Effective force acted on the collective particle as a function
of position with ε = 0.1.

1
2

M0
(
Ẋ2 − Ẋ2

0
)
+50ε

×

⎛
⎜⎝ cosh2

(√
5X
)

(
5+ sinh2

(√
5X
))2 −

cosh2
(√

5X0

)
(

5+ sinh2
(√

5X0

))2

⎞
⎟⎠= 0

(9)

where X0 and Ẋ0 are soliton initial position and initial velocity
respectively. Collective energy is obtainable from Lagrangian
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(6) as follows

E =
1
2

M0Ẋ2 +M0 +50ε
cosh2

(√
5X
)

(
5+ sinh2

(√
5X
))2 (10)

It is the energy of a particle with the mass of M0 and velocity
Ẋ which is moved under the influence of external effective
potential. Therefore M0 is indeed the rest mass of one soliton
solution (3) of DSG. Figure 3 presents effective potential en-
ergy density of a static soliton as a function of its position un-
der the influence of the potential V (x) = εδ(x) with ε = 0.1.
Thus the effective force is a conservative force and can be
described using the effective potential. Equation (10) shows

that the effective potential is EP = 50ε cosh2(
√

5X)
(5+sinh2(

√
5X))2 . From

the marginal behaviour of hyperbolic functions at infinity, one
can show that the potential decays to zero exponentially when
X goes to infinity. Potential energy has two absolute maxima
and one local minimum which can be found by finding the ze-
ros of the effective force. As figure 2 presents, effective force
become zero at the origin (center of the external potential)
which is the local minimum of the potential.Potential energy
reaches its maximum values at Xmax = ± cosh−1(2)√

(5)
. Maximum

energy of the soliton is Emax = 1
2 M0Ẋ2 + M0 + 50ε

16 . Because
of the extended nature of the soliton, the effective potential is
not an exact delta function. By substituting Ẋ from (9) into

FIG. 3: Collective energy density as a function of position for a static
soliton in a delta-like external potential with ε = 0.1.

(10) one can show that the energy is a function of soliton ini-
tial conditions X0 and Ẋ0 only. Therefore the energy of the
system is conserved.

Topological charge is [23]

Q =
1

2π

∫ −∞

+∞

∂φ
∂X

dX (11)

where ∂φ
∂X is topological charge density. For the solution (3)

we have

∂φ
∂X

=
10cosh

(√
5X
)

5+ sinh2
(√

5X
) (12)

Collective topological charge Q can be calculated by Integrat-
ing (12) over the variable X. A simple calculation shows that
topological charge of one soliton solution is Q = 1 which is
constant and independent of X.

Some features of soliton-potential dynamics can be inves-
tigated using equations (9) and (10) analytically which are
discussed in the next sections.

4. POTENTIAL BARRIER

Suppose that a delta-like potential barrier with the height
ε is located at the origin. There are two different kinds of
behaviour for the soliton, during the interaction with the ef-
fective potential barrier. It depends on its initial location and
its initial velocity. If the soliton is far away from the potential
(|X0| > Xmax) the soliton reflects back or passes over the bar-
rier depends on its initial velocity. Also there is an interesting
situation which has not been observed before. If soliton initial
position is near to the center of the potential (say |X0|< Xmax)
the soliton is trapped by the barrier and oscillate around the
center of the potential, if it has low initial velocity. These
situations have been explained in detail in the following.

When the soliton is far from the center of the potential
(X → ∞) (10) reduces to E = 1

2 M0Ẋ2
0 + M0, where Ẋ0 is its

initial velocity at infinity. It is the energy of a particle with
the rest mass M0 and the velocity of Ẋ0. A soliton with a low
velocity reflects back from the barrier and a high energy soli-
ton climbs over the barrier and passes through it. So we have
a critical value for the velocity of the soliton which separates
these two situations. The energy of a soliton at the Xmax is
E(X = Xmax) = 1

2 M0Ẋ2 + M0 + 50ε
16 . The minimum energy

for a soliton in this position is E = M0 + 50ε
16 . On the other

hand, a soliton which comes from infinity with initial veloc-
ity vc has the energy of E (X = ∞) = 1

2 M0v2
c + M0. There-

fore the minimum velocity for the soliton to pass the barrier
is vc = 5

2

√
ε

M0
. The same result is derived by substituting

Ẋ = 0, Ẋ0 = vc, X0 = ∞ and X = 0 in (10).
If the soliton is located at some position like X0 (which is

not necessary infinity) the critical velocity will not be 5
2

√
ε

M0
.

Soliton passes over the barrier if the soliton energy is greater
than the energy of a static soliton at Xmax. So a soliton at
the initial position X0 with initial velocity Ẋ0 has the critical
initial velocity if its velocity becomes zero at X = Xmax. Con-
sider a soliton with initial conditions of X0 and Ẋ0. If we set
X = Xmax and Ẋ = 0 in equation (9) then vc = Ẋ0. Therefore
we have

vc =

√√√√√√100ε
M0

⎛
⎜⎝ 1

16
−

cosh2
(√

5X0

)
(

5+ sinh2
(√

5X0

))2

⎞
⎟⎠ (13)

Figure 4 shows critical velocity as a function of its initial po-
sition. Figure 4 also indicates that solitons with an initial po-
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sition far away from the external potential has critical velocity
of 5

2

√
ε

M0
.

FIG. 4: Critical velocity as a function of initial position X0 with
ε = 0.1M0.

If soliton at infinity has initial velocity less than the vc then
there exists a return point in which the velocity of the soliton
is zero. For this situation we have

cosh2
(√

5Xstop

)
(

5+ sinh2
(√

5Xstop

))2 =
M0

100ε
Ẋ2

0 (14)

Therefore this model predicts linear relation between poten-
tial strength ε and Ẋ2

0 . Equation (14) shows that complicated

term
cosh2(

√
5Xstop)

(5+sinh2(
√

5Xstop))2 has linear relation with Ẋ2
0 and also

1
ε .

A soliton with initial conditions X0 and Ẋ0 will go to in-
finity after the interaction with a potential barrier. The final
velocity of the soliton at infinity after the interaction is

Ẋ =

√√√√√√Ẋ2
0 +

100ε
M0

cosh2
(√

5X0

)
(

5+ sinh2
(√

5X0

))2 (15)

which is greater than the initial velocity Ẋ0.
Equations (9) and (10) show that the soliton finds its initial

velocity after the interaction when it reaches its initial posi-
tion. This means that the interaction is completely elastic.

5. SOLITON-WELL SYSTEM

The soliton-well system is very interesting problem. Sup-
pose a particle moves toward a frictionless potential well. It

falls in the well with an increasing velocity and reaches the
bottom of the well with its maximum speed. After that, it
will climb the well with decreasing velocity and finally pass
through the well. Its final velocity after the interaction is
equal to its initial speed. But there are some differences be-
tween point particle and a soliton in a potential well. Our an-
alytic model explains several features of soliton-well system
correctly.

Changing ε to −ε in (6) changes potential barrier to poten-
tial well. The solution for the system is

1
2

M0
(
Ẋ2 − Ẋ2

0
)−50ε

×

⎛
⎜⎝ cosh2

(√
5X
)

(
5+ sinh2

(√
5X
))2 −

cosh2
(√

5X0

)
(

5+ sinh2
(√

5X0

))2

⎞
⎟⎠= 0

(16)

There is not a critical velocity for a soliton-well system, but
we can define an escape velocity. A soliton with initial po-
sition X0 reaches the infinity with a zero final velocity if its
initial velocity is

Ẋescape =

√√√√√√100ε
M0

cosh2
(√

5X0

)
(

5+ sinh2
(√

5X0

))2 (17)

In other words, a soliton which is located at the initial position
X0 can escape to infinity if its initial velocity Ẋ0 is greater than
the escape velocity Ẋescape.

The X(t), trajectory of a soliton during the interaction with
the potential well follows from (16) as

t =
∫ X(t)

X(t=0)

⎛
⎜⎜⎝
√√√√√√Ẋ2

0 +
100ε
M0

cosh2
(√

5X0

)
(

5+ sinh2
(√

5X0

))2

⎞
⎟⎟⎠

−1

dx

(18)
The above integral has been evaluated numerically by us-
ing Rumberg’s method and X(t) was plotted versus t. This
result was compared with direct simulation using equation
(2). Figure 4 shows the result for a system with X0 = −5,
Ẋ0 = −0.1 and ε = −0.2. There is a little difference between
the predicted final velocities from different models after the
interaction. The difference is reduced when the height of the
potential(ε) reduces. The difference is due to the approxima-
tion which is used for deriving (5) from (1).

Consider a potential well with the depth of ε and a soliton
at the initial position X0 which moves toward the well with
initial velocity Ẋ0 smaller than the Ẋescape. The soliton inter-
acts with the potential and reaches a maximum distance Xmax
from the center of the potential with a zero velocity and then
come back toward the well. The soliton oscillates around the
well with the amplitude Xmax. The required initial velocity to
reach Xmax is found from (16) as
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FIG. 5: Soliton trajectory during the interaction with potential well.
Potential depth ε =−0.2 has been chosen for direct simulation using
(2) (solid line) and (ε = −0.134) using analytic model (dash line).
Initial conditions are X0 = −5 and Ẋ0=0.1

Ẋ0 =

√√√√√√100ε
M0

⎛
⎜⎝ cosh2

(√
5X0

)
(

5+ sinh2
(√

5X0

))2 −
cosh2

(√
5Xmax

)
(

5+ sinh2
(√

5Xmax

))2

⎞
⎟⎠ (19)

If the initial velocity is lower than the escape velocity the
soliton oscillates around the well. The period of oscillation
can be calculated numerically using equation (16).

6. CONCLUSION AND REMARKS

An analytical model for the scattering of double sine-
Gordon solitons from delta function potential barriers and
also potential wells has been presented. Several features of
soliton-potential characters were calculated using this model.
A critical velocity for the soliton during the interaction with
a potential barrier as a function of its initial conditions and
the potential characters has been found. The model predicts
specific relations between some functions of initial conditions
and other functions of final state of the soliton after the inter-

action . An escape velocity has been derived for the soliton-
well system. Oscillation period of a soliton in a potential well
also has been discussed using this model.

Presented collective coordinate method is able to explain
most of the features of double sin-Gordon soliton system dur-
ing the interaction with an external potential. But this model
(like analytical model for single sine-Gordon model in Ref.
[16] or presented analytical model for φ4 in Ref.[21]) is not
able to explain fine structure of the islands of trapping in
soliton-well system. This phenomenon is a very interesting
features of soliton-potential systems. It is expected to find an
acceptable explanation for this behaviour using a better model
with suitable collective coordinate method. On the other hand
using this method for investigation of other nonlinear models
in potentials is an interesting subject.
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